Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93840
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂桐睿zh_TW
dc.contributor.advisorTodd L. lowaryen
dc.contributor.author韓東均zh_TW
dc.contributor.authorDongKyun Hanen
dc.date.accessioned2024-08-08T16:29:55Z-
dc.date.available2024-08-09-
dc.date.copyright2024-08-08-
dc.date.issued2024-
dc.date.submitted2024-08-02-
dc.identifier.citation1. Shinnick, T. M.; Good, R. C. Mycobacterial taxonomy. European Journal of Clinical Microbiology & Infectious Diseases. 1994, 13 (11), 884-901.
2. Parte, A. C.; Sardà Carbasse, J.; Meier-Kolthoff, J. P.; Reimer, L. C.; Göker, M. List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ. International Journal of Systematic and Evolutionary Microbiology. 2020, 70 (11), 5607-5612.
3. Koch, R. Die Äetiologie der Tuberkulose. Berliner klinische Wochenschrift. 1882, 19 (15), 221–230.
4. World Health Organization, On the Road to Ending TB: Highlights from the 30 Highest TB Burden Countries; World Health Organization, 2016.
5. World Health Organization, Global tuberculosis report 2023; World Health Organization, 2023.
6. McQuaid, C. F.; Vassall, A.; Cohen, T.; Fiekert. K.; White, R. G. The impact of COVID-19 on TB: a review of the data. The International Journal of Tuberculosis and Lung Disease. 2021, 25 (6), 436‐446.
7. Joel, C. L.; Marilda Aparecida, M. M. A. Leprosy: review of the epidemiological, clinical, and etiopathogenic aspects - Part 1. Anais Brasileiros de Dermatologia. 2014, 89 (2), 05–218.
8. Summers,W. C., Bacteriophage discovered. In Felix d'Herelle and the Origins of Molecular Biology; Yale University Press, 1999.
9. Abedon, S. T., Bacteriophage Ecology: Population Growth, Evolution, and Impact of Bacterial Viruses; Cambridge University Press, 2008.
10. Fauquet, C. M.; Pringle, C. R. Abbreviations for bacterial and fungal virus species names. Archives of Virology. 2000, 145, 197–203.
11. Van Regenmortel, M. H. Virus species and virus identification: past and current controversies. Infection Genetics and Evolution. 2006, 7, 133–144.
12. Catalao, M. J.; Gil, F.; Moniz-Pereira, J.; Sao-Jose, C.; Pimentel, M. Diversity in bacterial lysis systems: bacteriophages show the way. FEMS Microbiology Reviews. 2013, 37 (4), 554-571.
13. Little, J. W., Lysogeny, Prophage Induction, and Lysogenic Conversion; Wiley Online library, 2005.
14. Campbell, A. The future of bacteriophage biology. Nature Reviews Genetics. 2003, 4, 471–477.
15. Hatfull, G. F.; Dedrick, R. M.; Schooley, R. T. Phage Therapy for Antibiotic-Resistant Bacterial Infections. Annual Review of Medicine. 2022, 73, 197-211.
16. Harper, D.R. Introduction to Bacteriophages. In: Harper, D.R.; Abedon, S.T.; Burrowes, B.H.; McConville, M.L. (eds) Bacteriophages. Springer. 2021; pp 3-16.
17. Hatfull, G. F. Actinobacteriophages: Genomics, Dynamics, and Applications. Annual Review of Virology. 2020, 7 (1), 37-61.
18. Russell, D. A.; Hatfull, G. F. PhagesDB: the actinobacteriophage database. Bioinformatics. 2017, 33 (5), 784-786.
19. Taher, A.; Mehrdad, M.; Mohammad, J. N.; Sahar, S.; Samira, K.; Ahmad, N. Phage therapy as a renewed therapeutic approach to mycobacterial infections: a comprehensive review. Infection and Drug Resistance. 2019, 12, 2943–2959.
20. Smith, H. W.; Huggins, M. B. Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. Journal of General Microbiology. 1982, 128 (2), 307-318.
21. Chanishvili N. Phage therapy—history from Twort and d'Herelle through Soviet experience to current approaches. Advances in Virus Research. 2012, 83 (3), 40.
22. Kortright, K. E.; Chan, B. K.; Koff, J. L.; Turner, P. E. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host & Microbe. 2019, 25, 219–32.
23. Jiaxing, Y.; Laiying, Z.; Wenliang, Q.; Youfu, Luo. Mycobacterium tuberculosis: Pathogenesis and therapeutic targets. MedComm. 2020, 4 (5), 353.
24. Singh, V.; Chibale, K. Strategies to Combat Multi-Drug Resistance in Tuberculosis. Accounts of Chemical Research. 2021, 54 (10), 2361-2376.
25. Hatfull, G. F. Mycobacteriophages: windows into tuberculosis. PLOS Pathogens. 2014, 10 (3).
26. Azimi, T.; Mosadegh, M.; Nasiri, M.J.; Sabour, S.; Karimaei, S.; Nasser, A. Phage therapy as a renewed therapeutic approach to mycobacterial infections: A comprehensive review. Infection and Drug Resistance. 2019, 12, 2943–2959.
27. Sula, L.; Sulova, J.; Stolcpartova, M. Therapy of experimental tuberculosis in guinea pigs with mycobacterial phages DS-6A, GR-21 T, My-327. CzechMed. 1981, 4, 209–214.
28. Peng, L.; Luo, Y.; Chen, B.; Li, Y.; Shen, X.; Su, C.; Wang, G. Therapeutic effect of bacteriophage D29 in the treatment for guinea pigs infected with sensitive strain of Mycobacterium tuberculosis. Chinese Journal of Zoonoses. 2009, 25, 733 736.
29. Hatfull, G. F. Phage Therapy for Nontuberculous Mycobacteria: Challenges and Opportunities. Pulmonary Therapy. 2023, 9 (1), 91–107.
30. Dedrick, R. M.; Freeman, K. G.; Nguyen, J. A. Potent antibody-mediated neutralization limits bacteriophage treatment of a pulmonary Mycobacterium abscessus infection. Nature Medicine. 2021, 27, 1357–1361.
31. Moremen, K.W.; Tiemeyer, M.; Nairn, A.V. Vertebrate protein glycosylation: Diversity, synthesis and function. Nature Reviews Molecular Cell Biology. 2012, 13, 448–462.
32. Reily, C.; Stewart, T.J.; Renfrow, M.B.; Novak, J. Glycosylation in health and disease. Nature Reviews Nephrology. 2019, 15, 346–366.
33. Schjoldager, K.T.; Narimatsu, Y.; Joshi, H.J.; Clausen, H. Global view of human protein glycosylation pathways and functions. Nature Reviews Molecular Cell Biology. 2020, 21, 729–749.
34. Varki, A. Biological roles of glycans. Glycobiology. 2017, 27, 3–49.
35. Freeman, K. G.; Robotham, A. C.; Parks, O. B.; Abad, L.; Jacobs-Sera, D.; Lauer, M. J.; Podgorski, J. M.; Zhang, Y.; Williams, J. V.; White, S. J.; Kelly, J. F.; Hatfull, G. F.; Pope, W. H. Virion glycosylation influences mycobacteriophage immune recognition. Cell Host & Microbe. 2023, 31, 1216.
36. Christelle, B.; Lenka Šnajdrová; Charlotte, J.; Jaroslav, K.; Anne, I. Structures and mechanisms of glycosyltransferases. Glycobiology. 2006, 16 (2), 29-37.
37. Rini, J. M.; Moremen, K. W.; Davis, B. G.; Esko, J. D. Glycosyltransferases and Glycan-Processing Enzymes. In Essentials of Glycobiology, 4th ed.; Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Mohnen, D., Kinoshita, T., Packer, N.H., Prestegard, J.H., et al., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2022; pp. 67–78.
38. Pasala, C.; Sharma, S.; Roychowdhury, T.; Moroni, E.; Colombo, G.; Chiosis, G. N-Glycosylation as a Modulator of Protein Conformation and Assembly in Disease. Biomolecules. 2024, 14, 282.
39. Lairson, L. L.; Henrissat, B.; Davies, G. J.; Withers, S. G. Glycosyltransferases: structures, functions, and mechanisms. Annual Review of Biochemistry. 2008, 77, 521-55.
40. Moremen, K. W.; Haltiwanger, R. S. Emerging structural insights into glycosyltransferase-mediated synthesis of glycans. Nature Chemical Biology. 2019, 15 (9), 853-864.
41. Varki, A.; Cummings, R. D.; Esko, J. D.; Stanley, P.; Hart, G. W.; Aebi, M.; Darvill, A. G.; Kinoshita, T.; Packer, N. H.; Prestegard, J. H.; Schnaar, R. L.; Seeberger, P. H. Essentials of Glycobiology [Internet]. 3rd ed.; Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press, 2015.
42. Van den Steen P, Rudd PM, Dwek RA, Opdenakker G (1998). "Concepts and principles of O-linked glycosylation". Critical Reviews in Biochemistry and Molecular Biology. 33 (3): 151–208.
43. Vik, A.; Aas, F. E.; Anonsen, J. H.; Bilsborough, S.; Schneider, A.; Egge-Jacobsen, W.; Koomey, M. Broad spectrum O-linked protein glycosylation in the human pathogen Neisseria gonorrhoeae. Proceedings of the National Academy of Sciences of the United States of America. 2009, 106 (11), 4447–52.
44. Lithgow, K. V.; Scott, N. E.; Iwashkiw, J. A.; Thomson, E. L.; Foster, L. J.; Feldman, M. F.; Dennis, J. J. A general protein O-glycosylation system within the Burkholderia cepacia complex is involved in motility and virulence. Molecular Microbiology. 2014, 92 (1), 116–37.
45. Iwashkiw, J. A.; Seper, A.; Weber, B. S.; Scott, N. E.; Vinogradov, E.; Stratilo, C. Identification of a general O-linked protein glycosylation system in Acinetobacter baumannii and its role in virulence and biofilm formation. PLoS Pathogens. 2012, 8 (6).
46. Hounsell, E. F.; Davies, M. J.; Renouf, D. V. O-linked protein glycosylation structure and function. Glycoconjugate Journal. 1996, 13 (1), 19–26.
47. Lin, B.; Qing, X.; Liao, J.; Zhuo, K. Role of Protein Glycosylation in Host-Pathogen Interaction. Cells. 2020, 9 (4), 1022.
48. Guan, W.; Cai, L.; Wang, PG. Highly efficient synthesis of UDP-GalNAc/GlcNAc analogues with promiscuous recombinant human UDP-GalNAc pyrophosphorylase AGX1. Chemistry. 2010, 16 (45), 13343–13345.
49. Shuang, Li.; Shuaishuai, Wang.; Yaqian. Wang.; Jingyao, Qu.; Xian-wei, Liu.; Peng George, Wang.; Junqiang, Fang. Gram-scale production of sugar nucleotides and their derivatives. Green Chemistry. 2021, 23, 2628–2633.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93840-
dc.description.abstract分枝桿菌噬菌體是一群多樣化的噬菌體,他們能夠選擇性地感染分枝桿菌,包括結核分枝桿菌。最近已發表的研究揭示了分枝桿菌噬菌體生物學一個獨特的特性—部分噬菌體頭部或尾管具有O-醣基化。特殊的是這些噬菌體表的醣基化是由噬菌體自體編碼的醣基轉移酶所轉移的,與一般對病毒的認知不同,這些噬菌體並不會通過利用宿主的機制進行修飾,也因此導致不同分枝桿菌噬菌體之間具有不同的表面糖類之修飾。這些醣鏈通常很長、結構複雜且在代謝扮演著重要的角色。這些長醣鏈可以作為噬菌體的醣護盾,使病毒顆粒不易受抗體結合的影響。在小鼠接種後的初始階段,IgM和IgG抗體對未醣基化的噬菌體顆粒的親和力比對醣基化的病毒顆粒更強。雖然已經有論文發表了分枝桿菌噬菌體表面糖類的存在以及負責對病毒結構蛋白進行醣基化的噬菌體編碼醣基轉移酶,但仍有幾個方面尚未清楚,包括這些酵素的功能、基質特異性以及這些噬菌體表面醣類的化學組成。在這篇論文中,我試圖證明分枝桿菌噬菌體中醣基轉移酶的功能。首先,我通過使用各式生物訊息及結構工具與軟體鑑定出多個醣基轉移酶候選基因,再將所鑑定的醣基轉移酶在預測出的三維結構模型中找出保守的醣基轉移酶家族結構胺基酸序列,這些序列代表了潛在的醣基轉移酶功能位點。進一步的結構分析揭曉了這些醣基轉移酶具有類Rossman折疊,這是GT-A或GT-B家族的醣基轉移酶家族所擁有的特徵。其中的一組醣基轉移酶來自於分枝桿菌噬菌體Corndog(gp36、gp37和gp38),這組基因被挑選出來對其進行了克隆並且成功表達出這三個酵素。再使用合成的核苷酸醣和胜肽作為受體對Corndog的醣基轉移酶進行功能測試。儘管在不同的受體設計和反應條件下進行了多次嘗試,但Corndog醣基轉移酶未能將醣基轉移到受體上。這項結果表明幾種可能性:這些酵素的供體和受體特異性可能比最初預期的更複雜,或者用於測試的體外條件未能模擬酵素活性所需的環境。供體與受體的專一配對在本研究中是一個重大的挑戰,也因此成為了這些未知功能的醣基轉移酶功能測試的瓶頸。zh_TW
dc.description.abstractMycobacteriophages are a diverse group of bacteriophages that infect mycobacteria, including Mycobacterium tuberculosis. Recent investigations have revealed a fascinating aspect of mycobacteriophage biology, the O-glycosylation of capsid and/or tail tube subunits. This viral surface glycosylation is orchestrated by phage-encoded glycosyltransferases, bypassing the need to exploit the host's biosynthetic machinery, resulting in a distinct surface glycans across different mycobacteriophages. These glycans, often large and intricately structured, are proposed to play a pivotal role as a glycan shield, rendering viral particles less susceptible to antibody binding. Both IgM and IgG antibodies exhibit a stronger affinity for non-glycosylated phage particles than to glycosylated virions during the initial stages following mouse inoculation. While the presence of mycobacteriophage surface glycans and the phage-encoded glycosyltransferases responsible for glycosylating viral structural proteins have been discovered, several aspects remain fairly unknown. These include the precise function of these enzymes, their substrate specificity, and the chemical composition of the surface glycans. In this study, the primary focus is to demonstrate the function of these glycosyltransferases. Multiple glycosyltransferase candidates were identified by using of a number of online bioinformatic and structural tools and software. The identified glycosyltransferases exhibited conserved glycosyltransferase family structural motifs in high-confidence three-dimensional models showing potential functional sites. Further structural analysis suggests that these glycosyltransferases are likely to be soluble enzymes belonging to the GT-A or GT-B families with Rossman-like folds, which are characteristic of these glycosyltransferase families. A set of glycosyltransferases from these candidates belonging to the mycobacteriophage Corndog (gp36, gp37, and gp38) was successfully cloned with relatively high efficiency. The functional assays of the Corndog glycosyltransferases using synthesized nucleotide sugars and peptide as acceptors, although initially promising, did not result in detectable glycosylation. Despite multiple attempts with different acceptor designs and reaction conditions, the glycosyltransferases were unable to transfer sugar residues to the acceptors. This outcome suggests several possibilities: the donor and acceptor specificities of these enzymes may be more complex than initially anticipated, or the in vitro conditions used in the assays failed to simulate or fully replicate the native environment required for enzymatic activity. The identification of specific donor-acceptor pairs remains a significant challenge and a potential bottleneck in demonstrating the precise functionalities of these novel enzymes.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:29:55Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-08T16:29:55Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTable of Contents
口試委員審定書 i
Acknowledgement ii
摘要 iii
Abstract iv
Table of Contents vi
List of Figures ix
List of Schemes xii
List of Tables xiii
1. Introduction 1
1.1 Mycobacteria and Mycobacteriophages 1
1.1.1 Mycobacteria 1
1.1.2 Bacteriophages 2
1.1.3 Mycobacteriophages 3
1.2 Phage therapy 4
1.2.1 Introduction to phage therapy 4
1.2.2 Mycobacterial disease phage therapy 5
1.2.3 Immune responses in patients 6
1.3 Glycosylation 8
1.3.1 Glycosyltransferase functions 8
1.3.2 Glycosyltransferase structures 9
1.3.2.1 GT-A 9
1.3.2.2 GT-B 10
1.3.2.3 GT-C 10
1.3.3 O-glycosylation 10
1.3.4 O-glycosylation in mycobacteriophages 11
1.4 Aims of this study 14
2 Results and Discussion 15
2.1 Genome analysis and structure predictions 15
2.2 Cloning of mycobacteriophage proteins 22
2.3 Overexpression of mycobacteriophage proteins 27
2.4 Enzymatic synthesis of nucleotide sugars 33
2.5 Enzymatic assay test of Corndog_gp36, Corndog_gp37, and Corndog_gp38 37
3 Conclusion 44
4 Materials and Methods 47
4.1 Mycobacteriophage genome analysis 47
4.2 Mycobacteriophage protein structure folding prediction 48
4.3 Mycobacteriophage Corndog glycosyltransferase function prediction 48
4.4 Cloning and overexpression 49
4.4.1 Cloning of Che8_gp108, Che8_gp109, Che8_gp110, Myrna_gp234, and Myrna_gp238 49
4.4.2 Cloning of Corndog_gp36, Corndog_gp37, and Corndog_gp38 50
4.4.3 Cloning of Corndog_gp49 54
4.4.4 Isopropyl β-D-1-thiogalactopyranoside (IPTG) induction 54
4.5 Cell resuspension and disruption 55
4.6 Immobilized metal affinity chromatography (IMAC) purification 56
4.7 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 57
4.8 Protein concentration assay 57
4.8.1 Bradford assay 57
4.8.2 Nanodrop protein concentration detection 58
4.9 Nucleotide sugar donor enzymatic synthesis 58
4.9.1 UDP-GlcNAc enzymatic synthesis 58
4.9.2 UDP-GalNAc enzymatic synthesis 59
4.10 Nucleotide sugar donor purification 60
4.11 Peptide acceptor synthesis 60
4.12 Mycobacteriophage glycosyltransferase enzymatic assay 61
5 References 62
6 Appendix 68
-
dc.language.isoen-
dc.title分枝桿菌噬菌體的O-醣基化之酵素特性描述嘗試zh_TW
dc.titleAttempted Characterization of O-Glycosylation Enzymes in Mycobacteriophagesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee安形高志;游景晴zh_TW
dc.contributor.oralexamcommitteeTakashi Angata;Ching-Ching Yuen
dc.subject.keyword醣生物學,分枝桿菌噬菌體,O-醣基化,醣基轉移酶,酵素合成,zh_TW
dc.subject.keywordGlycobiology,Mycobacteriophage,O-glycosylation,Glycosyltransferase,Enzymatic synthesis,en
dc.relation.page70-
dc.identifier.doi10.6342/NTU202402746-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-06-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科學研究所-
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf4.83 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved