Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93802
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧信嘉zh_TW
dc.contributor.advisorHsin-Chia Luen
dc.contributor.author陳昭睿zh_TW
dc.contributor.authorJhao-Ruei Chenen
dc.date.accessioned2024-08-08T16:17:32Z-
dc.date.available2024-08-09-
dc.date.copyright2024-08-08-
dc.date.issued2024-
dc.date.submitted2024-07-31-
dc.identifier.citation[1] What are the potential use cases and applications of 6G networks? [Online]. Available: [1] https://telcomaglobal.com/p/use-cases-and-applications-of-6g-networks
[2] D. M. Pozar, 4th edition, Microwave Engineering. John Wiley & Sons, 2011.
[3] Serhat Erdogan, Kyoung-Sik Jack Moon, Mohanalingam Kathaperumal, and Madhavan Swaminathan, "D-band integrated and miniaturized quasi-Yagi antenna array in glass interposer," IEEE Transactions on Terahertz Science and Technology, vol. 13, no. 3, pp. 270-279, May 2023.
[4] Chun-Hsing Li, and Te-Yen Chiu, "Low-loss single-band, dual-band, and broadband mm-wave and (sub-)THz interconnects for THz SoP heterogeneous system integration," IEEE Transactions on Terahertz Science and Technology, vol. 12, no. 2, pp. 130-143, March 2022.
[5] Chi Fan, Bian Wu, Yue Hu, Yutong Zhao, and Tao Su, "Millimeter-wave pattern reconfigurable Vivaldi antenna using tunable resistor based on graphene," IEEE Transactions on Antennas and Propagation, vol. 68, no. 6, pp. 4939-4943, June 2020.
[6] Ibrahim Abdo, Carrel da Gomez, Chun Wang, Kota Hatano, Qi Li, Chenxin Liu , Kiyoshi Yanagisawa, Ashbir Aviat Fadila, Takuya Fujimura, Tsuyoshi Miura, Korkut Kaan Tokgoz, Jian Pang, Hiroshi Hamada, Hideyuki Nosaka, Atsushi Shirane, and Kenichi Okada, "A bi-directional 300-GHz-band phased-array transceiver in 65-nm CMOS with outphasing transmitting mode and LO emission cancellation," IEEE Journal of Solid-State Circuits, vol. 57, no. 8, pp. 2292-2308, Aug. 2022.
[7] 微帶線(microstrip)與接地共平面波導(CPWG). [Online]. Available: https://www.eefocus.com/article/519515.html
[8] Christophe Seguinot, Patrick Kennis, Jean-Franicos Legier, Fabrice Huret, Erick Paleczny, and Leonard Hayden, "Multimode TRL — a new concept in microwave measurements: theory and experimental verification," IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 5, pp. 536-542, May 1998.
[9] 陳晏笙教授,天線開放式課程. [Online]. Available: https://www.youtube.com/playlist?list=PL68D2uCy1WTMR9iwyjtOZcjGMom4KZEhZ
[10] ETSI TS 138 161 V17.2.0 (2023-07). [Online]. Available: https://www.etsi.org/deliver/etsi_ts/138100_138199/138161/17.02.00_60/ts_138161v170200p.pdf
[11] 康寧EAGLE XG Slim玻璃基板. [Online]. Available: https://www.corning.com/tw/zh_tw/products/display-glass/products/eagle-xg-slim.html
[12] Yin-Han Cheng, Chih-Han Lin and Yu-Hsiang Cheng, "Permittivity measurement of PCB materials using terahertz time-domain spectroscopy," 2023 Asia-Pacific Microwave Conference (APMC), Taipei, Taiwan, Dec. 2023, pp. 635-637.
[13] Tom Keinicke Johansen, Chenhui Jiang, Dzenan Hadziabdic, and Viktor Krozer, "EM simulation accuracy enhancement for broadband modeling of on-wafer passive components," 2007 European Microwave Integrated Circuit Conference, Munich, Germany, Oct. 2007, pp. 447-450.
[14] Zhao-Hong Tu, Pin-Feng Chen, Sung-Lin Ho, Min-Wei Li, Tsung-Wen Chiu, and Yu-Hsiang Cheng, "Probe-based antenna measurements at sub-THz frequencies," 2023 Asia-Pacific Microwave Conference (APMC), Taipei, Taiwan, Dec. 2023, pp. 826-828.
[15] SAR-2013-06-S2 WR-06 Pyramidal Horn Antenna, 20 dBi Gain. [Online]. Available: https://sftp.eravant.com/content/datasheets/SAR-2013-06-S2.pdf
[16] Ruey-Che Lin, Zhi-Ting Yang, and Hsin-Chia Lu, "Microstrip line and grounded CPW at 140 GHz and 300 GHz bands on BT substrate," submitted to 2024 Asia-Pacific Microwave Conference (APMC), Bali, Indonesia, Nov. 2024.
[17] Mutee ur Rehman, Atom Watanabe, Siddharth Ravichandran, and Madhavan Swaminathan, "Substrate integrated waveguides in glass interposers for mm wave applications," 2021 IEEE MTT-S International Microwave Symposium (IMS), Atlanta, GA, USA, 2021, pp. 339-341.
[18] Aleksandr Krivovitca, Umer Shah, Oleksandr Glubokov, and Joachim Oberhammer, "Micromachined silicon-core substrate-integrated waveguides at 220–330 GHz," IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 12, pp. 5123-5131, Dec. 2020.
[19] Hamza Issa, Philippe Ferrari, Emmanouel Hourdakis, and Androula G. Nassiopoulou, "On-chip high-performance millimeter-wave transmission lines on locally grown porous silicon areas," IEEE Transactions on Electron Devices, vol. 58, no. 11, pp. 3720-3724, Nov. 2011.
[20] Chun-Nien Chen, Yi-Hsien Lin, Li-Cheng Hung, Tzu-Chien Tang, Wei-Pang Chao, Cheng-Yu Chen, Po-Hsiang Chuang, Guan-Yu Lin, Wei-Jun Liao, Yu-Hsiang Nien, Wei-Cheng Huang, Tai-Yu Kuo, Kun-You Lin, Tian-Wei Huang, Yi-Cheng Lin, Hsin-Chia Lu, Tsung-Heng Tsai, and Huei Wang, "38-GHz phased array transmitter and receiver based on scalable phased array modules with endfire antenna arrays for 5G MMW data links," IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 1, pp. 980-999, Jan. 2021.
[21] A. K. Skrivervik, Marko Bosiljevac, and Zvonimir Sipus, "Fundamental limits for implanted antennas: maximum power density reaching free space," IEEE Transactions on Antennas and Propagation, vol. 67, no. 8, pp. 4978-4988, Aug. 2019.
[22] Daniel F. Sievenpiper, David C. Dawson, Minu M. Jacob, Tumay Kanar, Sanghoon Kim, Jiang Long, and Ryan G. Quarfoth, "Experimental validation of performance limits and design guidelines for small antennas," IEEE Transactions on Antennas and Propagation, vol. 60, no. 1, pp. 8-19, Jan. 2012.
[23] Yuanxi Cao, and Gao Wei, "Circular slot Vivaldi antenna with low backlobe," 2018 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), Xuzhou, China, Jul. 2018, pp. 1-3.
[24] Hsi-Tseng Chou, Sheng-Ju Chou, Joseph Der-Son Deng, Chia-Hung Chang, and Zhi-Da Yan, "LTCC-based antenna-in-package array for 5G user equipment with dual-polarized endfire radiations at millimeter-wave frequencies," IEEE Transactions on Antennas and Propagation, vol. 70, no. 4, pp. 3076-3081, April 2022.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93802-
dc.description.abstract本篇論文研究內容分為三部分,第一部分利用Corning Eagle XG (EXG)玻璃基板製程設計操作在次太赫茲頻段的微帶線、接地共平面波導與開槽型接地共平面波導,適當的開槽設計可以有效減少傳輸線整體損耗,接地共平面波導開槽後在150GHz減少約37%的損耗,在300GHz減少約36%的損耗。接著設計DC-300GHz頻段的覆晶轉接以應用在未來天線陣列晶片整合封裝,模擬結果在全頻段的S11皆小於-10dB,S21最低為-0.9dB。最後比較三種覆晶轉接特性且歸納出轉接結合開槽型接地共平面波導能改善150-300GHz的不匹配,並減少1.4dB/mm的損耗。
第二部分說明140GHz天線陣列晶片整合封裝的疊構,接著以TSRI的RO4003C兩層板設計11GHz本地振盪器傳輸線並透過BGA錫球進行垂直訊號轉接。接著量測兩種組裝方式的特性,S11在11GHz達到匹配但整體頻寬與損耗較差,未來在更高頻的應用上需解決兩端阻抗不連續及組裝的問題。
第三部分利用EXG玻璃基板製程與TSRI石英IPD基板製程設計水平極化一維端射韋瓦第天線陣列。1x4天線陣列波束掃描範圍在EXG玻璃基板達到-52°~53°,在石英IPD基板達到-72°~72°。接著石英IPD基板天線經由下針量測驗證出天線單元在140GHz的S11為-13.5dB,頻寬從111-162GHz為51GHz;1x4天線陣列在140GHz的S11為-10.6dB,頻寬從110-170GHz為60GHz達到全頻段匹配。二維場型量測受限於暗室是設計用來量測broadside天線輻射特性,在φ=0°與θ=-90°方向的端射增益較低,因此改以θ=-70°即南緯20°方向做比較,天線單元在140GHz最大增益為7.9dBi,θ=-70°平面半功率波束寬度為130°;1x4天線陣列在140GHz最大增益為11.3dBi,θ=-70°平面半功率波束寬度為26°。
zh_TW
dc.description.abstractThis thesis is divided into three parts. The first part involves the design of sub-THz band microstrip line, grounded coplanar waveguide (GCPW) and slotted GCPW on Corning Eagle XG (EXG) glass substrate. Proper slot design could effectively reduce transmission line loss. Slotted GCPW reduces loss by approximately 37% at 150GHz and 36% at 300GHz. Next, a flip-chip transition operating at DC-300GHz is designed for integrating antenna array with chip in the same package. Simulation shows that S11 in entire band is less than -10dB, and at 300GHz has the largest S21 which is -0.9dB. Finally, the properties of three types of flip-chip transition are compared, concluding that flip-chip combined with slotted GCPW could improve the mismatch in 150-300GHz and reduce loss by 1.4dB/mm.
The second part introduces the stack of 140GHz antenna array with chip in package, then uses TSRI RO4003C 2-L PCB to design 11GHz LO vertical signal transition between substrates with BGA balls. Measurements of two assembly methods show that S11 reaches matching at 11GHz but the overall bandwidth and loss is improvable. To solve this problem, we need to solve the impedance discontinuity at both sides of substrate and use stable assembly method for further higher frequency applications.
The third part involves the design of horizontally-polarized one-dimensional end-fire Vivaldi antenna array using EXG glass and quartz IPD substrate. Beam steering range of 1x4 array on EXG glass reaches -52°~53° while quartz IPD substrate reaches -72°~72°. Next, quartz IPD antenna performance are measured. For S11 at 140GHz, element antenna reaches -13.5dB and bandwidth covering 111-162GHz; 1x4 array reaches -10.6dB and bandwidth covering 110-170GHz. For 2D radiation pattern, since the chamber is built for measuring broadside antenna radiation, antenna end-fire gain at φ=0° and θ=-90° direction is degraded. Instead, x-y cut at θ=-70° is used to compare with simulation results. At 140GHz element has peak gain 7.9dBi and HPBW 130°; 1x4 array has peak gain 11.3dBi and HPBW 26°.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:17:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-08T16:17:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 iii
ABSTRACT iv
目次 vi
圖次 ix
表次 xviii
Chapter 1 緒論 1
1.1 研究背景 1
1.2 研究動機與應用情境 2
1.3 文獻回顧 3
1.4 論文貢獻 16
1.5 章節介紹 18
Chapter 2 傳輸線和天線參數與陣列場型理論 20
2.1 Friis equation介紹 20
2.2 傳輸線電路參數 20
2.2.1 傳輸線理論 20
2.2.2 有損傳輸線分析 22
2.2.3 平面式傳輸線 24
2.2.4 散射矩陣校正 26
2.3 天線輻射參數 30
2.3.1 極化與場型 30
2.3.2 指向性和增益與效率 35
2.3.3 射頻系統鏈路預算 37
2.4 天線陣列場型理論 39
2.4.1 場型相乘法則 39
2.4.2 均勻單元線性陣列 40
2.4.3 波束掃描與饋入權重分析 42
Chapter 3 EXG玻璃基板傳輸線與覆晶轉接 44
3.1 微帶線 44
3.1.1 EXG玻璃基板疊構 44
3.1.2 微帶線設計與模擬 45
3.2 接地共平面波導 49
3.2.1 傳統式接地共平面波導設計與模擬 50
3.2.2 開槽型接地共平面波導設計與模擬 54
3.2.3 下針GSG襯墊設計 60
3.3 基板電氣參數 63
3.3.1 基板參數推導 63
3.4 覆晶轉接設計與模擬 65
3.4.1 140GHz晶片與玻璃基板覆晶轉接封裝 65
Chapter 4 EXG玻璃基板一維韋瓦第天線陣列 77
4.1 韋瓦第天線單元 77
4.1.1 漸變式開槽設計與模擬 77
4.1.2 玻璃基板TGV設計 90
4.2 1x4韋瓦第天線陣列 94
4.2.1 天線陣列設計與模擬 94
4.2.2 相位控制之波束掃描模擬 104
4.3 1x4韋瓦第天線陣列結合功率分配器與GSG襯墊 105
4.3.1 一分四功率分配器 106
Chapter 5 石英IPD基板一維韋瓦第天線陣列 114
5.1 韋瓦第天線單元 114
5.1.1 石英IPD基板疊構與製程限制 114
5.1.2 天線單元設計與模擬 115
5.2 1x4韋瓦第天線陣列 130
5.2.1 天線陣列設計與模擬 130
5.2.2 相位控制之波束掃描模擬 135
5.3.1 一分四功率分配器 136
Chapter 6 封裝基板間使用BGA錫球之垂直訊號轉接 145
6.1 天線陣列晶片整合封裝介紹 145
6.2 BGA轉接設計與模擬 146
6.3 量測結果 152
Chapter 7 量測結果 161
7.1 量測系統與環境介紹 161
7.2 石英IPD基板韋瓦第天線量測 167
7.2.1 天線單元S-參數與場型量測 167
7.2.2 1x4天線陣列S-參數與場型量測 180
Chapter 8 結論與未來展望 197
8.1 結論 197
8.2 未來展望 198
參考文獻 199
-
dc.language.isozh_TW-
dc.subject開槽型接地共平面波導zh_TW
dc.subject玻璃基板zh_TW
dc.subject端射韋瓦第天線陣列zh_TW
dc.subjectBGA垂直訊號轉接zh_TW
dc.subjectD-頻段zh_TW
dc.subjectslotted GCPWen
dc.subjectend-fire Vivaldi antenna arrayen
dc.subjectBGA vertical signal transitionen
dc.subjectglass substrateen
dc.subjectD-banden
dc.title應用於6G通訊D-頻段於玻璃基板之水平極化一維端射韋瓦第陣列天線封裝zh_TW
dc.title6G D-band Horizontally-Polarized One-Dimensional End-Fire Vivaldi Array Antenna-in-Package in Glass Substrateen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳晏笙;鄭宇翔;馬自莊zh_TW
dc.contributor.oralexamcommitteeYen-Sheng Chen;Yu-Hsiang Cheng;Tzyh-Ghuang Maen
dc.subject.keywordD-頻段,玻璃基板,開槽型接地共平面波導,BGA垂直訊號轉接,端射韋瓦第天線陣列,zh_TW
dc.subject.keywordD-band,glass substrate,slotted GCPW,BGA vertical signal transition,end-fire Vivaldi antenna array,en
dc.relation.page201-
dc.identifier.doi10.6342/NTU202402266-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-02-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
20.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved