Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93804
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃念祖zh_TW
dc.contributor.advisorNien-Tsu Huangen
dc.contributor.author熊彥程zh_TW
dc.contributor.authorYen-Cheng Hsiungen
dc.date.accessioned2024-08-08T16:18:16Z-
dc.date.available2024-08-09-
dc.date.copyright2024-08-08-
dc.date.issued2024-
dc.date.submitted2024-07-30-
dc.identifier.citation[1] N. Amara, D. Goven, F. Prost, R. Muloway, B. Crestani, and J. Boczkowski. Nox4/nadph oxidase expression is increased in pulmonary fibroblasts from patients with idiopathic pulmonary fibrosis and mediates tgfβ1-induced fibroblast differentiation into myofibroblasts. Thorax, 65(8):733–738, 2010.
[2] N. Baeyens, C. Bandyopadhyay, B. G. Coon, S. Yun, M. A. Schwartz, et al. Endothelial fluid shear stress sensing in vascular health and disease. The Journal of clinical investigation, 126(3):821–828, 2016.
[3] R. Bartoszewski, A. Moszyńska, M. Serocki, A. Cabaj, A. Polten, R. Ochocka, L. Dell’Italia, S. Bartoszewska, J. Króliczewski, M. Dąbrowski, et al. Primary endothelial cell–specific regulation of hypoxia-inducible factor (hif)-1 and hif-2 and their target gene expression profiles during hypoxia. The FASEB Journal, 33(7):7929–7941, 2019.
[4] C. Bayer and P. Vaupel. Acute versus chronic hypoxia in tumors. Strahlentherapie und Onkologie, 188(7):616–627, 2012.
[5] L. Botto, E. Beretta, R. Daffara, G. Miserocchi, and P. Palestini. Biochemical and morphological changes in endothelial cells in response to hypoxic interstitial edema. Respiratory research, 7(1):1–14, 2006.
[6] C. Bouquerel, W. César, L. Barthod, S. Arrak, A. Battistella, G. Gropplero, F. Mechta-Grigoriou, G. Zalcman, M. C. Parrini, M. Verhulsel, et al. Precise and fast control of the dissolved oxygen level for tumor-on-chip. Lab on a Chip, 22(22):4443–4455, 2022.
[7] P. Buchwald. Fem-based oxygen consumption and cell viability models for avascular pancreatic islets. Theoretical Biology and Medical Modelling, 6:1–13, 2009.
[8] A. E. Carpenter, T. R. Jones, M. R. Lamprecht, C. Clarke, I. H. Kang, O. Friman, D. A. Guertin, J. H. Chang, R. A. Lindquist, J. Moffat, et al. Cellprofiler: image analysis software for identifying and quantifying cell phenotypes. Genome biology, 7:1–11, 2006.
[9] N. Chandel, E. Maltepe, E. Goldwasser, C. Mathieu, M. Simon, and P. Schumacker. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proceedings of the National Academy of Sciences, 95(20):11715–11720, 1998.
[10] C.-W. Chang, Y.-J. Cheng, M. Tu, Y.-H. Chen, C.-C. Peng, W.-H. Liao, and Y.-C. Tung. A polydimethylsiloxane–polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies. Lab on a Chip, 14(19):3762–3772, 2014.
[11] L.-J. Chen, S. Ito, H. Kai, K. Nagamine, N. Nagai, M. Nishizawa, T. Abe, and H. Kaji. Microfluidic co-cultures of retinal pigment epithelial cells and vascular endothelial cells to investigate choroidal angiogenesis. Scientific reports, 7(1):3538, 2017.
[12] W.-L. Chen, C.-C. Wang, Y.-J. Lin, C.-P. Wu, and C.-H. Hsieh. Cycling hypoxia induces chemoresistance through the activation of reactive oxygen species-mediated b-cell lymphoma extra-long pathway in glioblastoma multiforme. Journal of translational medicine, 13(1):1–13, 2015.
[13] S. Chien. Effects of disturbed flow on endothelial cells. Annals of biomedical engineering, 36:554–562, 2008.
[14] L. Chin, J. Yu, Y. Fu, T. Yu, A. Liu, and K. Luo. Production of reactive oxygen species in endothelial cells under different pulsatile shear stresses and glucose concentrations. Lab on a Chip, 11(11):1856–1863, 2011.
[15] D. A. Chistiakov, A. N. Orekhov, and Y. V. Bobryshev. Effects of shear stress on endothelial cells: go with the flow. Acta physiologica, 219(2):382–408, 2017.
[16] C. C. Chua, R. C. Hamdy, and B. H. Chua. Upregulation of vascular endothelial growth factor by h2o2 in rat heart endothelial cells. Free Radical Biology and Medicine, 25(8):891–897, 1998.
[17] S. M. Dauphinee and A. Karsan. Lipopolysaccharide signaling in endothelial cells. Laboratory investigation, 86(1):9–22, 2006.
[18] C. Dewey Jr, S. Bussolari, M. Gimbrone Jr, and P. F. Davies. The dynamic response of vascular endothelial cells to fluid shear stress. 1981.
[19] J. M. Dolan, H. Meng, S. Singh, R. Paluch, and J. Kolega. High fluid shear stress and spatial shear stress gradients affect endothelial proliferation, survival, and alignment. Annals of biomedical engineering, 39:1620–1631, 2011.
[20] A. Fick. Ueber diffusion. Annalen der Physik, 170(1):59–86, 1855.
[21] I. B. Fridman, G. S. Ugolini, V. VanDelinder, S. Cohen, and T. Konry. High throughput microfluidic system with multiple oxygen levels for the study of hypoxia in tumor spheroids. Biofabrication, 13(3):035037, 2021.
[22] K. Funamoto, D. Yoshino, K. Matsubara, I. K. Zervantonakis, K. Funamoto, M. Nakayama, J. Masamune, Y. Kimura, and R. D. Kamm. Endothelial monolayer permeability under controlled oxygen tension. Integrative Biology, 9(6):529–538, 2017.
[23] K. K. Gaikwad, S. Singh, and Y. S. Lee. A pyrogallol-coated modified ldpe film as an oxygen scavenging film for active packaging materials. Progress in Organic Coatings, 111:186–195, 2017.
[24] C. Galbraith, R. Skalak, and S. Chien. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell motility and the cytoskeleton, 40(4):317–330, 1998.
[25] R. Gao, Z. Yuan, Z. Zhao, and X. Gao. Mechanism of pyrogallol autoxidation and determination of superoxide dismutase enzyme activity. Bioelectrochemistry and Bioenergetics, 45(1):41–45, 1998.
[26] J. Grant, E. Lee, M. Almeida, S. Kim, N. LoGrande, G. Goyal, A. M. Sesay, D. T. Breault, R. Prantil-Baun, and D. E. Ingber. Establishment of physiologically relevant oxygen gradients in microfluidic organ chips. Lab on a Chip, 22(8):1584–1593, 2022.
[27] S. M. Grist, S. S. Nasseri, L. Laplatine, J. C. Schmok, D. Yao, J. Hua, L. Chrostowski, and K. C. Cheung. Long-term monitoring in a microfluidic system to study tumour spheroid response to chronic and cycling hypoxia. Scientific Reports, 9(1):17782, 2019.
[28] R. Gulaboski, V. Mirčeski, R. Kappl, M. Hoth, and M. Bozem. Quantification of hydrogen peroxide by electrochemical methods and electron spin resonance spectroscopy. Journal of The Electrochemical Society, 166(8):G82, 2019.
[29] K. Hattori, Y. Munehira, H. Kobayashi, T. Satoh, S. Sugiura, and T. Kanamori. Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function. Journal of bioscience and bioengineering, 118(3):327–332, 2014.
[30] A. Hernandez-Mijares, M. Rocha, S. Rovira-Llopis, C. Bañuls, L. Bellod, C. De Pablo, A. Alvarez, I. Roldan-Torres, E. Sola-Izquierdo, and V. M. Victor. Human leukocyte/endothelial cell interactions and mitochondrial dysfunction in type 2 diabetic patients and their association with silent myocardial ischemia. Diabetes care, 36(6):1695–1702, 2013.
[31] J. D. Ho, H. J. Man, and P. A. Marsden. Nitric oxide signaling in hypoxia. Journal of molecular medicine, 90:217–231, 2012.
[32] T. K. Hsiai, J. Hwang, M. L. Barr, A. Correa, R. Hamilton, M. Alavi, M. Rouhanizadeh, E. Cadenas, and S. L. Hazen. Hemodynamics influences vascular peroxynitrite formation: Implication for low-density lipoprotein apo-b-100 nitration. Free Radical Biology and Medicine, 42(4):519–529, 2007.
[33] C.-H. Hsieh, W.-C. Shyu, C.-Y. Chiang, J.-W. Kuo, W.-C. Shen, and R.-S. Liu. Nadph oxidase subunit 4-mediated reactive oxygen species contribute to cycling hypoxia-promoted tumor progression in glioblastoma multiforme. PloS one, 6(9):e23945, 2011.
[34] H.-J. Hsieh, C.-C. Cheng, S.-T. Wu, J.-J. Chiu, B.-S. Wung, and D. L. Wang. Increase of reactive oxygen species (ros) in endothelial cells by shear flow and involvement of ros in shear-induced c-fos expression. Journal of cellular physiology, 175(2):156–162, 1998.
[35] H.-J. Hsieh, C.-A. Liu, B. Huang, A. H. Tseng, and D. L. Wang. Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ros) and nitric oxide (no) and the pathophysiological implications. Journal of biomedical science, 21:1–15, 2014.
[36] M. A. Incalza, R. D’Oria, A. Natalicchio, S. Perrini, L. Laviola, and F. Giorgino. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascular pharmacology, 100:1–19, 2018.
[37] M. H. Kim, S. D. Green, C.-C. Lin, and H. Konig. Engineering tools for regulating hypoxia in tumour models. Journal of Cellular and Molecular Medicine, 25(16):7581–7592, 2021.
[38] Y.-W. Kim and T. V. Byzova. Oxidative stress in angiogenesis and vascular disease. Blood, the Journal of the American Society of Hematology, 123(5):625–631, 2014.
[39] Y.-W. Kim, X. Z. West, and T. V. Byzova. Inflammation and oxidative stress in angiogenesis and vascular disease. Journal of molecular medicine, 91(3):323–328, 2013.
[40] R. Koens, Y. Tabata, J. C. Serrano, S. Aratake, D. Yoshino, R. D. Kamm, and K. Funamoto. Microfluidic platform for three-dimensional cell culture under spatiotemporal heterogeneity of oxygen tension. APL bioengineering, 4(1), 2020.
[41] P. Lee, N. S. Chandel, and M. C. Simon. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nature reviews Molecular cell biology, 21(5):268–283, 2020.
[42] M. Levesque and R. Nerem. The elongation and orientation of cultured endothelial cells in response to shear stress. 1985.
[43] Y. Li, L. Li, Z. Liu, M. Ding, G. Luo, and Q. Liang. A microfluidic chip of multiple-channel array with various oxygen tensions for drug screening. Microfluidics and Nanofluidics, 20:1–9, 2016.
[44] J. Liu, Y. Qiang, O. Alvarez, and E. Du. Electrical impedance characterization of erythrocyte response to cyclic hypoxia in sickle cell disease. ACS sensors, 4(7):1783–1790, 2019.
[45] M.-C. Liu, H.-C. Shih, J.-G. Wu, T.-W. Weng, C.-Y. Wu, J.-C. Lu, and Y.-C. Tung. Electrofluidic pressure sensor embedded microfluidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations. Lab on a Chip, 13(9):1743–1753, 2013.
[46] J. López-Barneo, R. Pardal, and P. Ortega-Sáenz. Cellular mechanism of oxygen sensing. Annual review of physiology, 63(1):259–287, 2001.
[47] E. Lubos, D. E. Handy, and J. Loscalzo. Role of oxidative stress and nitric oxide in atherothrombosis. Frontiers in bioscience: a journal and virtual library, 13:5323, 2008.
[48] P. Martinive, F. Defresne, C. Bouzin, J. Saliez, F. Lair, V. Grégoire, C. Michiels, C. Dessy, and O. Feron. Preconditioning of the tumor vasculature and tumor cells by intermittent hypoxia: implications for anticancer therapies. Cancer research, 66(24):11736–11744, 2006.
[49] P. Martinive, F. Defresne, E. Quaghebeur, G. Daneau, N. Crokart, V. Gregoire, B. Gallez, C. Dessy, and O. Feron. Impact of cyclic hypoxia on hif-1α regulation in endothelial cells–new insights for anti-tumor treatments. The FEBS journal, 276(2):509–518, 2009.
[50] J. S. McNally, M. E. Davis, D. P. Giddens, A. Saha, J. Hwang, S. Dikalov, H. Jo, and D. G. Harrison. Role of xanthine oxidoreductase and nad (p) h oxidase in endothelial superoxide production in response to oscillatory shear stress. American Journal of Physiology-Heart and Circulatory Physiology, 285(6):H2290–H2297, 2003.
[51] L. P. McQuillan, G. K. Leung, P. A. Marsden, S. K. Kostyk, and S. Kourembanas. Hypoxia inhibits expression of enos via transcriptional and posttranscriptional mechanisms. American Journal of Physiology-Heart and Circulatory Physiology, 267(5):H1921–H1927, 1994.
[52] T. Merkel, V. Bondar, K. Nagai, B. Freeman, and I. Pinnau. Gas sorption, diffusion, and permeation in poly (dimethylsiloxane). Journal of Polymer Science Part B: Polymer Physics, 38(3):415–434, 2000.
[53] C. Michiels, T. Arnould, and J. Remacle. Endothelial cell responses to hypoxia: initiation of a cascade of cellular interactions. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1497(1):1–10, 2000.
[54] C. Michiels, C. Tellier, and O. Feron. Cycling hypoxia: A key feature of the tumor microenvironment. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1866(1):76–86, 2016.
[55] B. Muz, P. de la Puente, F. Azab, and A. K. Azab. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia, 3:83, 2015.
[56] J. M. Oh, H. M. Begum, Y. L. Liu, Y. Ren, and K. Shen. Recapitulating tumor hypoxia in a cleanroom-free, liquid-pinning-based microfluidic tumor model. ACS biomaterials science & engineering, 8(7):3107–3121, 2022.
[57] V. Palacio-Castañeda, N. Velthuijs, S. Le Gac, and W. P. Verdurmen. Oxygen control: the often overlooked but essential piece to create better in vitro systems. Lab on a Chip, 22(6):1068–1092, 2022.
[58] T. G. Papaioannou, C. Stefanadis, et al. Vascular wall shear stress: basic principles and methods. Hellenic J Cardiol, 46(1):9–15, 2005.
[59] D. P. Pearlstein, M. H. Ali, P. T. Mungai, K. L. Hynes, B. L. Gewertz, and P. T. Schumacker. Role of mitochondrial oxidant generation in endothelial cell responses to hypoxia. Arteriosclerosis, thrombosis, and vascular biology, 22(4):566–573, 2002.
[60] J.-P. PIRET, D. Mottet, M. Raes, and C. Michiels. Cocl2, a chemical inducer of hypoxia-inducible factor-1, and hypoxia reduce apoptotic cell death in hepatoma cell line hepg2. Annals of the New York Academy of Sciences, 973(1):443–447, 2002.
[61] N. Ricard, S. Bailly, C. Guignabert, and M. Simons. The quiescent endothelium: signalling pathways regulating organ-specific endothelial normalcy. Nature Reviews Cardiology, 18(8):565–580, 2021.
[62] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pages 234–241. Springer, 2015.
[63] H.-C. Shih, T.-A. Lee, H.-M. Wu, P.-L. Ko, W.-H. Liao, and Y.-C. Tung. Microfluidic collective cell migration assay for study of endothelial cell proliferation and migration under combinations of oxygen gradients, tensions, and drug treatments. Scientific reports, 9(1):8234, 2019.
[64] V. S. Shirure, S. F. Lam, B. Shergill, Y. E. Chu, N. R. Ng, and S. C. George. Quantitative design strategies for fine control of oxygen in microfluidic systems. Lab on a Chip, 20(16):3036–3050, 2020.
[65] H. Sies, V. V. Belousov, N. S. Chandel, M. J. Davies, D. P. Jones, G. E. Mann, M. P. Murphy, M. Yamamoto, and C. Winterbourn. Defining roles of specific reactive oxygen species (ros) in cell biology and physiology. Nature Reviews Molecular Cell Biology, 23(7):499–515, 2022.
[66] V. I. Sikavitsas, G. N. Bancroft, and A. G. Mikos. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 62(1):136–148, 2002.
[67] G. P. Sorescu, H. Song, S. L. Tressel, J. Hwang, S. Dikalov, D. A. Smith, N. L. Boyd, M. O. Platt, B. Lassegue, K. K. Griendling, et al. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based nadph oxidase. Circulation research, 95(8):773–779, 2004.
[68] N. Takahashi, D. Yoshino, R. Sugahara, S. Hirose, K. Sone, J.-P. Rieu, and K. Funamoto. Microfluidic platform for the reproduction of hypoxic vascular microenvironments. Scientific reports, 13(1):5428, 2023.
[69] S. R. Thomas, P. K. Witting, and G. R. Drummond. Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities. Antioxidants & redox signaling, 10(10):1713–1766, 2008.
[70] J. N. Topper, J. Cai, D. Falb, and M. Gimbrone Jr. Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proceedings of the National Academy of Sciences, 93(19):10417–10422, 1996.
[71] E. Tzima, M. Irani-Tehrani, W. B. Kiosses, E. Dejana, D. A. Schultz, B. Engelhardt, G. Cao, H. DeLisser, and M. A. Schwartz. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature, 437(7057):426–431, 2005.
[72] M. Ushio-Fukai and R. W. Alexander. Reactive oxygen species as mediators of angiogenesis signaling. role of nad (p) h oxidase. Molecular and cellular biochemistry, 264(1):85–97, 2004
[73] L. Wang, W. Liu, Y. Wang, J.-c. Wang, Q. Tu, R. Liu, and J. Wang. Construction of oxygen and chemical concentration gradients in a single microfluidic device for studying tumor cell–drug interactions in a dynamic hypoxia microenvironment. Lab on a Chip, 13(4):695–705, 2013.
[74] Y.-X. Wang, H.-B. Liu, P.-S. Li, W.-X. Yuan, B. Liu, S.-T. Liu, and K.-R. Qin. Ros and no dynamics in endothelial cells exposed to exercise-induced wall shear stress. Cellular and Molecular Bioengineering, 12:107–120, 2019.
[75] S. J. White, E. M. Hayes, S. Lehoux, J. Y. Jeremy, A. J. Horrevoets, and A. C. Newby. Characterization of the differential response of endothelial cells exposed to normal and elevated laminar shear stress. Journal of cellular physiology, 226(11):2841–2848, 2011.
[76] H.-M. Wu, T.-A. Lee, P.-L. Ko, W.-H. Liao, T.-H. Hsieh, and Y.-C. Tung. Widefield frequency domain fluorescence lifetime imaging microscopy (fd-flim) for accurate measurement of oxygen gradients within microfluidic devices. Analyst, 144(11):3494–3504, 2019.
[77] W. Xing, M. Yin, Q. Lv, Y. Hu, C. Liu, and J. Zhang. Oxygen solubility, diffusion coefficient, and solution viscosity. In Rotating electrode methods and oxygen reduction electrocatalysts, pages 1–31. Elsevier, 2014.
[78] W. Yang and E. R. Block. Effect of hypoxia and reoxygenation on the formation and release of reactive oxygen species by porcine pulmonary artery endothelial cells. Journal of cellular physiology, 164(2):414–423, 1995.
[79] T. Ziegler, K. Bouzourene, V. J. Harrison, H. R. Brunner, and D. Hayoz. Influence of oscillatory and unidirectional flow environments on the expression of endothelin and nitric oxide synthase in cultured endothelial cells. Arteriosclerosis, thrombosis, and vascular biology, 18(5):686–692, 1998.
[80] C. Zielke, C. W. Pan, A. J. Gutierrez Ramirez, C. Feit, C. Dobson, C. Davidson, B. Sandel, and P. Abbyad. Microfluidic platform for the isolation of cancer-cell subpopulations based on single-cell glycolysis. Analytical chemistry, 92(10):6949–6957, 2020.
[81] J. J. Zulueta, F.-S. Yu, I. A. Hertig, V. J. Thannickal, and P. M. Hassoun. Release of hydrogen peroxide in response to hypoxia-reoxygenation: role of an nad (p) h oxidase-like enzyme in endothelial cell plasma membrane. American journal of respiratory cell and molecular biology, 12(1):41–49, 1995.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93804-
dc.description.abstract心血管疾病是全球最大死因之一,研究心血管的各式反應變得十分重要。本研究中我們開發出一個微流道系統用以建立得以模擬人體內的氧氣及剪應力環境。我們利用四個平行但寬度不同的微流道製造出來的剪應力分別為2.5, 5, 10, 20dyne/cm2,同時我們也一個建立了一個介於2.8 %-12 % 的氧氣濃度梯度。我們在這些微流道中培養人類臍靜脈血管內皮細胞,使這些內皮細胞同時受到剪應力以及氧氣梯度的刺激模擬在人體內的條件。我們使用相位差顯微鏡以及螢光染劑來分析細胞的型態、活性氧化物種以及一氧化氮的胞內表現。我們初步發現細胞沿著流體方向排列的速度較不存在缺氧條件的細胞快,我們更發現間歇性缺氧卻沒有如同缺氧促進細胞轉向的效果。而活性氧化物的分泌量則在一小時的實驗中受到缺氧而有所抑制,最後在六小時的實驗中,一氧化氮表現量並沒有發現明顯變化。這項研究有助於了解內皮細胞在各式心血管疾病、腫瘤以及人體運動時的反應,開發的微流道平台更有助於後人運用研究更複雜的生理條件。zh_TW
dc.description.abstractCardiovascular diseases are the leading cause of death worldwide, making the study of various cardiovascular responses critically important. In this study, we developed a microfluidic system designed to simulate the oxygen and shear stress environments within the human body. Using four parallel microchannels of different widths, we generated shear stresses of 2.5, 5, 10, and 20 dyne/cm2. Additionally, we established an oxygen concentration gradient ranging from 2.8 % to 12 %. Human umbilical vein endothelial cells were cultured within these channels, exposing them to both shear stress and the oxygen gradient to simulate in vivo conditions. We employed phase-contrast microscopy and fluorescent dyes to analyze cell morphology, reactive oxygen species, and nitric oxide production. Preliminary findings revealed that in hypoxic conditions, cell alignment along the flow direction was faster compared to normoxic conditions. We also found that cyclic hypoxia did not enhance cell reorientation. ROS production was suppressed under hypoxia within one hour, while NO production showed no significant changes over a six-hour period. This study enhances our understanding of endothelial cell responses in various cardiovascular diseases, tumors, and during physical exercise. Furthermore, this developed platform can also be a powerful tool for researchers studying complicated physiological conditions.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:18:16Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-08T16:18:16Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements ii
摘要iii
Abstract iv
Contents v
List of Figures ix
List of Tables xv
Denotation xvi
Chapter 1 Introduction 1
1.1 ROS in endothelial cells . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Source of ROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 ROS signaling in endothelial cells . . . . . . . . . . . . . . . . . . 2
1.1.3 ROS related to vascular diseases . . . . . . . . . . . . . . . . . . . 4
1.2 Hypoxia effect on endothelial cells . . . . . . . . . . . . . . . . . . . 4
1.2.1 HIF-1α and HIF-2α . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Hypoxia effect on ROS and NO production . . . . . . . . . . . . . 6
1.3 Shear stress effect on endothelial cells . . . . . . . . . . . . . . . . . 10
1.3.1 Shear stress on the regulation of ROS and NO . . . . . . . . . . . . 10
1.3.2 Shear stress on morphology . . . . . . . . . . . . . . . . . . . . . . 12
1.4 The combined effect of hypoxia and shear stress . . . . . . . . . . . 14
1.5 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.1 Traditional methods to generate shear stress . . . . . . . . . . . . . 15
1.5.2 Methods to study shear stress in microfluidics . . . . . . . . . . . . 16
1.6 Generating hypoxia in microfluidics . . . . . . . . . . . . . . . . . . 18
1.6.1 Using gases as oxygen scavengers . . . . . . . . . . . . . . . . . . 18
1.6.2 Using chemical reactions as oxygen scavengers . . . . . . . . . . . 21
1.6.3 Using cells as oxygen scavengers . . . . . . . . . . . . . . . . . . . 21
1.6.4 Using CoCl2 as hypoxia inducers . . . . . . . . . . . . . . . . . . . 22
1.7 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Chapter 2 Theory 25
2.1 Hypoxic condition in microfluidic device . . . . . . . . . . . . . . . 25
Chapter 3 Materials and methods 31
3.1 The microfluidic chip . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.1 Microfluidic chip design . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.2 Microfluidic chip fabrication process . . . . . . . . . . . . . . . . . 33
3.2 Cell culture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.1 Cell passage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.2 Cell freezing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.3 Cell seeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Hypoxic condition generation . . . . . . . . . . . . . . . . . . . . . 36
3.4 Oxygen level measurement in microfluidic devices . . . . . . . . . . 36
3.4.1 Fluorescence lifetime imaging microscopy . . . . . . . . . . . . . . 36
3.4.2 Oxygen sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 System setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 Cell imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.7 ROS measurement in cells . . . . . . . . . . . . . . . . . . . . . . . 40
3.8 NO measurement in cells . . . . . . . . . . . . . . . . . . . . . . . . 40
3.9 Image processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.9.1 Bright-field image processing . . . . . . . . . . . . . . . . . . . . . 40
3.9.2 Fluorescence image processing . . . . . . . . . . . . . . . . . . . . 44
Chapter 4 Results and Discussion 45
4.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.1 Basic fluid characteristics . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.2 Oxygen microenvironment establishment . . . . . . . . . . . . . . 46
4.1.2.1 Constant oxygen gradient . . . . . . . . . . . . . . . . 47
4.1.2.2 Cyclic oxygen gradient . . . . . . . . . . . . . . . . . 49
4.2 Cell morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.1 Orientation changing with very short shear stress stimulation . . . . 53
4.2.2 Cell morphology after stimulation . . . . . . . . . . . . . . . . . . 54
4.3 ROS production . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.1 ROS staining testing . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.2 ROS production after continuous hypoxia and shear stress . . . . . . 63
4.4 NO production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.1 NO staining testing . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.2 NO production after continuous hypoxia and shear stress . . . . . . 66
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5.1 Chip design revisit . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5.2 Hypoxic condition generation . . . . . . . . . . . . . . . . . . . . . 71
4.5.3 Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5.4 ROS production . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.5.5 NO production . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Chapter 5 Conclusions 74
Chapter 6 Future Work 76
References 79
Appendix A — Cell Morphology 86
A.1 Scatter plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
-
dc.language.isoen-
dc.subject活性氧化物種zh_TW
dc.subject一氧化氮zh_TW
dc.subject人臍靜脈內皮細胞zh_TW
dc.subject剪應力zh_TW
dc.subject缺氧zh_TW
dc.subject微流體zh_TW
dc.subjectreactive oxygen speciesen
dc.subjecthypoxiaen
dc.subjectshear stressen
dc.subjectnitric oxideen
dc.subjecthuman umbilical vein endothelial cellen
dc.subjectmicrofluidicen
dc.title開發微流道系統晶片分析剪應力與缺氧刺激對於內皮細胞產生活性氧化物與一氧化氮之影響zh_TW
dc.titleDevelopment of a Microfluidic System to Study the Reactive Oxygen Species and Nitric Oxide Dynamics of Endothelial Cells under Simultaneous Stimulation of Shear Stress and Hypoxiaen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee郭柏齡;楊東霖;董奕鍾zh_TW
dc.contributor.oralexamcommitteePo-Ling kuo;Tony Yang;Yi-Chung Tungen
dc.subject.keyword微流體,人臍靜脈內皮細胞,活性氧化物種,一氧化氮,剪應力,缺氧,zh_TW
dc.subject.keywordmicrofluidic,human umbilical vein endothelial cell,reactive oxygen species,nitric oxide,shear stress,hypoxia,en
dc.relation.page94-
dc.identifier.doi10.6342/NTU202402333-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-01-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept生醫電子與資訊學研究所-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf30.45 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved