請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93841完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 程子翔 | zh_TW |
| dc.contributor.advisor | Tze-Hsiang Chen | en |
| dc.contributor.author | 謝承佑 | zh_TW |
| dc.contributor.author | Cheng-Yu Hsieh | en |
| dc.date.accessioned | 2024-08-08T16:30:16Z | - |
| dc.date.available | 2024-08-09 | - |
| dc.date.copyright | 2024-08-08 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-05 | - |
| dc.identifier.citation | Barrett, P. Hugh R., et al. "SAAM II: simulation, analysis, and modeling software for tracer and pharmacokinetic studies." Metabolism 47.4 (1998): 484-492.
Bergeret, Sébastien, et al. "[18F] FDG PET may differentiate cerebral amyloid angiopathy from Alzheimer’s disease." European Journal of Neurology 28.5 (2021): 1511-1519. Burger, Cyrill, and Alfred Buck. "Requirements and implementation of a flexible kinetic modeling tool." Journal of Nuclear Medicine 38.11 (1997): 1818-1823. Chang, Yan, et al. "Diagnostic utility of integrated 11C-Pittsburgh compound B positron emission tomography/magnetic resonance for cerebral amyloid angiopathy: a pilot study." Frontiers in Aging Neuroscience 13 (2021): 721780. Chen, Yin J., et al. "Relative 11C-PiB delivery as a proxy of relative CBF: quantitative evaluation using single-session 15O-water and 11C-PiB PET." Journal of Nuclear Medicine 56.8 (2015): 1199-1205 Dondi, Francesco, et al. "PET imaging for the evaluation of cerebral amyloid angiopathy: a systematic review." Clinical and Translational Imaging 10.4 (2022): 391-401 Farid, Karim, et al. "Early-phase 11C-PiB PET in amyloid angiopathy-related symptomatic cerebral hemorrhage: potential diagnostic value?." PloS one 10.10 (2015): e0139926. Greenberg, Steven M., and Andreas Charidimou. "Diagnosis of cerebral amyloid angiopathy: evolution of the Boston criteria." Stroke 49.2 (2018): 491-497. Jiao, Jieqing, et al. "NiftyPAD-Novel Python package for quantitative analysis of dynamic PET data." Neuroinformatics 21.2 (2023): 457-468. Lammertsma, Adriaan A., et al. "Comparison of methods for analysis of clinical [11C] raclopride studies." Journal of Cerebral Blood Flow & Metabolism 16.1 (1996): 42-52. Lammertsma, Adriaan A., and Susan P. Hume. "Simplified reference tissue model for PET receptor studies." Neuroimage 4.3 (1996): 153-158. Lammertsma, Adriaan A. "Forward to the past: the case for quantitative PET imaging." Journal of Nuclear Medicine 58.7 (2017): 1019-1024. Logan, Jean, et al. "Distribution volume ratios without blood sampling from graphical analysis of PET data." Journal of Cerebral Blood Flow & Metabolism 16.5 (1996): 834- Logan, Jean, et al. "A strategy for removing the bias in the graphical analysis method." Journal of Cerebral Blood Flow & Metabolism 21.3 (2001): 307-320 López-González, Francisco J., et al. "QModeling: a multiplatform, easy-to-use and open-source toolbox for PET kinetic analysis." Neuroinformatics 17 (2019): 103-114. Muzic, Raymond F., and Shawn Cornelius. "COMKAT: compartment model kinetic analysis tool." Journal of Nuclear Medicine 42.4 (2001): 636-645. Nagaraja, Nandakumar, et al. "Imaging features of small vessel disease in cerebral amyloid angiopathy among patients with Alzheimer’s disease." NeuroImage: Clinical 38 (2023): 103437. Okada, Hiroyuki, et al. "Alterations in α4β2 nicotinic receptors in cognitive decline in Alzheimer’s aetiopathology." Brain 136.10 (2013): 3004-3017. Patlak, Clifford S., Ronald G. Blasberg, and Joseph D. Fenstermacher. "Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data." Journal of Cerebral Blood Flow & Metabolism 3.1 (1983): 1-7. Peretti, Débora E., et al. "Optimization of the k 2′ parameter estimation for the pharmacokinetic modeling of dynamic PIB PET scans using SRTM2." Frontiers in Physics 7 (2019): 212. Planton, Mélanie, et al. "Florbetapir regional distribution in cerebral amyloid angiopathy and Alzheimer’s disease: a PET study." Journal of Alzheimer's Disease 73.4 (2020): 1607-1614. Qureshi, Adnan I., et al. "Spontaneous intracerebral hemorrhage." New England Journal of Medicine 344.19 (2001): 1450-1460. Roh, David, et al. "Primary intracerebral hemorrhage: a closer look at hypertension and cerebral amyloid angiopathy." Neurocritical care 29 (2018): 77-83. Resat, Haluk, Linda Petzold, and Michel F. Pettigrew. "Kinetic modeling of biological systems." Computational systems biology (2009): 311-335. Samarasekera, Neshika, et al. "Imaging features of intracerebral hemorrhage with cerebral amyloid angiopathy: systematic review and meta-analysis." PLoS One 12.7 (2017): e0180923. Schain, Martin, et al. "Estimation of the binding potential BPND without a reference region or blood samples for brain PET studies." Neuroimage 146 (2017): 121-131. Schubert, Julia J., et al. "Dynamic 11C-PiB PET shows cerebrospinal fluid flow alterations in Alzheimer disease and multiple sclerosis." Journal of Nuclear Medicine 60.10 (2019): 1452-1460. Smith, Eric E., and Steven M. Greenberg. "Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria." Current atherosclerosis reports 5.4 (2003): 260-266. Tsai, Hsin-Hsi, et al. "Centrum semiovale perivascular space and amyloid deposition in spontaneous intracerebral hemorrhage." Stroke 52.7 (2021): 2356-2362. Tian, J., J. Shi, and D. M. Mann. "Cerebral amyloid angiopathy and dementia." Panminerva medica 46.4 (2004): 253-264. Viswanathan, Anand, and Steven M. Greenberg. "Cerebral amyloid angiopathy in the elderly." Annals of neurology 70.6 (2011): 871-880. Wu, Yanjun, and Richard E. Carson. "Noise reduction in the simplified reference tissue model for neuroreceptor functional imaging." Journal of Cerebral Blood Flow & Metabolism 22.12 (2002): 1440-1452. Yang, Jhih-Yong, et al. "Amyloid and tau PET in cerebral amyloid angiopathy-related inflammation two case reports and literature review." Frontiers in Neurology 14 (2023): 1153305. Yaqub, Maqsood, et al. "Simplified parametric methods for [11C] PIB studies." Neuroimage 42.1 (2008): 76-86. Zhou, Yun, et al. "Using a reference tissue model with spatial constraint to quantify [11C] Pittsburgh compound B PET for early diagnosis of Alzheimer's disease." Neuroimage 36.2 (2007): 298-312. Zhou, Yun, et al. "Spatially constrained kinetic modeling with dual reference tissues improves 18 F-flortaucipir PET in studies of Alzheimer disease." European journal of nuclear medicine and molecular imaging (2021): 1-15. Zhu, Yuyi, et al. "The association between hypertensive angiopathy and cerebral amyloid angiopathy in primary intracerebral hemorrhage." Frontiers in Neurology 14 (2023): 1257896. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93841 | - |
| dc.description.abstract | 研究背景與目的:正子斷層造影(PET)是一種重要的醫學成像技術,已被廣泛應用於疾病診斷、藥物開發等研究領域,而在PET分析中,動力學建模具有其定量分析的獨特優勢,但需要合適且具公信力的軟體來進行建模分析。如常見的PMOD、SAAM II等建模軟體。本文旨在探討一個有別於一般商用軟體的開源建模工具箱QModeling的驗證,以及應用於分析大腦類澱粉血管病變造成的腦內出血 (CAA-ICH)、高血壓造成的腦內出血(HTN-ICH)和阿茲海默症 (AD)的初步結果。
材料與方法:本研究使用動力學建模分析最常應用的商用軟體PMOD來進行QModeling內建四個模型的數值驗證及分析。QModeling現有的模型包含簡易參考組織模型(SRTM)和簡易參考組織模型2 (SRTM2)、Logan參考組織法(Logan Reference Plot)、Patlak參考組織模型(Patlak Reference Model),以及2-組織室模型(2-Tissue Compartment Model)。為驗證此軟體內建模型的可信度,因此準備了一組公開動態PET資料集,以及一組CAA-ICH、HTN-ICH及AD的資料集。公開資料集為NRM2018 PET Grand Challenge Dataset,此資料集為評估不同的PET分析工具之效能,其中包含5位模擬受試者,並使用模擬的神經遞質受體示蹤劑[11C]LondonPride,分別進行2次90分鐘的動態擷取,共10筆的動態PET的資料集。第二組為台大醫院核醫部所建立的資料集,包含14位 CAA-ICH、15位AD、以及10位HTN-ICH,分別進行70分鐘的動態擷取,共23幀。透過動力學模型的建立及選擇,將擬合完成的動力學參數如BP_nd進行分析比對,取得CAA-ICH、HTN-ICH、AD三者之間的差異性。 實驗結果:在使用PMOD作為標準的QModeling性能驗證中,SRTM的三項主要擬合參數(R_1、k_2、BP_nd)的絕對誤差和相對誤差分別為:R_1絕對誤差為(2.62±2.02)10-3 (l/l),相對誤差為(5.01±2.38)10-3 (l/l),k_2的絕對誤差為(7.24±2.29)10-4 (min-1),相對誤差為(8.38±0.89)10-3 (min-1),BP_nd的絕對誤差為(1.6±9.6)10-3 (l/l),相對誤差為(4.53±3.78)10-2 (l/l)。SRTM2的三項擬合(R_1、k_2^'、BP_nd),R_1絕對誤差為(9.22±4.87)10-4 (l/l),相對誤差(2.4±0.58)10-3 (l/l),k_2^'絕對誤差為(1.29±2.56)10-3 (min-1),相對誤差為(2.09±0.69)10-2 (min-1),BP_nd絕對誤差為(3.3±7.1)10-4 (l/l),相對誤差為(7.11±2.4)10-3 (l/l),Logan參考組織法的BP_nd絕對誤差為(1.1±1.08)10-4 (l/l),相對誤差為(1.11±1.87)10-4 (l/l)。而在CAA-ICH、HTN-ICH、AD的初步實驗中,可以發現在枕葉及後扣帶皮質有較顯著的傾向能區分CAA-ICH與AD,在頂葉、灰質、白質則較無明顯差別。 結論:此研究利用PMOD和公開的動態PET數據集來驗證QModeling的效能,測試了SRTM、SRTM2和Logan參考組織法的七個動力學參數。研究結果顯示,QModeling在絕對誤差和相對誤差上與PMOD之間的差異均小於10-3,證明了其在無需動脈輸入函數情況下的可靠性和實用性。而在初步的CAA-ICH、AD和HTN-ICH的案例分析中,枕葉和後扣帶皮質的分析顯示出明顯的差異,進一步強調了QModeling作為開源工具的潛力和實用性。 | zh_TW |
| dc.description.abstract | Background and Objectives: Positron emission tomography (PET) is an important medical imaging technology widely used in disease diagnosis, drug development, and other research areas. In PET analysis, kinetic modeling offers unique advantages as a quantitative analysis method, requiring reliable and credible software for modeling and analysis, such as commonly used software like PMOD and SAAM II. This study aims to explore the validation of an open-source modeling toolkit, QModeling, which differs from general commercial software, and its preliminary application in analyzing images from populations with brain hemorrhages caused by cerebral amyloid angiopathy (CAA-ICH) or hypertension (HTN-ICH) and those with Alzheimer's disease (AD).
Materials and Methods: This study used the commonly applied commercial software PMOD for kinetic modeling analysis to verify and analyze the numerical accuracy of four models built into QModeling. The existing models in QModeling include the Simplified Reference Tissue Model (SRTM), Simplified Reference Tissue Model 2 (SRTM2), Logan Reference Plot, Patlak Reference Model, and the 2-Tissue Compartment Model. To validate the reliability of these built-in models, a publicly available dynamic PET dataset and a dataset of CAA-ICH, HTN-ICH, and AD were prepared. The public dataset is the NRM2018 PET Grand Challenge Dataset, established to evaluate the performance of different PET analysis tools and confirm the receptor binding changes in PET radioligand neurotransmission studies. It included five simulated subjects using the simulated neurotransmitter receptor tracer [11C]LondonPride, each undergoing two 90-minute dynamic acquisitions, totaling ten dynamic PET datasets. The second dataset was established by the Nuclear Medicine Department of National Taiwan University Hospital and included 14 CAA-ICH, 15 AD, and 10 HTN-ICH patients, each undergoing 70-minute dynamic acquisitions, totaling 23 frames per acquisition. By establishing and selecting kinetic models, fitted kinetic parameters such as BP_nd were analyzed and compared to obtain differences among CAA-ICH, HTN-ICH, and AD. Results: Using PMOD as the standard for the validation of QModeling's model performance, the absolute and relative errors of the three main fitting parameters (R_1, k_2, BP_nd) for SRTM were: R_1 absolute error (2.62±2.02)10-3 (l/l), relative error (5.01±2.38)10-3 (l/l); k_2 absolute error (7.24±2.29)10-4 (min-1), relative error (8.38±0.89)10-3 (min-1); BP_nd absolute error (1.6±9.6)10-3 (l/l), relative error (4.53±3.78)10-2 (l/l). For SRTM2, the absolute and relative errors for R_1 were (9.22±4.87)10-4 (l/l) and (2.4±0.58)10-3 (l/l), respectively; for k_2^*, the absolute error was (1.29±2.56)10-3 (min-1), relative error (2.09±0.69)10-2 (min-1); for BP_nd, the absolute error was (3.3±7.1)10-4(l/l), relative error (7.11±2.4)10-3 (l/l). For the Logan Reference method, the BP_nd absolute error was (1.1±1.08)10-4 (l/l), relative error (1.11±1.87)10-4 (l/l). In the preliminary experiments on CAA-ICH, HTN-ICH, and AD, significant differentiation between CAA-ICH and AD was observed in the occipital lobe and posterior cingulate cortex, whereas no obvious differences were noted in the parietal lobe, gray matter, and white matter. Conclusion: This study utilized PMOD and public dynamic PET datasets to validate the efficacy of QModeling, testing seven kinetic parameters across SRTM, SRTM2, and Logan reference tissue methods. Results indicate that QModeling's absolute and relative errors, in comparison to PMOD, were less than 10-3, demonstrating its reliability and practicality without arterial input function. Preliminary analyses of CAA-ICH, AD, and HTN-ICH cases, particularly in the occipital lobes and posterior cingulate cortex, highlighted significant differences, underscoring QModeling's potential as an open-source tool. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:30:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-08T16:30:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目 次
口試委員會審定書………………………………………………………………. i 誌謝………………………………………………………………………………. ii 中文摘要…………………………………………………………………………. iii 英文摘要…………………………………………………………………………. v 第一章 緒論…………………………………………………………………. 1 1.1 時間-活性曲線(TAC)……………………………………………………… 1 1.2 動力學模型………………………………………………………….. ……. 2 1.2.1 隔室模型………………………………………………………….. 3 1.2.2 簡易參考模型…………………………………………………… 4 1.2.3 簡易參考模型2…………………………………………………… 5 1.2.4 Logan參考組織法……………………………………………… 6 1.2.5 Patlak參考模型……………………………………………………8 1.3 動力學建模軟體…………………………………………………………..8 1.4 原發性腦出血…………………………………………………………..9 第二章 材料與方法……………………………………………………………12 2. 1 實驗數據集……………………………………………………… …… 12 2.1.1 NRM 2018 PET Grand Chllenge 公開數據集……………………12 2.1.2 CAA-ICH、HTN-ICH、AD共同數據集……………………13 2.2 實驗流程…………………………………………………………………… 14 2.2.1 TAC的數值…………………………………………………………15 2.2.2 ROI的選取…………………………………………………………15 2.2.3 模型選取和參數設定………………………………………………16 2.2.4 PMOD動力學模型(PKIN) …………………………………………19 2.2.5 分析方法……………………………………………………………22 第三章 實驗結果………………………………………………………………….24 3.1 QModeling驗證結果…………………………………………………… 24 3.2 CAA-ICH VS.AD VS.HTN-ICH比較結果………………………………26 第四章 討論………………………………………………………………………36 4.1 QModeling………………………………………………………………… 36 4.2 模型的選擇………………………………………………………………36 4.3 參考區域的選擇…………………………………………………………36 4.4 樣本的選擇………………………………………………………………37 第五章 結論與未來展望…………………………………………………………39 5.1 結論………………………………………………………………………39 5.2 未來研究方向……………………………………………………………39 參考文獻…………………………………………………………………….…… 41 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 阿茲海默症 | zh_TW |
| dc.subject | 簡易參考組織模型2 | zh_TW |
| dc.subject | 簡易參考組織模型 | zh_TW |
| dc.subject | 不可置換結合潛力 | zh_TW |
| dc.subject | QModeling | zh_TW |
| dc.subject | 動力學建模 | zh_TW |
| dc.subject | 大腦類澱粉血管病變 | zh_TW |
| dc.subject | SRTM2 | en |
| dc.subject | QModeling | en |
| dc.subject | Kinetic modeling | en |
| dc.subject | BPnd | en |
| dc.subject | SRTM | en |
| dc.subject | AD | en |
| dc.subject | CAA | en |
| dc.title | 開源PET動力學建模軟體的實作與驗證 | zh_TW |
| dc.title | Implementation and validation of an open-source PET kinetic modeling software | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 顏若芳;梁祥光 | zh_TW |
| dc.contributor.oralexamcommittee | Ruoh-Fang Yen;Hsiang-Kuang Liang | en |
| dc.subject.keyword | QModeling,動力學建模,不可置換結合潛力,簡易參考組織模型,簡易參考組織模型2,阿茲海默症,大腦類澱粉血管病變, | zh_TW |
| dc.subject.keyword | QModeling,Kinetic modeling,BPnd,SRTM,SRTM2,AD,CAA, | en |
| dc.relation.page | 43 | - |
| dc.identifier.doi | 10.6342/NTU202403020 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-07 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 醫學工程學系 | - |
| dc.date.embargo-lift | 2026-08-01 | - |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 1.64 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
