請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93839完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃升龍 | zh_TW |
| dc.contributor.advisor | Sheng-Lung Huang | en |
| dc.contributor.author | 陳宥亘 | zh_TW |
| dc.contributor.author | You-Syuan Chen | en |
| dc.date.accessioned | 2024-08-08T16:29:34Z | - |
| dc.date.available | 2024-08-09 | - |
| dc.date.copyright | 2024-08-08 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-05 | - |
| dc.identifier.citation | [1] K. M. Meek and C. Knupp, "Corneal structure and transparency," (in eng), Prog Retin Eye Res, vol. 49, pp. 1-16, Nov 2015, doi: 10.1016/j.preteyeres.2015.07.001.
[2] G. K. Klintworth, "Corneal dystrophies," Orphanet Journal of Rare Diseases, vol. 4, no. 1, p. 7, 2009/02/23 2009, doi: 10.1186/1750-1172-4-7. [3] 劉柏辰, "利用全域式光學同調斷層掃描術與自編程式進行影像判讀輔助及樣本動態分析," 碩士, 光電工程學研究所, 國立臺灣大學, 2023年, 2023. [4] J. Scholler et al., "Dynamic full-field optical coherence tomography: 3D live-imaging of retinal organoids," Light: Science & Applications, vol. 9, no. 1, p. 140, 2020/08/17 2020, doi: 10.1038/s41377-020-00375-8. [5] Y. Dong et al., "Luminescence studies of Ce:YAG using vacuum ultraviolet synchrotron radiation," Materials Research Bulletin, vol. 41, no. 10, pp. 1959-1963, 2006/10/12/ 2006, doi: https://doi.org/10.1016/j.materresbull.2006.02.035. [6] 許祐維, "可調波長摻鉻釔鋁石榴石晶體光纖雷射之研究," 碩士, 光電工程學研究所, 國立臺灣大學, 2019年, 2019. [7] "The Rayleigh Criterion." http://hyperphysics.phy-astr.gsu.edu/hbase/phyopt/Raylei.html (accessed. [8] James Garrity. "Structure and Function of the Eyes." https://www.msdmanuals.com/home/eye-disorders/biology-of-the-eyes/structure-and-function-of-the-eyes (accessed. [9] L. Sarrabezolles, "Formalization and Simulation of Bio-Inspired On-chip Dynamic Attractors for Low Power Computer Vision," 2020. [10] "Structure of the cornea." https://ocvermont.com/corneal-surgery/what-is-the-cornea/ (accessed. [11] M. S. Sridhar, "Anatomy of cornea and ocular surface," Indian J Ophthalmol, vol. 66, no. 2, pp. 190-194, Feb 2018, doi: 10.4103/ijo.IJO_646_17. [12] K. Chen, Y. Li, X. Zhang, R. Ullah, J. Tong, and Y. Shen, "The role of the PI3K/AKT signalling pathway in the corneal epithelium: recent updates," Cell Death & Disease, vol. 13, no. 5, p. 513, 2022/05/31 2022, doi: 10.1038/s41419-022-04963-x. [13] S. E. Wilson, "Bowman's layer in the cornea- structure and function and regeneration," (in eng), Exp Eye Res, vol. 195, p. 108033, Jun 2020, doi: 10.1016/j.exer.2020.108033. [14] "A comparative study of Bowman's layer in some mammals: Relationships with other constituent corneal structures," Eur. J. Anat., vol. 6, pp. 133-139, 2002. [Online]. Available: http://www.eurjanat.com/web/paper.php?id=02030133. [15] S. E. Wilson, "The Cornea: No Difference in the Wound Healing Response to Injury Related to Whether, or Not, There’s a Bowman’s Layer," Biomolecules, vol. 13, no. 5, p. 771, 2023. [Online]. Available: https://www.mdpi.com/2218-273X/13/5/771. [16] B. J. Blackburn, M. W. Jenkins, A. M. Rollins, and W. J. Dupps, "A Review of Structural and Biomechanical Changes in the Cornea in Aging, Disease, and Photochemical Crosslinking," (in eng), Front Bioeng Biotechnol, vol. 7, p. 66, 2019, doi: 10.3389/fbioe.2019.00066. [17] C. Clinic. "What is keratoconus?" https://my.clevelandclinic.org/health/diseases/14415-keratoconus (accessed. [18] Z. He et al., "3D map of the human corneal endothelial cell," Scientific Reports, vol. 6, no. 1, p. 29047, 2016/07/06 2016, doi: 10.1038/srep29047. [19] R. A. Laing, K. Chiba, K. Tsubota, and S. S. Oak, "Metabolic and morphologic changes in the corneal endothelium. The effects of potassium cyanide, iodoacetamide, and ouabain," (in eng), Invest Ophthalmol Vis Sci, vol. 33, no. 12, pp. 3315-24, Nov 1992. [20] B. Pajak et al., "2-Deoxy-d-Glucose and Its Analogs: From Diagnostic to Therapeutic Agents," International Journal of Molecular Sciences, vol. 21, no. 1, p. 234, 2020. [Online]. Available: https://www.mdpi.com/1422-0067/21/1/234. [21] C. Corbet, "Stem Cell Metabolism in Cancer and Healthy Tissues: Pyruvate in the Limelight," (in English), Frontiers in Pharmacology, Mini Review vol. 8, 2018-January-04 2018, doi: 10.3389/fphar.2017.00958. [22] R. S. O'Connor et al., "The CPT1a inhibitor, etomoxir induces severe oxidative stress at commonly used concentrations," (in eng), Sci Rep, vol. 8, no. 1, p. 6289, Apr 19 2018, doi: 10.1038/s41598-018-24676-6. [23] B. Raud, P. McGuire, R. Jones, T. Sparwasser, and L. Berod, "Fatty acid metabolism in CD8+ T cell memory: Challenging current concepts," Immunological Reviews, vol. 283, pp. 213-231, 05/01 2018, doi: 10.1111/imr.12655. [24] 劉柏辰, "利用全域式光學同調斷層掃描術與自編程式進行影像判讀輔助及樣本動態分析," 光電工程學研究所, 國立臺灣大學, 2023. [25] M. A. Herráez, D. R. Burton, M. J. Lalor, and M. A. Gdeisat, "Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path," Appl. Opt., vol. 41, no. 35, pp. 7437-7444, 2002/12/10 2002, doi: 10.1364/AO.41.007437. [26] Fast 2D phase unwrapping implementation in MATLAB. (2017). [Online]. Available: https://github.com/mfkasim91/unwrap_phase/ [27] P. M. Pereira et al., "Fix Your Membrane Receptor Imaging: Actin Cytoskeleton and CD4 Membrane Organization Disruption by Chemical Fixation," (in English), Frontiers in Immunology, Original Research vol. 10, 2019-April-05 2019, doi: 10.3389/fimmu.2019.00675. [28] M. Goel, R. G. Picciani, R. K. Lee, and S. K. Bhattacharya, "Aqueous humor dynamics: a review," (in eng), Open Ophthalmol J, vol. 4, pp. 52-9, Sep 3 2010, doi: 10.2174/1874364101004010052. [29] A. Mowla et al., Multimodal mechano-microscopy reveals mechanical phenotypes of breast cancer spheroids in three dimensions. 2024. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93839 | - |
| dc.description.abstract | 全域式光學同調斷層掃描術(Full-field optical coherence tomography; FF-OCT)是一種無標定、高解析度的三維影像技術,廣泛應用於生物醫學影像領域。本研究採用摻鈰釔鋁石榴石(Ce3+:YAG)晶體光纖作為寬頻光源,中心波長560 nm、頻寬為99 nm,使用米繞式干涉儀與高數值孔徑的物鏡,搭配壓電控制器及高速攝影機,空間解析度約為1 μm,非常適合細胞影像的量測。
動態全域式光學同調斷層掃描術(Dynamic full-field optical coherence tomography; D-FF-OCT) 是一種基於現有FF-OCT技術的頻譜資訊分析方法。本研究優化實驗室現有的D-FF-OCT分析方法,利用適當的影像降噪及歸一化方式,建立一種分析速度快,時間解析度7.6 ms,高色彩鮮豔度的平均頻率暨標準差D-FF-OCT影像分析流程,可用於細胞動態信號判讀以及細胞型態觀察。 研究探討B4G12角膜內皮細胞株在不同狀態下的動態特性,結果顯示,活細胞的動態資訊在頻率分析區間0.062-129 Hz與固定後細胞未顯現出明顯差異。施用不同抑制劑於B4G12細胞,發現糖解作用抑制劑(2-DG)對角膜內皮細胞的型態有顯著影響,故推論糖解作用為B4G12角膜內皮細胞相當重要的代謝路徑。 研究中發現,利用平均頻率暨標準差D-FF-OCT影像與白光顯微鏡相比,更能觀察細胞內部構造,我們發現細胞膜在低頻表現、細胞質在中頻表現、細胞核在高頻表現,利用此特性結合信號標準差大小,可作為一細胞影像標註的方式。頻譜分析中,我們發現位於低頻0.252 Hz與高頻120 Hz均有特徵頻率,這些特徵頻率在實驗中證實為外界擾動導致,代表本系統對於外界擾動非常敏感,有潛力用於光學同調斷層掃描彈性量測(Optical coherence elastrography; OCE),我們透過相位分析的方式,嘗試解讀其細胞在特徵頻率的相位資訊。 | zh_TW |
| dc.description.abstract | Full-field optical coherence tomography (FF-OCT) is a label-free, high-resolution 3D imaging technique widely used in the biomedical imaging field. In this study, we used Ce3+crystal fiber as a broadband light source with a central wavelength of 560 nm and a bandwidth of 99 nm. A mirau interferometer and high numerical aperture objective were employed, along with a piezo controller and a high-speed camera, achieving a spatial resolution of approximately 1 μm, making it highly suitable for cellular imaging.
Dynamic full-field optical coherence tomography (D-FF-OCT) is a spectral information analysis method based on the existing FF-OCT technology. This study optimized the lab's existing D-FF-OCT analysis method by employing appropriate image denoising and normalization techniques. We established an analysis process for mean frequency and standard deviation D-FF-OCT imaging that is quick to perform, with a temporal resolution of 7.6 ms and high color saturation, suitable for interpreting cell dynamic signals and observing cell morphology. The study explored the dynamic characteristics of B4G12 corneal endothelial cells in different states. The results showed that the dynamic information of live cells did not differ significantly from fixed cells within the frequency analysis range of 0.062-129 Hz. Moreover, the glycolysis inhibitor 2-DG significantly affected the morphology of corneal endothelial cells, suggesting that glycolysis is a crucial metabolic process for corneal cells. We also found that using mean frequency and standard deviation D-FF-OCT imaging, compared to white light microscopy, better identifies internal cell structures. The cell membrane shows in low frequencies, the cytoplasm in mid frequencies, and the nucleus in high frequencies. Spectral analysis revealed specific frequencies at low (0.252 Hz) and high (120 Hz) frequencies, which were confirmed to be caused by external disturbances in the experiments. This sensitivity to external disturbances indicates potential for the system to be used in optical coherence elastography (OCE) . We attempt to interpret the phase information of cells at characteristic frequencies through phase analysis. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:29:34Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-08T16:29:34Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
致謝 I 中文摘要 II Abstract III 目次 IV 圖次 VI 表次 XII Chapter 1 緒論 1 Chapter 2 Mirau-based 光學同調斷層掃描系統 2 2.1 光學同調斷層掃描術原理推導 2 2.2 摻鈰釔鋁石榴石晶體光纖寬頻光源 8 2.2.1 光源特性 9 2.2.2 雷射加熱基座生長法 (Laser-heated pedestal growth; LHPG) 11 2.3 Mirau-based 全域式光學同調斷層掃描系統架構 13 2.3.1 系統簡介 13 2.3.2 Mirau 物鏡 14 2.3.3 FF-OCT影像處理 15 2.3.4 系統影像解析度 17 Chapter 3 角膜組織和代謝抑制劑介紹 20 3.1 眼睛及角膜結構 20 3.1.1 眼睛結構與功能 20 3.1.2 角膜結構 22 3.2 角膜內皮細胞特徵 25 3.2.1 細胞結構與功能 25 3.2.2 B4G12細胞株 27 3.3 角膜內皮細胞代謝抑制劑 28 3.3.1 細胞代謝路徑 28 3.3.2 糖解作用抑制劑 30 3.3.3 粒線體丙酮酸轉運抑制劑 31 3.3.4 脂肪酸氧化抑制劑 32 Chapter 4 細胞平均頻率計算上色程式優化及頻譜分析 33 4.1 動態光學同調斷層掃描影像定義 33 4.2 影像分析流程 36 4.2.1 D-FF-OCT影像分析流程 36 4.2.2 平均頻率暨標準差D-FF-OCT彩色影像分析流程 40 4.3 平均頻率計算及上色程式 44 4.3.1 平均頻率定義 44 4.3.2 HSV上色法討論 44 4.3.3 頻域歸一化 48 4.4 特徵頻率抓取及細胞相位分析 51 4.4.1 特徵頻率抓取 51 4.4.2 相位展開分析 52 Chapter 5 角膜內皮細胞影像分析 57 5.1 活細胞及固定後B4G12細胞影像分析 57 5.2 不同代謝抑制劑對B4G12細胞影像分析 62 Chapter 6 角膜內皮細胞頻譜及特徵頻率分析 70 6.1 頻譜分析 70 6.1.1 活細胞與固定後細胞頻譜差異分析 70 6.1.2 不同細胞結構頻譜差異分析 72 6.2 特徵頻率分析 74 6.2.1 低頻特徵頻率分析解釋 74 6.2.2 高頻特徵頻率分析解釋 80 Chapter 7 結論與未來展望 85 7.1 結論 85 7.2 未來展望 87 Reference 88 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 相位資訊 | zh_TW |
| dc.subject | 動態上色影像 | zh_TW |
| dc.subject | 頻譜分析 | zh_TW |
| dc.subject | 角膜內皮細胞 | zh_TW |
| dc.subject | 全域式光學同調斷層掃描 | zh_TW |
| dc.subject | 細胞代謝 | zh_TW |
| dc.subject | Phase information | en |
| dc.subject | Full-field optical coherence tomography | en |
| dc.subject | Corneal endothelial cell | en |
| dc.subject | Cell metabolism | en |
| dc.subject | Dynamic color-coded image | en |
| dc.subject | Spectrum analysis | en |
| dc.title | 全域式光學同調斷層掃描術用於角膜細胞影像與頻譜資訊分析 | zh_TW |
| dc.title | Application of full-field optical coherence tomography for corneal cell imaging and spectral information analysis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林頌然;李翔傑 | zh_TW |
| dc.contributor.oralexamcommittee | Sung-Jan Lin ;Hsiang-Chieh Lee | en |
| dc.subject.keyword | 全域式光學同調斷層掃描,角膜內皮細胞,細胞代謝,動態上色影像,頻譜分析,相位資訊, | zh_TW |
| dc.subject.keyword | Full-field optical coherence tomography,Corneal endothelial cell,Cell metabolism,Dynamic color-coded image,Spectrum analysis,Phase information, | en |
| dc.relation.page | 90 | - |
| dc.identifier.doi | 10.6342/NTU202403015 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-07 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2029-08-01 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2029-08-01 | 9.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
