請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93796
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 江其衽 | zh_TW |
dc.contributor.advisor | Ci-Ren Jiang | en |
dc.contributor.author | 陳昱誠 | zh_TW |
dc.contributor.author | Yu-Cheng Chen | en |
dc.date.accessioned | 2024-08-08T16:15:37Z | - |
dc.date.available | 2024-08-09 | - |
dc.date.copyright | 2024-08-08 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-27 | - |
dc.identifier.citation | Alexander, A., D. D. Norinho, and S. Hörmann (2015). On the prediction of stationary functional time series. Journal of the American Statistical Association 110, 378–392.
Bosq, D. (2000). Linear Processes in Function Spaces: Theory and Applications. Springer New York, NY. Didericksen, D., P. Kokoszka, and X. Zhang (2012). Empirical properties of forecasts with the functional autoregressive model. Computational Statistics 27, 285–298. Ferraty, F. (2006). Nonparametric Functional Data Analysis. Springer New York, NY. Grenander, U. (1950). Stochastic processes and statistical inference. Arkiv för Matematik 1, 195–277. Hall, P., H.-G. Müller, and J.-L. Wang (2006). Properties of principal component methods for functional and longitudinal data analysis. The Annals of Statistics 34, 1493–1517. Hörmann, S. and P. Kokoszka (2010). Weakly dependent functional data. The Annals of Statistics 38, 1845–1884. Hörmann, S. and P. Kokoszka (2012). Functional time series. In Handbook of Statistics, Volume 30, pp. 157–186. Elsevier. Horváth, L. and P. Kokoszka (2012). Inference for Functional Data with Applications, Volume 200. Springer New York, NY. Hsing, T. and R. Eubank (2015). Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators, Volume 997. John Wiley & Sons. Human Mortality Database (2024). Human Mortality Database. Max Planck Institute for Demographic Research (Germany), University of California, Berkeley (USA), and French Institute for Demographic Studies (France). Available at www.mortality.org. Accessed on 2024-05-10. Hyndman, R. J. and H. L. Shang (2009). Forecasting functional time series. Journal of the Korean Statistical Society 38, 199–211. James, G. M., T. J. Hastie, and C. A. Sugar (2000). Principal component models for sparse functional data. Biometrika 87, 587–602. Jiang, C.-R., E. Lila, J. A. Aston, and J.-L. Wang (2022). Eigen-adjusted functional prin- cipal component analysis. Journal of Computational and Graphical Statistics 31, 1141– 1152. Li, Y. and T. Hsing (2010). Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data. The Annals of Statistics 38, 3321–3351. Ramsay, J. O. (1982). When the data are functions. Psychometrika 47(4), 379–396. Ramsay, J. O. and C. J. Dalzell (1991). Some tools for functional data analysis. Journal of the Royal Statistical Society. Series B 53, 539–572. Ramsay, J. O. and B. W. Silverman (2002). Applied Functional Data Analysis. Springer New York, NY. Ramsay, J. O. and B. W. Silverman (2005). Functional Data Analysis. Springer New York, NY. Rao, C. R. (1958). Some statistical methods for comparison of growth curves. Biometrics 14, 1–17. Rice, J. A. and B. W. Silverman (1991). Estimating the mean and covariance structure nonparametrically when the data are curves. Journal of the Royal Statistical Society: Series B 53, 233–243. Shang, H. L. (2014). A survey of functional principal component analysis. AStA Advances in Statistical Analysis 98, 121–142. Silverman, B. W. (1996). Smoothed functional principal components analysis by choice of norm. The Annals of Statistics 24, 1–24. Wang, J.-L., J.-M. Chiou, and H.-G. Müller (2016). Functional data analysis. Annual Review of Statistics and Its Application 3, 257–295. Yao, F., H.-G. Müller, and J.-L. Wang (2005). Functional data analysis for sparse longi- tudinal data. Journal of the American Statistical Association 100, 577–590. Zhang, J.-T. and J. Chen (2007). Statistical inferences for functional data. The Annals of Statistics 35, 1052–1079. Zhang, X. and J.-L. Wang (2016). From sparse to dense functional data and beyond. The Annals of Statistics 44, 2281–2321. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93796 | - |
dc.description.abstract | 函數型自我迴歸模型是在函數型時間序列數據分析中被廣泛使用的技術,用於捕捉函數型數據之間的時間相關結構。現有的大多數函數型自我迴歸模型並未考慮額外變數對函數型觀測值的影響。在本文中,我們引入了基本函數型自我迴歸模型的擴展,稱為變數校正函數型自我迴歸模型,該模型結合了過去的觀測值和一組額外變數資訊,以更好地描述函數型時間序列數據中的潛在過程。我們通過在簡易設置下進行模擬研究,以及對法國年齡別死亡率曲線的時間序列數據進行分析,評估了所提出的變數校正函數型自我迴歸模型的性能,並與現有的函數型自我迴歸模型進行比較。結果表明,納入額外變數資訊可以提高模型的有效性。 | zh_TW |
dc.description.abstract | Functional autoregressive (FAR) models are a widely used technique in functional time series data analysis, which have been proposed to capture the temporal dependence structure among functional data. Most of the existing FAR models do not consider the influence of additional covariates on functional observations. In this paper, we introduce an extension of the FAR model, called the covariate-adjusted FAR (cFAR) model, which incorporates both past observations and a set of covariates to better describe the underlying processes in functional time series data. We evaluated the performance of the proposed covariate-adjusted functional autoregressive model through a simulation study under a simplified setting and by analyzing time series data of age-specific mortality curves in France. The model was compared with the existing functional autoregressive method. The results demonstrate that incorporating additional covariate information significantly enhances the model's effectiveness. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:15:37Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-08T16:15:37Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 摘要 ⅰ
Abstract ⅱ Contents ⅲ List of Figures ⅴ Chapter 1 Introduction 1 Chapter 2 A Review on Functional Time Series 5 2.1 FPCA 5 2.2 Functional autoregressive model 8 Chapter 3 Covariate-adjusted Autoregressive Model 11 3.1 Model 11 3.2 Estimation 13 3.2.1 Covariate-adjusted 13 Chapter 4 Simulation 15 4.1 Setting 15 4.2 Estimation for the coefficient 16 4.3 Estimation for surface 18 4.4 Forecast 20 Chapter 5 Data Analysis 23 Chapter 6 Conclusion 32 References 34 Appendix A — Definitions 37 A.1 37 | - |
dc.language.iso | en | - |
dc.title | 變數校正函數型自我迴歸模型 | zh_TW |
dc.title | A Covariate Adjusted Functional Autoregressive Model | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 黃信誠;黃世豪 | zh_TW |
dc.contributor.oralexamcommittee | Hsin-Cheng Huang;Shih-Hao Huang | en |
dc.subject.keyword | 自我迴歸過程,降維,函數型數據,函數型主成分分析,平滑,加權最小平方法, | zh_TW |
dc.subject.keyword | autoregressive process,dimension reduction,functional data,functional principal component analysis,smoothing,weighted least squares, | en |
dc.relation.page | 37 | - |
dc.identifier.doi | 10.6342/NTU202401347 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-07-29 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 統計與數據科學研究所 | - |
顯示於系所單位: | 統計與數據科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 2.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。