Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93815
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊裕澤zh_TW
dc.contributor.advisorYuh-Jzer Joungen
dc.contributor.author林育緹zh_TW
dc.contributor.authorYu-Ti Linen
dc.date.accessioned2024-08-08T16:21:54Z-
dc.date.available2024-08-09-
dc.date.copyright2024-08-08-
dc.date.issued2024-
dc.date.submitted2024-08-02-
dc.identifier.citationAmigó, E., Carrillo-de-Albornoz, J., Chugur, I., Corujo, A., Gonzalo, J., Meij, E., de Rijke, M., & Spina, D. (2014). Overview of replab 2014: Author profiling and reputation dimensions for online reputation management. Information Access Evaluation. Multilinguality, Multimodality, and Interaction: 5th International Conference of the CLEF Initiative, CLEF 2014, Sheffield, UK, September 15-18, 2014. Proceedings 5, 307–322.
Arifianto, A., Bayu, Q. D. P., Sulistiyo, M. D., Wendinato, N. I., Anwari, N. D., Satria, M. A., Eka, D. N. G. A. M., Hastuti, A., Liana, I. D., Safitri, P. H., et al. (2018). Endorsement recommendation using instagram follower profiling. 2018 6th International Conference on Information and Communication Technology (ICoICT), 470–475.
Bhattacharya, G., Ghosh, K., & Chowdhury, A. S. (2017). Granger causality driven ahp for feature weighted knn. Pattern Recognition, 66, 425–436.
Campbell, C., & Farrell, J. R. (2020). More than meets the eye: The functional components underlying influencer marketing. Business horizons, 63(4), 469–479.
Cao, Q., Shen, H., Gao, J., Wei, B., & Cheng, X. (2020). Popularity prediction on social platforms with coupled graph neural networks. Proceedings of the 13th international conference on web search and data mining, 70–78.
Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., & Li, H. (2007). Learning to rank: From pairwise approach to listwise approach. Proceedings of the 24th international conference on Machine learning, 129–136.
Carta, S., Podda, A. S., Recupero, D. R., Saia, R., & Usai, G. (2020). Popularity prediction of instagram posts. Information, 11(9), 453.
Chapelle, O., Vapnik, V., & Weston, J. (1999). Transductive inference for estimating values of functions. Advances in Neural Information Processing Systems, 12.
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.
Elwood, A., Gasparin, A., & Rozza, A. (2021). Ranking micro-influencers: A novel multitask learning and interpretable framework. 2021 IEEE International Symposium on Multimedia (ISM), 130–137.
Farseev, A., Lepikhhin, K., Schwartz, H., Ang, E. K., & Powar, K. (2018). Somin. ai: Social multimedia influencer discovery marketplace. Proceedings of the 26th ACM international conference on Multimedia, 1234–1236.
Gan, T., Wang, S., Liu, M., Song, X., Yao, Y., & Nie, L. (2019). Seeking micro-influencers for brand promotion. Proceedings of the 27th ACM International Conference on Multimedia, 1933–1941.
Gayberi, M., & Oguducu, S. G. (2019). Popularity prediction of posts in social networks based on user, post and image features. Proceedings of the 11th International Conference on Management of Digital EcoSystems, 9–15.
Google. (2024). Google taxonomy [Accessed: 2024-07-05].
Grootendorst, M. (2022). Bertopic: Neural topic modeling with a class-based tf-idf procedure. arXiv preprint arXiv:2203.05794.
Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. Advances in neural information processing systems, 30.
Harshitha, S., Shetty, R., & Sairam, P. S. (2021). Social media marketing: B2b marketing via nano influencers. Journal of University of Shanghai for Science and Technology, 23(7), 1377–1387.
Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Transactions on Information Systems (TOIS), 22(1), 5–53.
Honnibal, M., Montani, I., Van Landeghem, S., Boyd, A., et al. (2020). Spacy: Industrial-strength natural language processing in python.
Ihlarco, G., Wortsman, M., Wightman, R., Gordon, C., Carlini, N., Taori, R., Dave, A., Shankar, V., Namkoong, H., Miller, J., et al. (n.d.). Openclip, july 2021. URL https://doi.org/10.5281/zenodo, 5143773, 29.
Jiang, Q., Wang, W., Han, X., Zhang, S., Wang, X., & Wang, C. (2016). Deep feature weighting in naive bayes for chinese text classification. 2016 4th International Conference on Cloud Computing and Intelligence Systems (CCIS), 160–164.
Kim, S., Jiang, J.-Y., Han, J., & Wang, W. (2023). Influencercrank: Discovering effective influencers via graph convolutional attentive recurrent neural networks. Proceedings of the International AAAI Conference on Web and Social Media, 17, 482–493.
Kim, S., Jiang, J.-Y., Nakada, M., Han, J., & Wang, W. (2020). Multimodal post attentive profiling for influencer marketing. Proceedings of The Web Conference 2020, 2878–2884.
Kim, S., Jiang, J.-Y., & Wang, W. (2021). Discovering undisclosed paid partnership on social media via aspect-attentive sponsored post learning. Proceedings of the 14th ACM international conference on web search and data mining, 319–327.
Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
Michalski, R. S. (1983). A theory and methodology of inductive learning. In Machine learning (pp. 83–134). Elsevier.
Nebot, V., Rangel, F., Berlanga, R., & Rosso, P. (2018). Identifying and classifying influencers in twitter only with textual information. Natural Language Processing and Information Systems: 23rd International Conference on Applications of Natural Language to Information Systems, NLDB 2018, Paris, France, June 13-15, 2018, Proceedings 23, 28–39.
O’shea, K., & Nash, R. (2015). An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458.
Park, J., Ahn, H., Kim, D., & Park, E. (2024). Gnn-irl: Examining graph neural networks for influencer recommendations in social media marketing. Journal of Retailing and Consumer Services, 78, 103705.
Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., et al. (2021). Learning transferable visual models from natural language supervision. International conference on machine learning, 8748–8763.
Schein, A. I., Popescul, A., Ungar, L. H., & Pennock, D. M. (2002). Methods and metrics for cold-start recommendations. Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, 253–260.
Schweiger, D. M. (1985). Measuring managerial cognitive styles: On the logical validity of the myers-briggs type indicator. Journal of Business Research, 13(4), 315–328.
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. Proceedings of the IEEE international conference on computer vision, 618–626.
Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
Sun, Y., & Han, J. (2013). Mining heterogeneous information networks: A structural analysis approach. ACM SIGKDD explorations newsletter, 14(2), 20–28.
Villegas, D. S., Goanta, C., & Aletras, N. (2023). A multimodal analysis of influencer content on twitter. arXiv preprint arXiv:2309.03064.
Wang, S., Gan, T., Liu, Y., Wu, J., Cheng, Y., & Nie, L. (2022). Micro-influencer recommendation by multi-perspective account representation learning. IEEE Transactions on Multimedia, 25, 2749–2760.
Wang, S., Hu, L., Wang, Y., He, X., Sheng, Q. Z., Orgun, M. A., Cao, L., Ricci, F., & Yu, P. S. (2021). Graph learning based recommender systems: A review. arXiv preprint arXiv:2105.06339.
Xia, J., Zhang, S., Cai, G., Li, L., Pan, Q., Yan, J., & Ning, G. (2017). Adjusted weight voting algorithm for random forests in handling missing values. Pattern Recognition, 69, 52–60.
Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., & Leskovec, J. (2018). Graph convolutional neural networks for web-scale recommender systems. Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, 974–983.
Yu, X., Ren, X., Sun, Y., Gu, Q., Sturt, B., Khandelwal, U., Norick, B., & Han, J. (2014). Personalized entity recommendation: A heterogeneous information network approach. Proceedings of the 7th ACM international conference on Web search and data mining, 283–292.
Zhai, X., Mustafa, B., Kolesnikov, A., & Beyer, L. (2023). Sigmoid loss for language image pre-training. Proceedings of the IEEE/CVF International Conference on Computer Vision, 11975–11986.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93815-
dc.description.abstract隨著社群媒體的興起,網紅行銷已成為品牌推廣產品的常見策略。近年來的研究也越來越聚焦於利用機器學習來幫品牌找到適合的網紅。然而,品牌在推出新產品時,往往面臨到不知道該找誰業配的困境,這也可能進一步影響到行銷活動的成效。此外,目前大多數研究都集中於分析網紅的個人檔案,或是網紅與品牌之間的適配度,卻忽略了被推廣產品在網紅推薦中的角度。因此本研究構建了一個異構網路,整合了品牌、產品和網紅的數據,每個產品會與推出它的品牌連 結,也會跟曾經業配過它的網紅連結。我們的模型會先透過鄰居的特徵聚合生成該節點的向量。接著利用節點向量來計算產品與網紅之間的連結機率,最後再透過排序來取得 top-k 的推薦網紅。此方法在網紅推薦上展現出更好的表現。此外,大多圖模型應用都是 transductive learning,沒辦法預測沒看過的點,而本研究也有納入 inductive learning 的實驗,確保我們的模型在實際應用上,不僅可以有好的表現,也可以針對新的產品提供選項,有效的解決網紅推薦中的冷啟動問題。我們用公開的資料集驗證了模型的有效性,為品牌提供有價值的商業見解。zh_TW
dc.description.abstractWith the rise of social media, influencer marketing has become a common strategy for brands to promote their products. Recent studies have increasingly focused on using machine learning to identify influencers for brands. However, when brands launch new products, they often face challenges in finding suitable influencers. This difficulty can hinder the effectiveness of their marketing campaigns. Moreover, most studies concentrate on analyzing influencer profiles or the compatibility between influencers and brands, neglecting the perspective of the promoted product in influencer recommendations. This study addresses this gap by constructing a heterogeneous graph that integrates brand, product, and influencer data. Each product is connected to the brand that launched it and also has an edge to the influencer who has promoted it before. Our model first generate embeddings for each node by aggregating neighbors’ features. It then utilizes the node embeddings to calculate the probability of connections between product and influencer nodes. Finally, the top-k influencer recommendations are obtained by ranking these probability scores. This approach has demonstrated outperformed performance in influencer recommendations. Additionally, while most graph-based applications rely on transductive learning, which cannot predict unseen nodes, our study also includes inductive learning experiments. This ensures that our method not only performs well in real-world applications but also provides options for new products, effectively solving the cold-start problem in influencer recommendation. The effectiveness of our model is validated using public datasets, offering valuable business insights for brands.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:21:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-08T16:21:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 ii
Abstract iii
Contents v
List of Figures viii
List of Tables x
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Research Objective 3
1.3 Thesis Organization 4
Chapter 2 Literature Review 6
2.1 Influencer Marketing 6
2.1.1 Detecting undisclosed sponsorships 7
2.1.2 Predicting post popularity 7
2.1.3 Account and content classification 8
2.1.4 Influencer Recommendation 8
2.2 Machine Learning in Influencer Recommendations 9
2.2.1 Overview of influencer recommendation applications 9
2.2.2 Multimodal Fusion Strategies for Influencer Ranking 9
2.2.3 Graph-based approaches for Influencer Ranking 11
2.3 Graph-based Model 13
2.4 Summary 15
Chapter 3 Methodology 17
3.1 The Schema of ProdInfluencerNetwork 17
3.2 Problem Definition 18
3.3 Overview of our architecture 19
3.3.1 Google Taxonomy Class 21
3.3.2 Data Pipeline 21
3.3.2.1 Zero-shot classification of product categories 22
3.3.2.2 Image embedding generation for influencer features 22
3.3.2.3 Word2vec generation based on post caption 23
3.3.3 Example of the data pipeline 24
3.3.4 Graph-Based Embedding for Link Prediction and Recommendation 26
3.3.4.1 Graph Construction and Embedding Aggregation 26
3.3.4.2 Link Prediction and Ranking Probabilities 27
Chapter 4 Experiment 29
4.1 Experiment Datasets 29
4.1.1 Influencer and Brand Dataset (Kim et al., 2021) 29
4.1.2 Graph Data 31
4.2 Experiment Settings 33
4.2.1 Experiment Configuration 33
4.2.2 Experiment Design 34
4.3 Evaluation Metrics 35
4.4 Experiment Results 36
4.4.1 Influencer and Brand Dataset (Kim et al., 2021) 36
4.4.2 iKala Dataset 38
Chapter 5 Case Study 41
Chapter 6 Conclusion 47
6.1 Conclusion 47
6.2 Future Work 47
References 50
Appendix A — Introduction 55
-
dc.language.isoen-
dc.subject網紅行銷zh_TW
dc.subject網紅推薦zh_TW
dc.subject推薦系統zh_TW
dc.subject異構網路zh_TW
dc.subject圖論方法zh_TW
dc.subjectHeterogeneous Information Networken
dc.subjectInfluencer Marketingen
dc.subjectInfluencer Recommendationen
dc.subjectGraph-based Approachen
dc.subjectRecommendation Systemen
dc.title基於異構網路的產品中心化網紅推薦框架zh_TW
dc.titleProdInfluencerNet: A Novel Product-Centric Influencer Recommendation Framework Based on Heterogeneous Networksen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳建錦;陳以錚;楊立偉zh_TW
dc.contributor.oralexamcommitteeChien-Chin Chen;Yi-Cheng Chen;Li-Wei Yangen
dc.subject.keyword網紅行銷,網紅推薦,推薦系統,異構網路,圖論方法,zh_TW
dc.subject.keywordInfluencer Marketing,Influencer Recommendation,Recommendation System,Heterogeneous Information Network,Graph-based Approach,en
dc.relation.page56-
dc.identifier.doi10.6342/NTU202402876-
dc.rights.note未授權-
dc.date.accepted2024-08-06-
dc.contributor.author-college管理學院-
dc.contributor.author-dept資訊管理學系-
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
34.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved