請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93834完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉立偉 | zh_TW |
| dc.contributor.advisor | Li-Wei Liu | en |
| dc.contributor.author | 王景諺 | zh_TW |
| dc.contributor.author | Jing-Yan Wang | en |
| dc.date.accessioned | 2024-08-08T16:27:58Z | - |
| dc.date.available | 2024-08-09 | - |
| dc.date.copyright | 2024-08-08 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-03 | - |
| dc.identifier.citation | [1] The Nutrition and Health Survey in Taiwan (NAHSIT), 2017-2020.Technical report, Ministry of Health and Welfare, Taiwan, Taipei, Taiwan, 2020.
[2] A. A. Abdel-Wahab, K. Alam, and V. V. Silberschmidt. Analysis of anisotropic viscoelastoplastic properties of cortical bone tissues. Journal of the Mechanical Behavior of Biomedical Materials, 4(5):807–820, 2011. [3] C. G. Ambrose, M. S. Martinez, X. Bi, J. Deaver, C. Kuzawa, L. Schwartz, B. Dawson, A. Bachim, U. Polak, B. Lee, et al. Mechanical properties of infant bone. Bone, 113:151–160, 2018. [4] ASTM International. Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials, 2022. ASTM E399. [5] ASTM International. Standard Test Method for Measurement of Fracture Toughness, 2022. ASTM E1820. [6] F. Barthelat and H. Espinosa. An experimental investigation of deformation and fracture of nacre–mother of pearl. Experimental mechanics, 47:311–324, 2007. [7] F. Barthelat, Z. Yin, and M. J. Buehler. Structure and mechanics of interfaces in biological materials. Nature Reviews Materials, 1(4):1–16, 2016. [8] C. Chao, H. Guo, P. Yan, and L. Dong. Dynamic modulus of staggered nanocomposites with different distributions of platelets considering the interface stress effect. Journal of Applied Mechanics, 88(9):091004, 2021. [9] H. K. Charles Jr, M. H. Chen, T. S. Spisz, T. J. Beck, H. S. Feldmesser, T. C. Magee, and B. P. Huang. Ampdxa for precision bone loss measurements on earth and in space. Johns Hopkins APL technical digest, 25(3):187, 2004. [10] S. R. Cummings, W. Browner, D. Black, M. Nevitt, H. Genant, J. Cauley, K. Ensrud, J. Scott, and T. Vogt. Bone density at various sites for prediction of hip fractures. The Lancet, 341(8837):72–75, 1993. [11] T. G. Davies, E. Pomeroy, C. N. Shaw, and J. T. Stock. Mobility and the skeleton: a biomechanical view. Past Mobilities, pages 129–153, 2016. [12] F. Fan, X. Cai, H. Follet, F. Peyrin, P. Laugier, H. Niu, and Q. Grimal. Cortical bone viscoelastic damping assessed with resonant ultrasound spectroscopy reflects porosity and mineral content. Journal of the Mechanical Behavior of Biomedical Materials, 117:104388, 2021. [13] H. Gao, B. Ji, I. L. Jäger, E. Arzt, and P. Fratzl. Materials become insensitive to flaws at nanoscale: lessons from nature. Proceedings of the National Academy of Sciences, 100(10):5597–5600, 2003. [14] D. Gastaldi, M. Baleani, R. Fognani, F. Airaghi, L. Bonanni, and P. Vena. An experimental procedure to perform mechanical characterization of small-sized bone specimens from thin femoral cortical wall. Journal of the Mechanical Behavior of Biomedical Materials, 112:104046, 2020. [15] E. E. Gdoutos. Fracture mechanics: an introduction, volume 263. Springer Nature, 2020. [16] J. H. Gosman, Z. R. Hubbell, C. N. Shaw, and T. M. Ryan. Development of cortical bone geometry in the human femoral and tibial diaphysis. The Anatomical Record, 296(5):774–787, 2013. [17] Y. Guo, Y.-H. Zhou, X.-P. Wu, C.-Y. Tang, M. Wang, Z.-H. Mo, J. A. Shepherd, B. K. Ng, B. Fan, and H.-D. Zhou. Changes in bone mineral density following conventional oral phosphonate treatment of hypophosphatemic osteomalacia: a nonrandomized controlled study. International Journal of General Medicine, pages 7925–7931, 2021. [18] W. Hayes and D. Carter. Postyield behavior of subchondral trabecular bone. Journal of Biomedical Materials Research, 10(4):537–544, 1976. [19] H.-K. Hong and C.-S. Liu. Internal symmetry in bilinear elastoplasticity. International Journal of Non-Linear Mechanics, 34(2):279–288, 1999. [20] H.-K. Hong and C.-S. Liu. Internal symmetry in the constitutive model of perfect elastoplasticity. International Journal of Non-Linear Mechanics, 35(3):447–466, 2000. [21] W.-H. Hui, Y.-L. Chen, and S.-W. Chang. Effects of aging and diabetes on the deformation mechanisms and molecular structural characteristics of collagen fibrils under daily activity. International Journal of Biological Macromolecules, 254:127603, 2024. [22] A. Jackson, J. F. Vincent, and R. Turner. The mechanical design of nacre. Proceedings of the Royal Society of London. Series B. Biological Sciences, 234(1277):415–440, 1988. [23] I. Jäger and P. Fratzl. Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. Biophysical Journal, 79(4):1737–1746, 2000. [24] K. J. Jepsen, M. J. Silva, D. Vashishth, X. E. Guo, and M. C. Van Der Meulen. Establishing biomechanical mechanisms in mouse models: practical guidelines for systematically evaluating phenotypic changes in the diaphyses of long bones. Journal of Bone and Mineral Research, 30(6):951–966, 2015. [25] B. Ji and H. Gao. Mechanical properties of nanostructure of biological materials. Journal of the Mechanics and Physics of Solids, 52(9):1963–1990, 2004. [26] S. Kamat, X. Su, R. Ballarini, and A. Heuer. Structural basis for the fracture toughness of the shell of the conch strombus gigas. Nature, 405(6790):1036–1040, 2000. [27] T. Kimura. Robustness of the whole jomon femur shaft assessed by cross-sectional geometry. Anthropological Science, 114(1):13–22, 2006. [28] R. S. Lakes and J. L. Katz. Viscoelastic properties of wet cortical bone—II. relaxation mechanisms. Journal of Biomechanics, 12(9):679–687, 1979. [29] Li-Wei Liu, Jing-Yan Wang, Chih-Ming Chao, and Yuan-Jyun Shih. A viscoelastic modelling of bone-like materials. prepared. [30] J. S. Lim, J. S. Hwang, J. A. Lee, D. H. Kim, K. D. Park, G. J. Cheon, C. H. Shin, and S. W. Yang. Bone mineral density according to age, bone age, and pubertal stages in korean children and adolescents. Journal of Clinical Densitometry, 13(1):68–76, 2010. [31] J. Meng, Y. Li, X. Yuan, and Y. Lu. Evaluating osteoporotic fracture risk with the fracture risk assessment tool in chinese patients with rheumatoid arthritis. Medicine, 96(18):e6677, 2017. [32] C. Mercer, M. He, R. Wang, and A. Evans. Mechanisms governing the inelastic deformation of cortical bone and application to trabecular bone. Acta Biomaterialia, 2(1):59–68, 2006. [33] M. Milazzo, A. David, G. S. Jung, S. Danti, and M. J. Buehler. Molecular origin of viscoelasticity in mineralized collagen fibrils. Biomaterials Science, 9(9):3390–3400, 2021. [34] E. Miller, D. Delos, T. Baldini, T. M. Wright, and N. Pleshko Camacho. Abnormal mineral-matrix interactions are a significant contributor to fragility in oim/oim bone. Calcified Tissue International, 81:206–214, 2007. [35] J.-G. Minonzio, N. Bochud, Q. Vallet, Y. Bala, D. Ramiandrisoa, H. Follet, D. Mitton, and P. Laugier. Bone cortical thickness and porosity assessment using ultrasound guided waves: An ex vivo validation study. Bone, 116:111–119, 2018. [36] R. Nalla, J. Kruzic, J. Kinney, M. Balooch, J. Ager Iii, and R. Ritchie. Role of microstructure in the aging-related deterioration of the toughness of human cortical bone. Materials Science and Engineering: C, 26(8):1251–1260, 2006. [37] T. L. Norman, D. Vashishth, and D. Burr. Fracture toughness of human bone under tension. Journal of Biomechanics, 28(3):309–320, 1995. [38] P. Odetti, S. Rossi, F. Monacelli, A. Poggi, M. Cirnigliaro, M. Federici, and A. Federici. Advanced glycation end products and bone loss during aging. Annals of the New York Academy of Sciences, 1043(1):710–717, 2005. [39] W. S. G. on Assessment of Fracture Risk and its Application to Screening for Postmenopausal Osteoporosis. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: report of a WHO study group. Number 843-849. World Health Organization, 1994. [40] M. C. O’Neill and C. B. Ruff. Estimating human long bone cross-sectional geometric properties: a comparison of noninvasive methods. Journal of Human Evolution, 47(4):221–235, 2004. [41] R. Puxkandl, I. Zizak, O. Paris, J. Keckes, W. Tesch, S. Bernstorff, P. Purslow, and P. Fratzl. Viscoelastic properties of collagen: synchrotron radiation investigations and structural model. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 357(1418):191–197, 2002. [42] M. Qwamizadeh, M. Lin, Z. Zhang, K. Zhou, and Y. W. Zhang. Bounds for the dynamic modulus of unidirectional composites with bioinspired staggered distributions of platelets. Composite Structures, 167:152–165, 2017. [43] M. Qwamizadeh, P. Liu, Z. Zhang, K. Zhou, and Y. Wei Zhang. Hierarchical structure enhances and tunes the damping behavior of load-bearing biological materials. Journal of Applied Mechanics, 83(5):051009, 2016. [44] C. B. Ruff and W. C. Hayes. Cross-sectional geometry of pecos pueblo femora and tibiae—a biomechanical investigation: I. method and general patterns of variation. American Journal of Physical Anthropology, 60(3):359–381, 1983. [45] N. Sasaki, Y. Nakayama, M. Yoshikawa, and A. Enyo. Stress relaxation function of bone and bone collagen. Journal of Biomechanics, 26(12):1369–1376, 1993. [46] Z. L. Shen, M. R. Dodge, H. Kahn, R. Ballarini, and S. J. Eppell. Stress-strain experiments on individual collagen fibrils. Biophysical journal, 95(8):3956–3963, 2008. [47] Z. L. Shen, H. Kahn, R. Ballarini, and S. J. Eppell. Viscoelastic properties of isolated collagen fibrils. Biophysical Journal, 100(12):3008–3015, 2011. [48] V. R. Sherman, W. Yang, and M. A. Meyers. The materials science of collagen. Journal of the Mechanical Behavior of Biomedical Materials, 52:22–50, 2015. [49] Y. Song, F. Zhu, F. Lin, F. Zhang, and S. Zhang. Bone quality, and the combination and penetration of cement–bone interface: A comparative micro-ct study of osteoarthritis and rheumatoid arthritis. Medicine, 97(35):e11987, 2018. [50] C. J. Thomas, T. P. Cleland, G. E. Sroga, and D. Vashishth. Accumulation of carboxymethyl-lysine (cml) in human cortical bone. Bone, 110:128–133, 2018. [51] S. G. Uzel and M. J. Buehler. Molecular structure, mechanical behavior and failure mechanism of the c-terminal cross-link domain in type i collagen. Journal of the Mechanical Behavior of Biomedical Materials, 4(2):153–161, 2011. [52] G. H. van Lenthe, R. Voide, S. K. Boyd, and R. Müller. Tissue modulus calculated from beam theory is biased by bone size and geometry: implications for the use of three-point bending tests to determine bone tissue modulus. Bone, 43(4):717–723, 2008. [53] M. Vanleene, A. Porter, P.-V. Guillot, A. Boyde, M. Oyen, and S. Shefelbine. Ultrastructural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice. Bone, 50(6):1317–1323, 2012. [54] D. Vashishth, G. Gibson, J. Khoury, M. Schaffler, J. Kimura, and D. P. Fyhrie. Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone, 28(2):195–201, 2001. [55] B. Wang and D. Vashishth. Advanced glycation and glycoxidation end products in bone. Bone, page 116880, 2023. [56] R. Wang, Z. Suo, A. Evans, N. Yao, and I. A. Aksay. Deformation mechanisms in nacre. Journal of Materials Research, 16(9):2485–2493, 2001. [57] W. Woigk, K. Masania, F. Stork, A. Heusi, E. Poloni, and A. R. Studart. Bio-inspired platelet-reinforced polymers with enhanced stiffness and damping behavior. ACS Applied Polymer Materials, 2(8):3557–3565, 2020. [58] E. M. Wölfel, K. Jähn-Rickert, F. N. Schmidt, B. Wulff, H. Mushumba, G. E. Sroga, K. Püschel, P. Milovanovic, M. Amling, G. M. Campbell, et al. Individuals with type 2 diabetes mellitus show dimorphic and heterogeneous patterns of loss in femoral bone quality. Bone, 140:115556, 2020. [59] P. Zhang, M. A. Heyne, and A. C. To. Biomimetic staggered composites with highly enhanced energy dissipation: Modeling, 3d printing, and testing. Journal of the Mechanics and Physics of Solids, 83:285–300, 2015. [60] P. Zhang and A. C. To. Highly enhanced damping figure of merit in biomimetic hierarchical staggered composites. Journal of Applied Mechanics, 81(5):051015, 2014. [61] E. A. Zimmermann, E. Schaible, H. Bale, H. D. Barth, S. Y. Tang, P. Reichert, B. Busse, T. Alliston, J. W. Ager III, and R. O. Ritchie. Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. Proceedings of the National Academy of Sciences, 108(35):14416–14421, 2011. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93834 | - |
| dc.description.abstract | 許多生物材料都具有很高的韌性以及抵抗外力的能力,特別是骨頭,在過往的研究中發現在微觀尺度下骨組織是由軟材(膠原纖維)以及硬材(礦物質)所組合而成的複合材料,而這兩種材料又以交錯的方式排列著,其外觀就跟水泥磚牆結構類似,故具有此微結構的材料,本研究稱為軟硬疊層材料。根據先前學者所提出的拉伸剪切鏈模式(tension-shear chain model, TSC model),可知此種微結構由硬材乘載正向力,軟材傳遞剪力來增加韌性,硬軟材相輔相成形成一個力學性質良好的複合材料。然而在拉伸剪切鏈模式中,硬軟材都為線彈性,此行為並不符合膠原纖維的力學特性,因此在我們先前的研究,已經將軟材的模式推廣成黏彈性,發展出黏彈性拉伸剪切鏈模式(viscoelastic tension-shear chain model, VE TSC model)。本研究,首先深入談討材料微結構對於軟硬疊層材料的能量吸收與耗散能力的影響。接著,有鑒於傳統尤拉梁理論應用在骨頭的三點彎矩實驗會造成骨頭力學行為的低估,本研究將黏彈拉伸剪切鏈模式結合尤拉梁理論,考慮骨頭的真實斷面,發展出黏彈性微觀力學骨骼梁理論;同時進行大鼠腿骨的三點彎矩試驗,並透過電腦斷層掃描擷取鼠骨的真實斷面幾何,以驗證本研究提出之理論正確性。考量真實骨組織的力學行為,本研究再進一步將硬材推廣至彈塑性模式,發展黏彈塑性拉伸剪切鏈模式(viscoelastoplastic tension-shear chain model, VEP TSC model)。在此模式下,討論微結構幾何、軟硬材性質,對於軟硬疊層材料的能量吸收與耗散能力的影響。並且更進一步以此模式模擬骨組織在不同年齡或者不同健康情況下的力學行為。我們發現了模式中黏滯性和礦物體含量與人骨纖維中糖化終產物(advanced glycation end products, AGEs) 產物以及骨密度(bone mineral density, BMD)之間相對應的關係,透過這些關係我們的模式可以預測隨年齡或是疾病改變的骨頭力學性質以及骨折風險。本模式也結合破壞力學來探討礦物質的裂紋拓展以及裂紋尖端的應力場。最終我們發現相較於單調加載,循環加載下的骨組織力學特性更符合臨床上的趨勢。 | zh_TW |
| dc.description.abstract | Many biological materials exhibit high toughness and resistance to external forces, particularly bone. Previous research has revealed that at the microscopic scale, bone tissue is a composite material composed of soft material (collagen fibril) and hard material (minerals platlete) arranged in an interlocking pattern similar to the structure of a cement brick wall. Therefore, materials with this microstructure are referred to in this study as soft-hard layered materials. According to the previously proposed tension-shear chain (TSC) model, this type of microstructure features the hard material bearing normal forces and the soft material transmitting shear forces to enhance toughness. The synergy between the hard and soft materials forms a composite material with excellent mechanical properties. However, in the TSC model, both the hard and soft materials are linearly elastic, which does not align with the mechanical properties of collagen fibers. Consequently, our previous research has extended the model of soft material to viscoelasticity, developing the TSC model. This study first delves into the impact of the material microstructure on the energy absorption and dissipation capacity of soft-hard layered materials. Next, due to the traditional Euler-Bernoulli beam theory underestimates the mechanical behavior of bones in three-point bending tests, this study combines the viscoelastic TSC model with Euler-Bernoulli beam theory, taking into account the actual cross-section of the bone. This leads to the development of the Viscoelastic Micromechanical Bone Beam Theory. Concurrently, three-point bending tests were conducted on rat femurs, and computed tomography (CT) scans were used to capture the actual cross-sectional geometry of the bones to verify the accuracy of the proposed theory. Taking into account the real mechanical behavior of bone tissue, this study further extends the hard material to an elastoplastic model, developing the viscoelastoplastic TSC model. This model discusses the influence of microstructural geometry and the properties of soft and hard materials on the energy absorption and dissipation capacity of soft-hard laminated materials. Moreover, this model simulates the mechanical behavior of bone tissue under different ages or health conditions. We discovered correlations in the model between viscosity, mineral content, and advanced glycation end products (AGEs) in human bone fibers, as well as bone mineral density (BMD). Through these relationships, our model can predict changes in bone mechanical properties and fracture risk with age or disease. This model also incorporates fracture mechanics to explore the crack propagation of minerals and the stress field at crack tips. Ultimately, we found that the mechanical characteristics of bone tissue under cyclic loading are more consistent with clinical trends compared to monotonic loading. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:27:58Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-08T16:27:58Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Contents ix List of Figures xiii List of Tables xxi Denotation xxiii Chapter 1 Review on the investigation of bone and bone-like materials 1 1.1 Microstructure of bone and bone-like materials 1 1.2 Mechanical model of bone and bone-like materials 2 1.2.1 The tension-shear chain models 2 1.2.2 Model generalization 2 1.2.3 Discovery of viscoelastic and plastic behavior in bone and bone-like materials 3 1.3 Experimental methods and theoretical advances in three-point bending tests for bones 4 1.4 Mechanical properties of bone with different age and disease 5 Chapter 2 Uniaxial behavior of bone and bone-like materials 7 2.1 Elastic model of bone-like materials 8 2.2 Viscoelastoplastic tension-shear-chain model 11 2.2.1 Switching for the plastic mechanism under stress control 14 2.2.2 Numerical integrations based on internal symmetry 18 2.3 Mechanical capability of bone tissue 22 2.3.1 Analysis of viscoelastic behavior of bone tissue 22 2.3.2 Viscoelastic modelling of bone under different microstructural arrangement 23 2.3.3 Effect of microstructural arrangement of bone tissue 26 2.3.4 Toughness of bone with regular microstructural arrangements 30 2.3.5 Analysis of postyield behavior of bone 33 Chapter 3 Viscoelastic beam theory of bone and its applications to bending testing 41 3.1 Micromechanical constitution of bone tissue 41 3.1.1 Micromechanical constitution of bone tissue in regular microstructure arrangement 42 3.1.2 Micromechanical constitution of bone tissue in different microstructure arrangement 44 3.2 Beam theory of bone 46 3.3 Cross section analysis of bone 49 3.3.1 Moment inertia varying with position 50 3.3.2 Cross-sectional analysis 52 3.4 Three-point bending testing experiment 59 3.5 Response of bone beam to monotonic displacement loading 60 3.5.1 Influence of the collagen ingredient 60 3.5.2 Influence of microstructural arrangements 68 3.6 Experimental validation 71 3.6.1 Experimental procedure 72 3.6.2 Experimental results and comparison 73 Chapter 4 Applications to study of mechanical behavior on aged and disease bone tissue 79 4.1 Disease and aging impact on fibrous extensibility 80 4.2 The variation of bone mineral density with age and its impact on bone mechanical properties 87 4.3 The impact of age-related changes in bone mineral density and nonenzymatic glycation on bone tissue 101 4.4 Analysis of cracks in different ages or diseases 107 Chapter 5 Conclusion 119 5.1 Viscoelastoplastic model of bone tissue 119 5.2 The beam theory with the viscoelastic bone tissue model 120 5.3 Ability to simulate the mechanical behavior of aging and diseased bone 121 5.4 Future works 123 References 125 Appendix A — Bone mineral density and converted volume percentage by gender and age in different body parts from 2017 to 2020 135 Appendix B — Effects of different diseases and age on bones 139 B.1 Comparison of bone changes in diseased, aging and normal subjects 139 B.2 Development and application of theoretical models 143 | - |
| dc.language.iso | en | - |
| dc.subject | 骨頭 | zh_TW |
| dc.subject | 黏彈性力學 | zh_TW |
| dc.subject | 生物力學 | zh_TW |
| dc.subject | 塑性力學 | zh_TW |
| dc.subject | Biomechanics | en |
| dc.subject | bone | en |
| dc.subject | viscoelastic | en |
| dc.subject | plasticity | en |
| dc.title | 骨構材料的黏彈塑性建模及其應用 | zh_TW |
| dc.title | Viscoelastoplastic modeling of bone-like materials and its applications | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張書瑋;呂東武;陳東陽 | zh_TW |
| dc.contributor.oralexamcommittee | Shu-Wei Chang;Tung-Wu Lu;Tung-Yang Chen | en |
| dc.subject.keyword | 生物力學,骨頭,塑性力學,黏彈性力學, | zh_TW |
| dc.subject.keyword | Biomechanics,bone,plasticity,viscoelastic, | en |
| dc.relation.page | 143 | - |
| dc.identifier.doi | 10.6342/NTU202402643 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-07 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 34.54 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
