Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93803
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂育道zh_TW
dc.contributor.advisorYuh-Dauh Lyuuen
dc.contributor.author林哲毅zh_TW
dc.contributor.authorChe-Yi Linen
dc.date.accessioned2024-08-08T16:17:56Z-
dc.date.available2024-08-09-
dc.date.copyright2024-08-08-
dc.date.issued2024-
dc.date.submitted2024-07-24-
dc.identifier.citationAnderson, D., & Ulrych, U. (2023). Accelerated American option pricing with deep neural networks. Quantitative Finance and Economics, 7(2), 207--228.
Becker, S., Cheridito, P., & Jentzen, A. (2020). Pricing and hedging American-style options with deep learning. Journal of Risk and Financial Management, 13(7), 1--12.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5--32.
Caruana, R. (1997). Multitask learning. Machine Learning, 28(1), 41--75.
Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 13--17 August, 785--794.
Cox, J. C., Ross, S. A., & Rubinstein, M. (1979). Option pricing: A simplified approach. Journal of Financial Economics, 7(3), 229--263.
Culkin, R., & Das, S. R. (2017). Machine learning in finance: The case of deep learning for option pricing. Journal of Investment Management, 15(4), 92--100.
Dai, T.-S., & Lyuu, Y.-D. (2010). The bino-trinomial tree: A simple model for efficient and accurate option pricing. Journal of Derivatives, 17(4), 7--24.
Elsken, T., Metzen, J. H., & Hutter, F. (2019). Neural architecture search: A survey. Journal of Machine Learning Research, 20(1), 1997--2017.
Ferguson, R., & Green, A. (2018). Deeply learning derivatives. ArXiv. https://doi.org/10.48550/arXiv.1809.02233
Gaß, M., Glau, K., Mahlstedt, M., & Mair, M. (2018). Chebyshev interpolation for parametric option pricing. Finance and Stochastics, 22(3), 701--731.
Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13--15 May, 249--256.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, MA: MIT Press.
Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies, 6(2), 327--343.
Horvath, B., Muguruza, A., & Tomas, M. (2021). Deep learning volatility: A deep neural network perspective on pricing and calibration in (rough) volatility models. Quantitative Finance, 21(1), 11--27.
Karatas, T., Oskoui, A., & Hirsa, A. (2022). Supervised deep neural networks (DNNs) for pricing/calibration of vanilla/exotic options under various different processes. Peter Carr Gedenkschrift: Research Advances in Mathematical Finance, College Park, 11 November, 445--474.
Kirkpatrick, S., Gelatt Jr, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671--680.
Liu, S., Oosterlee, C. W., & Bohte, S. M. (2019). Pricing options and computing implied volatilities using neural networks. Risks, 7(1), 1--22.
Longstaff, F. A., & Schwartz, E. S. (2001). Valuing American options by simulation: A simple least-squares approach. Review of Financial Studies, 14(1), 113--147.
Loshchilov, I., & Hutter, F. (2017). SGDR: Stochastic gradient descent with warm restarts. Proceedings of the 5th International Conference on Learning Representations, Toulon, France, 24--26 April, 1769--1784.
Loshchilov, I., & Hutter, F. (2019). Decoupled weight decay regularization. Proceedings of the 7th International Conference on Learning Representations, New Orleans, 6--9 May, 4061--4078.
Lyuu, Y.-D. (1998). Very fast algorithms for barrier option pricing and the ballot problem. Journal of Derivatives, 5(3), 68--79.
Lyuu, Y.-D. (2002). Financial engineering & computation: Principles, mathematics, algorithms. Cambridge: Cambridge University Press.
McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5(4), 115--133.
Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3(1/2), 125--144.
Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., & Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. Proceedings of the 33rd International Conference on Machine Learning, New York, 19--24 June, 1928--1937.
Palmer, S., & Gorse, D. (2017). Pseudo-analytical solutions for stochastic options pricing using Monte Carlo simulation and breeding PSO-trained neural networks. Proceedings of the 25th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium, 26--28 April, 365--370.
Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural networks. Proceedings of the 30th International Conference on Machine Learning, Atlanta, 16--21 June, 1310--1318.
Ritchken, P. H. (1995). On pricing barrier options. Journal of Derivatives, 3(2), 19--28.
Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386--408.
Ruder, S. (2016). An overview of gradient descent optimization algorithms. ArXiv. https://doi.org/10.48550/arXiv.1609.04747
Ruder, S. (2017). An overview of multi-task learning in deep neural networks. ArXiv. https://doi.org/10.48550/arXiv.1706.05098
Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initialization and momentum in deep learning. Proceedings of the 30th International Conference on Machine Learning, Atlanta, 16--21 June, 1139--1147.
Tseng, P. (2001). Convergence of a block coordinate descent method for nondifferentiable minimization. Journal of Optimization Theory and Applications, 109(3), 475--494.
Zoph, B., & Le, Q. V. (2017). Neural architecture search with reinforcement learning. Proceedings of the 5th International Conference on Learning Representations, Toulon, France, 24--26 April, 2841--2856.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93803-
dc.description.abstract傳統美式選擇權定價方法的計算效率不足。本論文使用類神經網路推理來定價美式選擇權,並提出多任務學習以提升準確度。此外,我們採用神經架構搜索技術來自動選擇有效的網路架構。研究發現,我們的方法能在推理階段減少CPU時間,且提供跟傳統方法相當的結果。zh_TW
dc.description.abstractConventional methods for pricing American options can be computationally inefficient. This thesis uses neural network inference to price American options. We propose multi-task learning to enhance accuracy. Furthermore, neural architecture search is adopted to automate choosing a competitive neural network architecture. This thesis finds that our methods not only provide results comparable to conventional ones but also require less CPU time during inference.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:17:56Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-08T16:17:56Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
Abstract (Chinese) ii
Abstract iii
Contents iv
List of Figures vi
List of Tables vii
Chapter 1 Introduction 1
Chapter 2 Preliminaries 3
2.1 Neural Networks 3
2.1.1 Neural Network Basics 3
2.1.2 Neural Network Architectures 4
2.1.3 Training Neural Networks 4
2.2 American Options 6
2.2.1 American Option Basics 6
2.2.2 Pricing American Options 6
2.2.3 Asset Price Models 7
Chapter 3 Methodology 10
3.1 Data Generation 10
3.2 Multi-task Learning 12
3.3 Neural Architecture Search 15
Chapter 4 Numerical Results 16
4.1 Experimental Setup 16
4.2 Convergence Analysis 19
4.3 Error Analysis 23
4.4 Timing Analysis 26
4.5 Space Analysis 28
Chapter 5 Conclusions 29
Bibliography 30
-
dc.language.isoen-
dc.subject選擇權定價zh_TW
dc.subject美式選擇權zh_TW
dc.subject神經架構搜索zh_TW
dc.subject多任務學習zh_TW
dc.subject類神經網路zh_TW
dc.subjectneural networksen
dc.subjectmulti-task learningen
dc.subjectneural architecture searchen
dc.subjectoption pricingen
dc.subjectAmerican optionsen
dc.title多任務類神經網路於高效的美式選擇權定價zh_TW
dc.titleEfficient American Option Pricing with Multi-task Neural Networksen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee金國興;陸裕豪;張經略zh_TW
dc.contributor.oralexamcommitteeGow-Hsing King;U-Hou Lok;Ching-Lueh Changen
dc.subject.keyword美式選擇權,選擇權定價,類神經網路,多任務學習,神經架構搜索,zh_TW
dc.subject.keywordAmerican options,option pricing,neural networks,multi-task learning,neural architecture search,en
dc.relation.page34-
dc.identifier.doi10.6342/NTU202401974-
dc.rights.note未授權-
dc.date.accepted2024-07-26-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
1.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved