請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93803完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂育道 | zh_TW |
| dc.contributor.advisor | Yuh-Dauh Lyuu | en |
| dc.contributor.author | 林哲毅 | zh_TW |
| dc.contributor.author | Che-Yi Lin | en |
| dc.date.accessioned | 2024-08-08T16:17:56Z | - |
| dc.date.available | 2024-08-09 | - |
| dc.date.copyright | 2024-08-08 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-24 | - |
| dc.identifier.citation | Anderson, D., & Ulrych, U. (2023). Accelerated American option pricing with deep neural networks. Quantitative Finance and Economics, 7(2), 207--228.
Becker, S., Cheridito, P., & Jentzen, A. (2020). Pricing and hedging American-style options with deep learning. Journal of Risk and Financial Management, 13(7), 1--12. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5--32. Caruana, R. (1997). Multitask learning. Machine Learning, 28(1), 41--75. Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 13--17 August, 785--794. Cox, J. C., Ross, S. A., & Rubinstein, M. (1979). Option pricing: A simplified approach. Journal of Financial Economics, 7(3), 229--263. Culkin, R., & Das, S. R. (2017). Machine learning in finance: The case of deep learning for option pricing. Journal of Investment Management, 15(4), 92--100. Dai, T.-S., & Lyuu, Y.-D. (2010). The bino-trinomial tree: A simple model for efficient and accurate option pricing. Journal of Derivatives, 17(4), 7--24. Elsken, T., Metzen, J. H., & Hutter, F. (2019). Neural architecture search: A survey. Journal of Machine Learning Research, 20(1), 1997--2017. Ferguson, R., & Green, A. (2018). Deeply learning derivatives. ArXiv. https://doi.org/10.48550/arXiv.1809.02233 Gaß, M., Glau, K., Mahlstedt, M., & Mair, M. (2018). Chebyshev interpolation for parametric option pricing. Finance and Stochastics, 22(3), 701--731. Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13--15 May, 249--256. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, MA: MIT Press. Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Review of Financial Studies, 6(2), 327--343. Horvath, B., Muguruza, A., & Tomas, M. (2021). Deep learning volatility: A deep neural network perspective on pricing and calibration in (rough) volatility models. Quantitative Finance, 21(1), 11--27. Karatas, T., Oskoui, A., & Hirsa, A. (2022). Supervised deep neural networks (DNNs) for pricing/calibration of vanilla/exotic options under various different processes. Peter Carr Gedenkschrift: Research Advances in Mathematical Finance, College Park, 11 November, 445--474. Kirkpatrick, S., Gelatt Jr, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671--680. Liu, S., Oosterlee, C. W., & Bohte, S. M. (2019). Pricing options and computing implied volatilities using neural networks. Risks, 7(1), 1--22. Longstaff, F. A., & Schwartz, E. S. (2001). Valuing American options by simulation: A simple least-squares approach. Review of Financial Studies, 14(1), 113--147. Loshchilov, I., & Hutter, F. (2017). SGDR: Stochastic gradient descent with warm restarts. Proceedings of the 5th International Conference on Learning Representations, Toulon, France, 24--26 April, 1769--1784. Loshchilov, I., & Hutter, F. (2019). Decoupled weight decay regularization. Proceedings of the 7th International Conference on Learning Representations, New Orleans, 6--9 May, 4061--4078. Lyuu, Y.-D. (1998). Very fast algorithms for barrier option pricing and the ballot problem. Journal of Derivatives, 5(3), 68--79. Lyuu, Y.-D. (2002). Financial engineering & computation: Principles, mathematics, algorithms. Cambridge: Cambridge University Press. McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5(4), 115--133. Merton, R. C. (1976). Option pricing when underlying stock returns are discontinuous. Journal of Financial Economics, 3(1/2), 125--144. Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., & Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. Proceedings of the 33rd International Conference on Machine Learning, New York, 19--24 June, 1928--1937. Palmer, S., & Gorse, D. (2017). Pseudo-analytical solutions for stochastic options pricing using Monte Carlo simulation and breeding PSO-trained neural networks. Proceedings of the 25th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium, 26--28 April, 365--370. Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural networks. Proceedings of the 30th International Conference on Machine Learning, Atlanta, 16--21 June, 1310--1318. Ritchken, P. H. (1995). On pricing barrier options. Journal of Derivatives, 3(2), 19--28. Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386--408. Ruder, S. (2016). An overview of gradient descent optimization algorithms. ArXiv. https://doi.org/10.48550/arXiv.1609.04747 Ruder, S. (2017). An overview of multi-task learning in deep neural networks. ArXiv. https://doi.org/10.48550/arXiv.1706.05098 Sutskever, I., Martens, J., Dahl, G., & Hinton, G. (2013). On the importance of initialization and momentum in deep learning. Proceedings of the 30th International Conference on Machine Learning, Atlanta, 16--21 June, 1139--1147. Tseng, P. (2001). Convergence of a block coordinate descent method for nondifferentiable minimization. Journal of Optimization Theory and Applications, 109(3), 475--494. Zoph, B., & Le, Q. V. (2017). Neural architecture search with reinforcement learning. Proceedings of the 5th International Conference on Learning Representations, Toulon, France, 24--26 April, 2841--2856. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93803 | - |
| dc.description.abstract | 傳統美式選擇權定價方法的計算效率不足。本論文使用類神經網路推理來定價美式選擇權,並提出多任務學習以提升準確度。此外,我們採用神經架構搜索技術來自動選擇有效的網路架構。研究發現,我們的方法能在推理階段減少CPU時間,且提供跟傳統方法相當的結果。 | zh_TW |
| dc.description.abstract | Conventional methods for pricing American options can be computationally inefficient. This thesis uses neural network inference to price American options. We propose multi-task learning to enhance accuracy. Furthermore, neural architecture search is adopted to automate choosing a competitive neural network architecture. This thesis finds that our methods not only provide results comparable to conventional ones but also require less CPU time during inference. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:17:56Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-08T16:17:56Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
Abstract (Chinese) ii Abstract iii Contents iv List of Figures vi List of Tables vii Chapter 1 Introduction 1 Chapter 2 Preliminaries 3 2.1 Neural Networks 3 2.1.1 Neural Network Basics 3 2.1.2 Neural Network Architectures 4 2.1.3 Training Neural Networks 4 2.2 American Options 6 2.2.1 American Option Basics 6 2.2.2 Pricing American Options 6 2.2.3 Asset Price Models 7 Chapter 3 Methodology 10 3.1 Data Generation 10 3.2 Multi-task Learning 12 3.3 Neural Architecture Search 15 Chapter 4 Numerical Results 16 4.1 Experimental Setup 16 4.2 Convergence Analysis 19 4.3 Error Analysis 23 4.4 Timing Analysis 26 4.5 Space Analysis 28 Chapter 5 Conclusions 29 Bibliography 30 | - |
| dc.language.iso | en | - |
| dc.subject | 選擇權定價 | zh_TW |
| dc.subject | 美式選擇權 | zh_TW |
| dc.subject | 神經架構搜索 | zh_TW |
| dc.subject | 多任務學習 | zh_TW |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | neural networks | en |
| dc.subject | multi-task learning | en |
| dc.subject | neural architecture search | en |
| dc.subject | option pricing | en |
| dc.subject | American options | en |
| dc.title | 多任務類神經網路於高效的美式選擇權定價 | zh_TW |
| dc.title | Efficient American Option Pricing with Multi-task Neural Networks | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 金國興;陸裕豪;張經略 | zh_TW |
| dc.contributor.oralexamcommittee | Gow-Hsing King;U-Hou Lok;Ching-Lueh Chang | en |
| dc.subject.keyword | 美式選擇權,選擇權定價,類神經網路,多任務學習,神經架構搜索, | zh_TW |
| dc.subject.keyword | American options,option pricing,neural networks,multi-task learning,neural architecture search, | en |
| dc.relation.page | 34 | - |
| dc.identifier.doi | 10.6342/NTU202401974 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-07-26 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 1.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
