Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93787
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹穎雯zh_TW
dc.contributor.advisorYin-Wen Chanen
dc.contributor.author鄧庭安zh_TW
dc.contributor.authorTing-An Tengen
dc.date.accessioned2024-08-08T16:12:37Z-
dc.date.available2024-08-09-
dc.date.copyright2024-08-08-
dc.date.issued2024-
dc.date.submitted2024-07-30-
dc.identifier.citation1. International, A., ASTM C 150M-20 Standard Specification for Portland Cement. 2020.
2. Saleh, H.M. and S.B. Eskander, 18 - Innovative cement-based materials for environmental protection and restoration, in New Materials in Civil Engineering, P. Samui, et al., Editors. 2020, Butterworth-Heinemann. p. 613-641.
3. Marchon, D. and R.J. Flatt, 8 - Mechanisms of cement hydration, in Science and Technology of Concrete Admixtures, P.-C. Aïtcin and R.J. Flatt, Editors. 2016, Woodhead Publishing. p. 129-145.
4. Kranjc, A., Baltazar Hacquet (1739/40-1815), the Pioneer of Karst Geomorphologists. Acta Carsologica, 2006. 35(2-3).
5. Bentz, D.P., et al., Multi-scale investigation of the performance of limestone in concrete. Construction and Building Materials, 2015. 75: p. 1-10.
6. Senhadji, Y., et al., Influence of natural pozzolan, silica fume and limestone fine on strength, acid resistance and microstructure of mortar. Powder Technology, 2014. 254: p. 314-323.
7. bederina, M., Z. makhloufi, and T. bouziani, Effect of Limestone Fillers the Physic-Mechanical Properties of Limestone Concrete. Physics Procedia, 2011. 21: p. 28-34.
8. Marchetti, G., V.F. Rahhal, and E.F. Irassar, Influence of packing density and water film thickness on early-age properties of cement pasteswith limestone filler and metakaolin. Materials and Structures/Materiaux et Constructions, 2017. 50(2).
9. Chen, J.J., et al., Packing Density Improvement through Addition of Limestone Fines, Superfine Cement and Condensed Silica Fume. Journal of Materials Science and Chemical Engineering, 2016. 04: p. 29-36.
10. Valcuende, M., et al., Influence of limestone filler and viscosity-modifying admixture on the porous structure of self-compacting concrete. Construction and Building Materials, 2012. 28(1): p. 122-128.
11. Li, W., et al., Influence of Nanolimestone on the Hydration, Mechanical Strength, and Autogenous Shrinkage of Ultrahigh-Performance Concrete. Journal of Materials in Civil Engineering, 2016. 28(1): p. 04015068.
12. Burroughs, J.F., et al., Potential of finely ground limestone powder to benefit ultra-high performance concrete mixtures. Construction and Building Materials, 2017. 141: p. 335-342.
13. Sua-iam, G. and N. Makul, Use of limestone powder during incorporation of Pb-containing cathode ray tube waste in self-compacting concrete. Journal of Environmental Management, 2013. 128: p. 931-940.
14. Craeye, B., et al., Effect of mineral filler type on autogenous shrinkage of self-compacting concrete. Cement and Concrete Research, 2010. 40(6): p. 908-913.
15. Berodier, E. and K. Scrivener, Understanding the Filler Effect on the Nucleation and Growth of C-S-H. Journal of the American Ceramic Society, 2014. 97(12): p. 3764-3773.
16. Ramachandran, V.S., Thermal analyses of cement components hydrated in the presence of calcium carbonate. Thermochimica Acta, 1988. 127: p. 385-394.
17. Lawrence, P., M. Cyr, and E. Ringot, Mineral admixtures in mortars effect of type, amount and fineness of fine constituents on compressive strength. Cement and Concrete Research, 2005. 35(6): p. 1092-1105.
18. Péra, J., S. Husson, and B. Guilhot, Influence of finely ground limestone on cement hydration. Cement and Concrete Composites, 1999. 21(2): p. 99-105.
19. Bazzoni, A. Study of early hydration mechanisms of cement by means of electron microscopy. 2014.
20. Rode, S., et al., True Atomic-Resolution Imaging of (101̅4) Calcite in Aqueous Solution by Frequency Modulation Atomic Force Microscopy. Langmuir, 2009. 25(5): p. 2850-2853.
21. Lothenbach, B., et al., Influence of limestone on the hydration of Portland cements. Cement and Concrete Research, 2008. 38(6): p. 848-860.
22. Vance, K., et al., Hydration and strength development in ternary portland cement blends containing limestone and fly ash or metakaolin. Cement and Concrete Composites, 2013. 39: p. 93-103.
23. Makar, J.M., G.W. Chan, and K.Y. Esseghaier, A peak in the hydration reaction at the end of the cement induction period. Journal of Materials Science, 2007. 42(4): p. 1388-1392.
24. Thongsanitgarn, P., et al., Heat of hydration of Portland high-calcium fly ash cement incorporating limestone powder: Effect of limestone particle size. Construction and Building Materials, 2014. 66: p. 410-417.
25. John, V.M., et al., Fillers in cementitious materials — Experience, recent advances and future potential. Cement and Concrete Research, 2018. 114: p. 65-78.
26. De Weerdt, K., et al., Synergy between fly ash and limestone powder in ternary cements. Cement and Concrete Composites, 2011. 33(1): p. 30-38.
27. Tikkanen, J., A. Cwirzen, and V. Penttala, Effects of mineral powders on hydration process and hydration products in normal strength concrete. Construction and Building Materials, 2014. 72: p. 7-14.
28. Matschei, T., B. Lothenbach, and F.P. Glasser, The AFm phase in Portland cement. Cement and Concrete Research, 2007. 37(2): p. 118-130.
29. De Weerdt, K., et al., Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cement and Concrete Research, 2011. 41(3): p. 279-291.
30. Bonavetti, V.L., V.F. Rahhal, and E.F. Irassar, Studies on the carboaluminate formation in limestone filler-blended cements. Cement and Concrete Research, 2001. 31(6): p. 853-859.
31. Zajac, M., et al., Influence of limestone and anhydrite on the hydration of Portland cements. Cement and Concrete Composites, 2014. 46: p. 99-108.
32. Arora, A., G. Sant, and N. Neithalath, Ternary blends containing slag and interground/blended limestone: Hydration, strength, and pore structure. Construction and Building Materials, 2016. 102: p. 113-124.
33. Lothenbach, B., et al., Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement. Cement and Concrete Research, 2008. 38(1): p. 1-18.
34. 爐石利用推廣手冊,2000,中鋼集團,高雄市.
35. Ramezanianpour, A.M. and R.D. Hooton, A study on hydration, compressive strength, and porosity of Portland-limestone cement mixes containing SCMs. Cement and Concrete Composites, 2014. 51: p. 1-13.
36. Li, C. and L. Jiang, Utilization of limestone powder as an activator for early-age strength improvement of slag concrete. Construction and Building Materials, 2020. 253: p. 119257.
37. Wang, X.-Y., Analysis of hydration and strength optimization of cement-fly ash-limestone ternary blended concrete. Construction and Building Materials, 2018. 166: p. 130-140.
38. Derabla, R. and M.L. Benmalek, Characterization of heat-treated self-compacting concrete containing mineral admixtures at early age and in the long term. Construction and Building Materials, 2014. 66: p. 787-794.
39. Ramezanianpour, A.A., et al., Influence of various amounts of limestone powder on performance of Portland limestone cement concretes. Cement and Concrete Composites, 2009. 31(10): p. 715-720.
40. Tsivilis, S., et al., An analysis of the properties of Portland limestone cements and concrete. Cement and Concrete Composites, 2002. 24(3): p. 371-378.
41. Meddah, M.S., M.C. Lmbachiya, and R.K. Dhir, Potential use of binary and composite limestone cements in concrete production. Construction and Building Materials, 2014. 58: p. 193-205.
42. Tennis, P., M. Thomas, and W. Weiss, State-of-the-Art Report on Use of Limestone in Cements at Levels of up to 15%. PCA R&D SN3148, Portland Cement Association, Skokie, IL, 2011.
43. El-Didamony, H., et al., Limestone as a retarder and filler in limestone blended cement. Ceramics - Silikaty, 1995. 39(1): p. 15-19.
44. Moon, G., et al., Effects of the fineness of limestone powder and cement on the hydration and strength development of PLC concrete. Construction and Building Materials, 2017. 135: p. 129-136.
45. Marzouki, A., et al., The effects of grinding on the properties of Portland-limestone cement. Construction and Building Materials, 2013. 48: p. 1145-1155.
46. Ghafoori, N., R. Spitek, and M. Najimi, Influence of limestone size and content on transport properties of self-consolidating concrete. Construction and Building Materials, 2016. 127: p. 588-595.
47. Dhir, R.K., et al., Evaluation of Portland limestone cements for use in concrete construction. Materials and Structures, 2007. 40(5): p. 459-473.
48. Schöler, A., et al., Hydration of quaternary Portland cement blends containing blast-furnace slag, siliceous fly ash and limestone powder. Cement and Concrete Composites, 2015. 55: p. 374-382.
49. Li, L.G. and A.K.H. Kwan, Adding limestone fines as cementitious paste replacement to improve tensile strength, stiffness and durability of concrete. Cement and Concrete Composites, 2015. 60: p. 17-24.
50. Irassar, E., et al., Mechanical properties and durability of concrete made with portland limestone cement. ACI SPECIAL PUBLICATIONS, 2001. 202: p. 431-450.
51. Li, W., et al., Effects of nano-silica and nano-limestone on flowability and mechanical properties of ultra-high-performance concrete matrix. Construction and Building Materials, 2015. 95: p. 366-374.
52. Valcuende, M., et al., Influence of limestone filler and viscosity-modifying admixture on the shrinkage of self-compacting concrete. Cement and Concrete Research, 2012. 42(4): p. 583-592.
53. Khatib, J.M., et al., Effect of limestone fines as a partial replacement of cement on the chemical, autogenous, drying shrinkage and expansion of mortars. Materials Today: Proceedings, 2022. 58: p. 1199-1204.
54. BentzA, D.P., et al., Limestone Fillers to Conserve Cement in Low w/cm Concretes: An Analysis Based on Powers’ Model.
55. Lv, P., et al., Study on the mitigation of drying shrinkage and crack of limestone powder cement paste and its mechanism. Construction and Building Materials, 2024. 411: p. 134325.
56. Deysel, R.C., W.P. Boshoff, and M.S. Smit, Implementing capillary pressure control measures to prevent plastic shrinkage cracking in concrete. Construction and Building Materials, 2023. 397: p. 132407.
57. Houst, Y.F. Carbonation shrinkage of hydrated cement paste. in Proc. 4th CANMET/ACI International Conference on Durability of Concrete. 1997. CANMET, Ottawa, Canada.
58. Zhang, T., et al., Measurement of chemical shrinkage of cement paste: Comparison study of ASTM C 1608 and an improved method. Construction and Building Materials, 2013. 48: p. 662-669.
59. Khatib, J.M., et al., Chemical shrinkage of paste and mortar containing limestone fines. Materials Today: Proceedings, 2022. 61: p. 530-536.
60. Jiang, D., et al., Effect of tricalcium aluminate and sodium aluminate on thaumasite formation in cement paste. Construction and Building Materials, 2020. 259: p. 119842.
61. Luo, Y., et al., Effects of cations in sulfate on the thaumasite form of sulfate attack of cementitious materials. Construction and Building Materials, 2019. 229: p. 116865.
62. Sotiriadis, K., et al., Physical-chemical-mechanical quantitative assessment of the microstructural evolution in Portland-limestone cement pastes exposed to magnesium sulfate attack at low temperature. Cement and Concrete Research, 2021. 149: p. 106566.
63. Zeng, H., et al., Effect of limestone powder and fly ash on the pH evolution coefficient of concrete in a sulfate-freeze–thaw environment. Journal of Materials Research and Technology, 2022. 16: p. 1889-1903.
64. Heinz, D. and L. Urbonas, About thaumasite formation in Portland-limestone cement pastes and mortars––effect of heat treatment at 95 °C and storage at 5 °C. Cement and Concrete Composites, 2003. 25(8): p. 961-967.
65. Irassar, E.F., et al., Thaumasite formation in limestone filler cements exposed to sodium sulphate solution at 20 °C. Cement and Concrete Composites, 2005. 27(1): p. 77-84.
66. Bensted, J., Thaumasite––direct, woodfordite and other possible formation routes. Cement and Concrete Composites, 2003. 25(8): p. 873-877.
67. Schmidt, T., Sulfate attack and the role of internal carbonate on the formation of thaumasite. 2007, EPFL.
68. Biczok, I. and N. Blasovszky, Concrete corrosion and concrete protection. 1964.
69. Ferraris, C., et al., 22 Mechanisms of degradation of Portland cement-based systems by sulfate attack. Mechanisms of chemical degradation of cement-based systems, 1997: p. 185.
70. Santhanam, M., M.D. Cohen, and J. Olek, Modeling the effects of solution temperature and concentration during sulfate attack on cement mortars. Cement and Concrete Research, 2002. 32(4): p. 585-592.
71. Wu, M., et al., A comparable study on the deterioration of limestone powder blended cement under sodium sulfate and magnesium sulfate attack at a low temperature. Construction and Building Materials, 2020. 243: p. 118279.
72. Bensted, J., Thaumasite — background and nature in deterioration of cements, mortars and concretes. Cement and Concrete Composites, 1999. 21(2): p. 117-121.
73. Hill, J., et al., An experimental study of combined acid and sulfate attack of concrete. Cement and Concrete Composites, 2003. 25(8): p. 997-1003.
74. Zhou, Q., et al., The role of pH in thaumasite sulfate attack. Cement and Concrete Research, 2006. 36(1): p. 160-170.
75. Bonavetti, V., et al., Limestone filler cement in low w/c concrete: A rational use of energy. Cement and Concrete Research, 2003. 33(6): p. 865-871.
76. Baghabra Al-Amoudi, O.S., Attack on plain and blended cements exposed to aggressive sulfate environments. Cement and Concrete Composites, 2002. 24(3): p. 305-316.
77. Tosun-Felekoğlu, K., The effect of C3A content on sulfate durability of Portland limestone cement mortars. Construction and Building Materials, 2012. 36: p. 437-447.
78. Hartshorn, S.A., J.H. Sharp, and R.N. Swamy, Thaumasite formation in Portland-limestone cement pastes. Cement and Concrete Research, 1999. 29(8): p. 1331-1340.
79. Tosun, K., et al., Effects of limestone replacement ratio on the sulfate resistance of Portland limestone cement mortars exposed to extraordinary high sulfate concentrations. Construction and Building Materials, 2009. 23(7): p. 2534-2544.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93787-
dc.description.abstract近年來,地球暖化和氣候變遷帶來了嚴重威脅,迫切需要採取節能減碳措施來保護地球。國際社會對減少碳排放做出了努力,特別是水泥產業,作為全球碳排放的主要來源之一,正積極尋找解決方案。為此,需要研究和改進水泥生產過程,尋找更環保的生產方法,開發新型材料,並採用節能技術以減少碳排放。
本研究旨在使用石灰石水泥來減少碳排放,生產石灰石混合水泥來取代卜特蘭水泥,這是目前國際上一個有效的減碳方法。本研究考慮了不同配比對材料性能的影響,研究不同石灰石水泥規格、礦物摻料及粒料的影響,並進行新拌性質、力學性質、耐久性及絕熱溫升等試驗。通過深入研究混凝土和水泥砂漿,可以全面了解不同因素對材料性能的影響,並為配比設計提供更科學的基礎,從而提高混凝土的性能表現,增強混凝土結構的品質和耐久性。
根據實驗結果,不同石灰石水泥規格、礦物摻料及粒料的配比透過添加適量的藥劑,可以成功控制混凝土的工作性,確保其性能達到標準要求。石灰石混合水泥與卜特蘭I型水泥在新拌性質方面表現相似。在力學性能方面,在添加不同礦物摻料和使用不同粒料的情況下,石灰石水泥在早期硬固階段表現出較高的抗壓強度,但隨著齡期的增加,抗壓強度開始下降,最終強度與I型水泥無明顯差異。石灰石水泥在抗氯離子能力方面稍具優勢,但在抗硫酸鹽侵蝕方面需要透過增加礦物摻料來提升其耐久性。
zh_TW
dc.description.abstractIn recent years, global warming and climate change have posed significant threats, necessitating urgent energy-saving and carbon-reduction measures to protect our planet. The international community has made efforts to reduce carbon emissions, particularly in the cement industry, which is one of the major sources of global carbon emissions. This has led to research and improvements in the cement production process, the search for more environmentally friendly production methods, the development of new materials, and the adoption of energy-saving technologies to reduce carbon emissions.
This study aims to reduce carbon emissions by using limestone cement, producing limestone blended cement to replace Portland cement, which is currently an effective carbon reduction method internationally. The study considers the effects of different mix proportions on material performance, investigating the impact of different limestone cement specifications, mineral admixtures, and aggregates. Tests on fresh properties, mechanical properties, durability, and adiabatic temperature rise were conducted. Through in-depth research on concrete and cement mortar, a comprehensive understanding of the effects of different factors on material performance can be achieved, providing a more scientific basis for mix design, thereby improving concrete performance and enhancing the quality and durability of concrete structures.
According to the experimental results, the workability of concrete can be successfully controlled by adding appropriate additives to different proportions of limestone cement specifications, mineral admixtures, and aggregates, ensuring that the performance meets the standard requirements. Limestone blended cement and Portland Type I cement exhibited similar fresh properties. In terms of mechanical properties, when different mineral admixtures and aggregates are used, limestone cement demonstrated higher compressive strength during the early hardening stage. However, as the age increased, the compressive strength began to decline, and the final strength showed no significant difference compared to Type I cement. Limestone cement showed a slight advantage in chloride ion resistance but required the addition of mineral admixtures to enhance its durability against sulfate attack.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:12:37Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-08T16:12:37Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 I
摘要 III
ABSTRACT IV
目次 VI
圖次 XI
表次 XXIII
第一章、 緒論 1
1.1. 研究動機 1
1.2. 研究目的 2
1.3. 研究流程圖 2
第二章、 文獻回顧 4
2.1. 卜特蘭水泥 4
2.1.1. 組成 5
2.1.2. 水化作用 5
2.1.3. 水化歷程 6
2.2. 石灰石 7
2.2.1. 填充效應 8
2.2.2. 成核效應 10
2.2.3. 稀釋效應 15
2.2.4. 化學效應 17
2.3. 卜作嵐材料 21
2.3.1. 爐石 22
2.3.2. 飛灰 22
2.3.3. 爐石飛灰與石灰石協同作用 23
2.4. 新拌性質 24
2.4.1. 工作性 24
2.4.2. 泌水 24
2.4.3. 凝結時間 25
2.5. 力學性質 26
2.5.1. 抗壓強度 26
2.5.2. 抗張強度 30
2.5.3. 彈性模數 30
2.5.4. 抗彎強度 30
2.6. 體積穩定性 31
2.6.1. 自體收縮 31
2.6.2. 乾燥收縮 32
2.6.3. 塑性收縮 33
2.6.4. 碳化收縮 33
2.6.5. 化學收縮 33
2.7. 耐久性 35
2.7.1. 抵抗氯離子能力 35
2.7.2. 氯離子抵抗能力影響因素 35
2.7.3. 硫酸鹽侵蝕 36
2.7.4. 硫酸鹽侵蝕機理 36
2.7.5. 硫酸鹽侵蝕影響因素 37
第三章、 實驗計畫 40
3.1. 試驗材料 41
3.2. 試驗儀器 61
3.2.1. 新拌混凝土性質試驗 61
3.2.2. 水泥砂漿流度試驗 63
3.2.3. 力學性質試驗 64
3.2.4. 耐久性試驗 65
3.2.5. 絕熱溫升試驗 65
3.2.6. 其他儀器 66
3.3. 試體製作 67
3.3.1. 混凝土試體製作 67
3.3.2. 水泥砂漿試體製作 68
3.4. 配比設計 69
3.4.1. 不同石灰石水泥規格之混凝土配比 69
3.4.2. 石灰石水泥搭配礦物摻料的混凝土配比 72
3.4.3. 石灰石水泥與不同地區粒料的混凝土配比 75
3.4.4. 添加不同細度/取代量石灰石粉的水泥砂漿配比 77
3.5. 新拌混凝土性質試驗 78
3.5.1. 混凝土坍度試驗 78
3.5.2. 混凝土單位重試驗 79
3.5.3. 混凝土含氣量試驗 80
3.5.4. 混凝土泌水試驗 81
3.5.5. 混凝土凝結試驗 82
3.5.6. 混凝土氯離子含量試驗 83
3.5.7. 混凝土pH值 83
3.6. 水泥砂漿流度試驗 84
3.7. 力學性質試驗 85
3.7.1. 抗壓強度試驗 85
3.7.2. 彈性模數試驗 87
3.7.3. 劈裂抗張試驗 88
3.8. 耐久性試驗 89
3.8.1. 貯鹽試驗(Ponding test) 89
3.8.2. 快速氯離子傳輸試驗(RCM) 91
3.8.3. 硫酸鹽浸泡試驗 93
3.9. 絕熱溫升試驗 95
第四章、 分析結果與討論 96
4.1. 新拌混凝土性質 96
4.1.1. 不同石灰石水泥規格之影響 96
4.1.2. 石灰石水泥搭配礦物摻料之影響 108
4.1.3. 石灰石水泥與不同地區粒料之影響 119
4.2. 水泥砂漿流度 123
4.2.1. 不同石灰石水泥之影響 123
4.3. 力學性質 126
4.3.1. 不同石灰石水泥規格之影響 126
4.3.2. 石灰石水泥搭配礦物摻料之影響 137
4.3.3. 石灰石水泥與不同地區粒料之影響 157
4.3.4. 添加不同細度石灰石粉之影響 163
4.4. 耐久性 165
4.4.1. 石灰石水泥搭配礦物摻料之影響 166
4.4.2. 添加不同細度石灰石粉之影響 173
4.5. 絕熱溫升 177
4.5.1. 石灰石水泥搭配礦物摻料之影響 177
4.6. 試驗結果的綜合比較分析 178
4.6.1. 不同石灰石水泥規格的混凝土抗壓強度之比較 178
4.6.2. 礦物摻料混凝土的抗壓強度之比較 182
4.6.3. 水泥種類對抗壓強度與劈裂強度關係之影響 185
4.6.4. 水泥種類對抗壓強度與彈性模數關係之影響 186
4.6.5. 水泥種類對氯離子擴散係數與氯離子傳輸係數關係之影響 187
4.6.6. 不同粒料混凝土的抗壓強度之比較 189
4.6.7. 不同細度石灰石的水泥砂漿的抗壓強度之比較 190
第五章、 結論與建議 191
5.1. 結論 191
5.2. 建議 193
參考文獻 194
-
dc.language.isozh_TW-
dc.subject石灰石粉zh_TW
dc.subject石灰石水泥zh_TW
dc.subject石灰石水泥砂漿zh_TW
dc.subject石灰石水泥混凝土zh_TW
dc.subject碳排放zh_TW
dc.subjectcarbon emissionsen
dc.subjectlimestone cement concreteen
dc.subjectlimestone cement mortaren
dc.subjectlimestone powderen
dc.subjectlimestone cementen
dc.title使用石灰石水泥之混凝土和砂漿之性質研究zh_TW
dc.titleStudy on the Properties of Concrete and Mortar using Limestone Cementen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee廖文正;楊仲家;胡瑋秀zh_TW
dc.contributor.oralexamcommitteeWen-Cheng Liao;Chung-Chia Yang;Wei-Hsiu Huen
dc.subject.keyword石灰石水泥,石灰石粉,碳排放,石灰石水泥混凝土,石灰石水泥砂漿,zh_TW
dc.subject.keywordlimestone cement,limestone powder,carbon emissions,limestone cement concrete,limestone cement mortar,en
dc.relation.page202-
dc.identifier.doi10.6342/NTU202402069-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-01-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
15.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved