請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93783
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 侯嘉洪 | zh_TW |
dc.contributor.advisor | Chia-Hung Hou | en |
dc.contributor.author | 簡佑桐 | zh_TW |
dc.contributor.author | Yu-Tung Chien | en |
dc.date.accessioned | 2024-08-08T16:11:18Z | - |
dc.date.available | 2024-08-09 | - |
dc.date.copyright | 2024-08-08 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-29 | - |
dc.identifier.citation | Ahmed, F. E., Hashaikeh, R., & Hilal, N. (2019). Solar powered desalination–technology, energy and future outlook. Desalination, 453, 54-76.
Al-Amshawee, S., Yunus, M. Y. B. M., Azoddein, A. A. M., Hassell, D. G., Dakhil, I. H., & Hasan, H. A. (2020). Electrodialysis desalination for water and wastewater: A review. Chemical Engineering Journal, 380, 122231. Alfidharisti, S. R., Nurosyid, F., Supriyanto, A., Suryana, R., & Iriani, Y. (2017, November). Influence of electrode spacing on the efficiency of dye-sensitized solar cell. In Journal of Physics: Conference Series (Vol. 909, No. 1, p. 012026). IOP Publishing. Al-Karaghouli, A., & Kazmerski, L. L. (2013). Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renewable and Sustainable Energy Reviews, 24, 343-356. Amy, G., Ghaffour, N., Li, Z., Francis, L., Linares, R.V., Missimer, T. and Lattemann, S. (2017) Membrane-based seawater desalination: Present and future prospects. Desalination 401, 16-21. Asagoe, K., Suzuki, Y., Ngamsinlapasathian, S., & Yoshikawa, S. (2007, April). TiO2-anatase nanowire dispersed composite electrode for dye-sensitized solar cells. In Journal of Physics: Conference Series (Vol. 61, No. 1, p. 1112). IOP Publishing. Beh, E. S., Benedict, M. A., Desai, D., & Rivest, J. B. (2019). A redox-shuttled electrochemical method for energy-efficient separation of salt from water. ACS Sustainable Chemistry & Engineering, 7(15), 13411-13417. Benanti, T. L., & Venkataraman, D. (2006). Organic solar cells: An overview focusing on active layer morphology. Photosynthesis Research, 87, 73-81. Bisquert, J. (2008). Physical electrochemistry of nanostructured devices. Physical Chemistry Chemical Physics, 10(1), 49-72. Borbón, S., Lugo, S., Pourjafari, D., Pineda Aguilar, N., Oskam, G., & López, I. (2020). Open-circuit voltage (VOC) enhancement in TiO2-based DSSCs: incorporation of ZnO nanoflowers and Au nanoparticles. ACS Omega, 5(19), 10977-10986. Boschloo, G., Häggman, L., & Hagfeldt, A. (2006). Quantification of the effect of 4-tert-butylpyridine addition to I-/I3- redox electrolytes in dye-sensitized nanostructured TiO2 solar cells. The Journal of Physical Chemistry B, 110(26), 13144-13150. Cahen, D., Hodes, G., Grätzel, M., Guillemoles, J. F., & Riess, I. (2000). Nature of photovoltaic action in dye-sensitized solar cells. The Journal of Physical Chemistry B, 104(9), 2053-2059. Cameron, P. J., & Peter, L. M. (2005). How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells?. The Journal of Physical Chemistry B, 109(15), 7392-7398. Cameron, P. J., Peter, L. M., & Hore, S. (2005). How important is the back reaction of electrons via the substrate in dye-sensitized nanocrystalline solar cells?. The Journal of Physical Chemistry B, 109(2), 930-936. Chang, H. C., Twu, M. J., Hsu, C. Y., Hsu, R. Q., & Kuo, C. G. (2014). Improved performance for dye-sensitized solar cells using a compact TiO2 layer grown by sputtering. International Journal of Photoenergy, 2014. Chen, F., Karthick, R., Zhang, Q., Wang, J., Liang, M., Dai, J., Jiang, X. & Jiang, Y. (2019). Exploration of a photo-redox desalination generator. Journal of Materials Chemistry A, 7(35), 20169-20175. Chen, F., Wang, J., Feng, C., Ma, J., & Waite, T. D. (2020). Low energy consumption and mechanism study of redox flow desalination. Chemical Engineering Journal, 401, 126111. Chen, T. H., Tsai, S. K., Chang, J. Y., Chung, E., & Hou, C. H. (2023). Achieving an efficient redox-flow battery with high-conductivity electrospun carbon fiber for wastewater reclamation and seawater desalination. Desalination, 558, 116616. Chen, X., Liu, L., Yu, P. Y., & Mao, S. S. (2011). Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 331(6018), 746-750. Chen, Z., Cotterell, B., Wang, W., Guenther, E., & Chua, S. J. (2001). A mechanical assessment of flexible optoelectronic devices. Thin Solid Films, 394(1-2), 201-205. Cheng, C. Y., Chen, T. H., Chen, K. Y., Ma, J., & Hou, C. H. (2022). Redox-flow battery with four-channel architecture for continuous and efficient desalination over a wide salinity working range. Desalination, 534, 115783. Chopra, K. L., Paulson, P. D., & Dutta, V. (2004). Thin‐film solar cells: An overview. Progress in Photovoltaics: Research and Applications, 12(2‐3), 69-92. Coddington, O., Lean, J. L., Pilewskie, P., Snow, M., & Lindholm, D. (2016). A solar irradiance climate data record. Bulletin of the American Meteorological Society, 97(7), 1265-1282. Dai, J., Wang, J., Hou, X., Ru, Q., He, Q., Srimuk, P., Presser, V., & Chen, F. (2020). Dual‐zinc electrode electrochemical desalination. ChemSusChem, 13(10), 2792-2798. Desai, D., Beh, E. S., Sahu, S., Vedharathinam, V., van Overmeere, Q., de Lannoy, C. F., Jose, A. P., Völkel, A. R. & Rivest, J. B. (2018). Electrochemical desalination of seawater and hypersaline brines with coupled electricity storage. ACS Energy Letters, 3(2), 375-379. Elsaid, K., Kamil, M., Sayed, E. T., Abdelkareem, M. A., Wilberforce, T., & Olabi, A. (2020). Environmental impact of desalination technologies: A review. Science of the Total Environment, 748, 141528. Figgemeier, E., & Hagfeldt, A. (2004). Are dye-sensitized nano-structured solar cells stable? An overview of device testing and component analyses. International Journal of Photoenergy, 6, 127-140. Fujihara, K., Kumar, A., Jose, R., Ramakrishna, S., & Uchida, S. (2007). Spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell. Nanotechnology, 18(36), 365709. Gong, J., Liang, J., & Sumathy, K. (2012). Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renewable and Sustainable Energy Reviews, 16(8), 5848-5860. Gong, J., Sumathy, K., Qiao, Q., & Zhou, Z. (2017). Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renewable and Sustainable Energy Reviews, 68, 234-246. Grätzel, M. (2003). Dye-sensitized solar cells. Journal of photochemistry and photobiology C: Photochemistry Reviews, 4(2), 145-153. Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B., & Moulin, P. (2009). Reverse osmosis desalination: Water sources, technology, and today's challenges. Water Research, 43(9), 2317-2348. Gregg, B. A. (2004). Interfacial processes in the dye-sensitized solar cell. Coordination Chemistry Reviews, 248(13-14), 1215-1224. Guai, G. H., Song, Q. L., Lu, Z. S., Ng, C. M., & Li, C. M. (2013). Tailor and functionalize TiO2 compact layer by acid treatment for high performance dye-sensitized solar cell and its enhancement mechanism. Renewable Energy, 51, 29-35. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., & Pettersson, H. (2010). Dye-sensitized solar cells. Chemical Reviews, 110(11), 6595-6663. Hamberg, I., & Granqvist, C. G. (1986). Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows. Journal of Applied Physics, 60(11), R123-R160. Hasan, M. A., & Sumathy, K. (2010). Photovoltaic thermal module concepts and their performance analysis: A review. Renewable and Sustainable Energy Reviews, 14(7), 1845-1859. Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental applications of semiconductor photocatalysis. Chemical Reviews, 95(1), 69-96. Hoppe, H., & Sariciftci, N. S. (2004). Organic solar cells: An overview. Journal of Materials Research, 19(7), 1924-1945. Hou, X., Liang, Q., Hu, X., Zhou, Y., Ru, Q., Chen, F., & Hu, S. (2018). Coupling desalination and energy storage with redox flow electrodes. Nanoscale, 10(26), 12308-12314. Huang, S. Y., Schlichthörl, G., Nozik, A. J., Grätzel, M., & Frank, A. J. (1997). Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells. The Journal of Physical Chemistry B, 101(14), 2576-2582. Ihsanullah, I., Atieh, M. A., Sajid, M., & Nazal, M. K. (2021). Desalination and environment: A critical analysis of impacts, mitigation strategies, and greener desalination technologies. Science of the Total Environment, 780, 146585. Jiu, J., Isoda, S., Wang, F., & Adachi, M. (2006). Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film. The Journal of Physical Chemistry B, 110(5), 2087-2092. Jones, E., Qadir, M., van Vliet, M. T., Smakhtin, V., & Kang, S. M. (2019). The state of desalination and brine production: A global outlook. Science of the Total Environment, 657, 1343-1356. Kabir, E., Kumar, P., Kumar, S., Adelodun, A. A., & Kim, K. H. (2018). Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews, 82, 894-900. Kang, S. H., Kim, J. Y., Kim, H. S., Choi, S. H., Hyeon, T., Kang, M. S., & Sung, Y. E. (2008). Nanorod-based dye-sensitized solar cells with improved charge collection efficiency. Advanced Materials (Weinheim), 20. Khawaji, A. D., Kutubkhanah, I. K., & Wie, J. M. (2008). Advances in seawater desalination technologies. Desalination, 221(1-3), 47-69. Khodadousti, S., & Kolliopoulos, G. (2023). Batteries in desalination: A review of emerging electrochemical desalination technologies. Desalination, 117202. Kim, N., Hong, S. P., Lee, J., Kim, C., & Yoon, J. (2019). High-desalination performance via redox couple reaction in the multichannel capacitive deionization system. ACS Sustainable Chemistry & Engineering, 7(19), 16182-16189. Kim, N., Kim, C. M., Park, S., Park, J., Cho, K. H., & Kim, Y. (2024). Continuous desalination and high-density energy storage: Na metal hybrid redox flow desalination battery. Chemical Engineering Journal, 479, 147628. Kopidakis, N., Neale, N. R., & Frank, A. J. (2006). Effect of an adsorbent on recombination and band-edge movement in dye-sensitized TiO2 solar cells: Evidence for surface passivation. The Journal of Physical Chemistry B, 110(25), 12485-12489. Kroon, J. M., Bakker, N. J., Smit, H. J. P., Liska, P., Thampi, K. R., Wang, P., Zakeeruddin, S. M., Grätzel, M., Hinsch, A., Hore, S., Würfel, U., Sastrawan, R., Durrant, J. R., Palomares, E., Pettersson, H., Gruszecki, T., Walter, J., Skupien, K. & Tulloch, G. E. (2007). Nanocrystalline dye‐sensitized solar cells having maximum performance. Progress in Photovoltaics: Research and Applications, 15(1), 1-18. Lattemann, S., Kennedy, M. D., Schippers, J. C., & Amy, G. (2010). Global desalination situation. Sustainability Science and Engineering, 2, 7-39. Lee, K. E., Gomez, M. A., Elouatik, S., & Demopoulos, G. P. (2010). Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal Raman imaging. Langmuir, 26(12), 9575-9583. Liang, M., Feng, K., Karthick, R., Zhang, L., Shi, Y., Hui, K. S., Hui, K. N., Jiang, F. & Chen, F. (2020). Photocathode-assisted redox flow desalination. Green Chemistry, 22(13), 4133-4139. Lu, D., Xu, C., Wang, Y., & Cai, W. (2022). Continuous desalination via redox flow desalination using sodium 4-sulfonatooxy-2, 2, 6, 6-tetramethyl-piperidine-1-oxyl (NaSO4-TEMPO). Chemical Engineering Journal, 431, 133917. Macaira, J., Mesquita, I., Andrade, L., & Mendes, A. (2015). Role of temperature in the recombination reaction on dye-sensitized solar cells. Physical Chemistry Chemical Physics, 17(35), 22699-22710. Mahalingam, S., Nugroho, A., Floresyona, D., Lau, K. S., Manap, A., Chia, C. H., & Afandi, N. (2022). Bio and non‐bio materials‐based quasi‐solid state electrolytes in DSSC: A review. International Journal of Energy Research, 46(5), 5399-5422. McGovern, R. K. (2014). On the potential of forward osmosis to energetically outperform reverse osmosis desalination. Journal of Membrane Science, 469, 245-250. Miller, J. E. (2003). Review of water resources and desalination technologies (No. SAND2003-0800). Sandia National Lab.(SNL-NM), Albuquerque, NM (United States); Sandia National Lab.(SNL-CA), Livermore, CA (United States). Mishra, A., Fischer, M. K., & Bäuerle, P. (2009). Metal‐free organic dyes for dye‐sensitized solar cells: From structure: Property relationships to design rules. Angewandte Chemie International Edition, 48(14), 2474-2499. Mohandass, G., Chen, W., Krishnan, S., & Kim, T. (2022). Asymmetric and symmetric redox flow batteries for energy-efficient, high-recovery water desalination. Environmental Science & Technology, 56(7), 4477-4488. Mohandass, G., Kim, T., & Krishnan, S. (2021). Continuous solar desalination of brackish water via a monolithically integrated redox flow device. ACS ES&T Engineering, 1(12), 1678-1687. Mohandass, G., Kim, T., & Krishnan, S. (2021). Continuous solar desalination of brackish water via a monolithically integrated redox flow device. ACS ES&T Engineering, 1(12), 1678-1687. Mustafa, M. N., & Sulaiman, Y. (2021). Review on the effect of compact layers and light scattering layers on the enhancement of dye-sensitized solar cells. Solar Energy, 215, 26-43. Panagopoulos, A. (2021). Water-energy nexus: Desalination technologies and renewable energy sources. Environmental Science and Pollution Research, 28(17), 21009-21022. Park, N. G., Schlichthörl, G., Van de Lagemaat, J., Cheong, H. M., Mascarenhas, A., & Frank, A. J. (1999). Dye-sensitized TiO2 solar cells: Structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4. The Journal of Physical Chemistry B, 103(17), 3308-3314. Park, N. G., Van de Lagemaat, J., & Frank, A. A. (2000). Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells. The Journal of Physical Chemistry B, 104(38), 8989-8994. Pavasupree, S., Ngamsinlapasathian, S., Nakajima, M., Suzuki, Y., & Yoshikawa, S. (2006). Synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 with mesoporous structure. Journal of Photochemistry and Photobiology A: Chemistry, 184(1-2), 163-169. Pistocchi, A., Bleninger, T., Breyer, C., Caldera, U., Dorati, C., Ganora, D., Millán, M.M., Paton, C., Poullis, D., Salas Herrero, F., Sapiano, M., Semiat, R., Sommariva, C., Yuece, S. & Zaragoza, G. (2020). Can seawater desalination be a win-win fix to our water cycle?. Water Research, 182, 115906. Pugsley, A., Zacharopoulos, A., Mondol, J. D., & Smyth, M. (2016). Global applicability of solar desalination. Renewable Energy, 88, 200-219. Ramalingam, K., Liang, M., Pyae, N. L. W., Aung, S. H., Oo, T. Z., Srimuk, P., Ma, J., Presser, V., Chen, F. & Waite, T. D. (2020). Self-sustained visible-light-driven electrochemical redox desalination. ACS Applied Materials & Interfaces, 12(29), 32788-32796. Ramalingam, K., Wei, Q., Chen, F., Shen, K., Liang, M., Dai, J., Hou, X., Ru, Q., Babu, G., He, Q., & Ajayan, P. M. (2021). Achieving high‐quality freshwater from a self‐sustainable integrated solar redox‐flow desalination device. Small, 17(30), 2100490. Richhariya, G., Kumar, A., Tekasakul, P., & Gupta, B. (2017). Natural dyes for dye sensitized solar cell: A review. Renewable and Sustainable Energy Reviews, 69, 705-718. Ronca, E., Marotta, G., Pastore, M., & De Angelis, F. (2014). Effect of sensitizer structure and TiO2 protonation on charge generation in dye-sensitized solar cells. The Journal of Physical Chemistry C, 118(30), 16927-16940. Ronen, R., Atlas, I., & Suss, M. E. (2018). Theory of flow batteries with fast homogeneous chemical reactions. Journal of the Electrochemical Society, 165(16), A3820. Santos, C., & La Mantia, F. (2023). Insights into desalination battery concepts: Current challenges and future perspectives. Chemical Communications. Sima, C., Grigoriu, C., & Antohe, S. (2010). Comparison of the dye-sensitized solar cells performances based on transparent conductive ITO and FTO. Thin Solid Films, 519(2), 595-597. Sommeling, P. M., O'Regan, B. C., Haswell, R. R., Smit, H. J. P., Bakker, N. J., Smits, J. J. T., Kroon, J. M. & Van Roosmalen, J. A. M. (2006). Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. The Journal of Physical Chemistry B, 110(39), 19191-19197. Strathmann, H. (2010). Electrodialysis, a mature technology with a multitude of new applications. Desalination, 264(3), 268-288. Su, T., Yang, Y., Na, Y., Fan, R., Li, L., Wei, L., Yang, B. & Cao, W. (2015). An insight into the role of oxygen vacancy in hydrogenated TiO2 nanocrystals in the performance of dye-sensitized solar cells. ACS Applied Materials & Interfaces, 7(6), 3754-3763. Subramani, A., & Jacangelo, J. G. (2015). Emerging desalination technologies for water treatment: A critical review. Water Research, 75, 164-187. Surya, S., Thangamuthu, R., Kumar, S. M. S., & Murugadoss, G. (2017). Synthesis and study of photovoltaic performance on various photoelectrode materials for DSSCs: Optimization of compact layer on nanometer thickness. Superlattices and Microstructures, 102, 424-441. Tian, H., & Sun, L. (2011). Iodine-free redox couples for dye-sensitized solar cells. Journal of Materials Chemistry, 21(29), 10592-10601. Tsai, S. K., Chen, T. H., Ma, J., & Hou, C. H. (2024). Achieving high water recovery in a redox-flow battery with graphite felt electrodes for brine concentration. Desalination, 574, 117289. Wang, J., Zhang, Q., Chen, F., Hou, X., Tang, Z., Shi, Y., Liang, P., Yu, D. Y. W., He, Q. & Li, L. J. (2019). Continuous desalination with a metal-free redox-mediator. Journal of Materials Chemistry A, 7(23), 13941-13947. Wang, N., Hu, J., Gao, L., & Ma, T. (2020). Current progress in solid-state electrolytes for dye-sensitized solar cells: A mini-review. Journal of Electronic Materials, 49(12), 7085-7097. Wang, P., Zakeeruddin, S. M., Moser, J. E., Nazeeruddin, M. K., Sekiguchi, T., & Grätzel, M. (2003). A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature Materials, 2(6), 402-407. Wang, X., Zhang, J., Chen, X., Zaw, M., Oo, T. Z., Lwin, N. W., Aung, S. H., Chen, Y. & Chen, F. (2023). Double-photoelectrode redox desalination of seawater. Water Research, 239, 120051. Wang, X., Zhi, L., & Müllen, K. (2008). Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters, 8(1), 323-327. Wu, M. S., & Yang, R. S. (2018). Post-treatment of porous titanium dioxide film with plasmonic compact layer as a photoanode for enhanced dye-sensitized solar cells. Journal of Alloys and Compounds, 740, 695-702. Yi, Q., Cong, S., Wang, H., Wang, Y., Dai, X., Zhao, J., Sun, Y., Lou, Y. & Zou, G. (2015). High-stability Ti4+ precursor for the TiO2 compact layer of dye-sensitized solar cells. Applied Surface Science, 356, 587-592. Zanni, M. T., Greenblatt, B. J., Davis, A. V., & Neumark, D. M. (1999). Photodissociation of gas phase I3− using femtosecond photoelectron spectroscopy. The Journal of Chemical Physics, 111(7), 2991-3003. Zhang, J., Ramalingam, K., Wei, Q., San Hui, K., Aung, S. H., Hui, K. N., & Chen, F. (2022). Stable and efficient self-sustained photoelectrochemical desalination based on CdS QDs/BiVO4 heterostructure. Chemical Engineering Journal, 429, 132168. Zhang, J., Wang, X., Liang, M., Han, M., Dai, J., Wei, Q., Oo, T. Z., Aung, S. H., Hui, K. N. & Chen, F. (2022). High-performance photoelectrochemical desalination based on the dye-sensitized Bi2O3 anode. ACS Applied Materials & Interfaces, 14(29), 33024-33031. Zhang, J., Zi, Y., Shan, W., Songsiriritthigul, P., Luo, M., Oo, T. Z., Zaw, M., Lwin, N. W., Aung, S. H., Ying, G. & Chen, F. (2023). The solar-driven redox seawater desalination based on the stable and environmentally friendly WO3/BiVO4 photoanode. Desalination, 566, 116939. Zhu, H., Wei, J., Wang, K., & Wu, D. (2009). Applications of carbon materials in photovoltaic solar cells. Solar Energy Materials and Solar Cells, 93(9), 1461-1470. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93783 | - |
dc.description.abstract | 隨著氣候變遷、人口成長和經濟發展,水資源以及能源的需求都在逐年上升,如何將高效率的淨水技術結合再生能源應用已成為現今全球重要的研究議題。氧化還原液流式電池脫鹽技術(redox-flow battery desalination, RFB)為一項新興的電化學技術,透過低電壓驅動電解液材料對進行氧化還原,利用電子遷移的機制去除水中離子,可連續操作並應用於較大的脫鹽濃度範圍,而染料敏化電池(dye-sensitized solar cell, DSSC)作為一發展成熟的光伏技術,製備流程和成本的門檻相對傳統矽太陽能電池低,且兩者系統皆是靠電解液的氧化還原去運行,因此結合 DSSC 以光驅動 RFB 的技術被進一步提出,也就是太陽能驅動氧化還原液流式電池脫鹽系統(solar-driven redox-flow battery desalination, SRFB)。
本研究目的為建立一SRFB裝置以達成近零能耗脫鹽之應用,並探討系統中不同變因與反應機制的結果表現。在本研究中,比較了DSSC不同製備流程、墊片厚度、電解液濃度和對電極的表現,並決定一組最佳操作條件進行SRFB實驗。SRFB模組具有五個腔室,包括光電池室、濃室、淡室、陽極室和陰極室,將碘電解液(iodide/triiodide)密封於系統中的光電池室避免洩漏,使用鐵氰化物(ferricyanide/ferrocyanide)作為氧化還原液流電池材料在陽極室和陰極室中以流速5 mL/min循環,並於濃室和淡室通入濃度35 g/L的氯化鈉進行批次式脫鹽實驗,探討其脫鹽效能和離子遷移的現象。結果顯示在48小時的脫鹽實驗中,淡室的導電度從46.52 mS/cm降到42.94 mS/cm,儘管效果因系統中腔室濃度差過大而有所限制,但仍足以可見其脫鹽成效。結論而言,SRFB系統於電化學脫鹽技術中具有高發展潛力,期望此研究有助於SRFB系統與淨零能耗脫鹽技術的應用與發展。 | zh_TW |
dc.description.abstract | As climate change intensifies with population growth and economic development, the demand for water and energy resources continues to rise annually. In response, high-efficiency water desalination technologies powered by renewable energy have become a crucial research topic worldwide. Redox-flow battery desalination (RFB) is an innovative electrochemical technology that uses low-voltage-driven redox reactions of electrolyte materials to remove ions from water via electron migration. This technology enables continuous operation and is effective across a wide range of desalination concentrations. Meanwhile, dye-sensitized solar cells (DSSCs), a well-established photovoltaic technology, offer simplified preparation process and lower cost in their preparation process compared to traditional solar cells. Both RFB and DSSC systems operate based on the redox reactions of electrolytes, leading to the further proposal of integrating DSSC to drive the RFB technology. This concept is known as a solar-driven redox-flow battery desalination system (SRFB).
The objective of this research is to develop a SRFB module to achieve zero-energy desalination and investigate the mechanisms and parameters within the system. Various factors including DSSC preparation methods, gasket thicknesses, electrolyte concentrations, and counter electrodes were compared, in order to identify the optimal conditions for the SRFB experiment. The SRFB module consists of five chambers: a solar cell chamber, a concentrate chamber, a dilute chamber, an anode chamber, and a cathode chamber. The iodide/triiodide electrolyte is sealed within the solar cell chamber. In the anode and cathode chambers, ferricyanide/ferrocyanide serves as the redox flow battery electrolyte, circulating at a flow rate of 5 mL/min. Sodium chloride solution of 35 g/L is introduced to the concentrate and dilute chambers for batch mode desalination experiments. Results from a 48-hour desalination experiment showed that the conductivity in the dilute chamber decreased from 46.52 mS/cm to 42.94 mS/cm. In conclusion, the SRFB system exhibits significant potential in the field of electrochemical desalination technologies. These findings are expected to contribute to the advancement and application of SRFB systems and zero-energy desalination technologies. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:11:17Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-08T16:11:18Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
摘要 iii Abstract iv Contents vi List of Figures viii List of Tables xi Chapter 1. Introduction 1 1.1. Background 1 1.2. Motivation and Objectives 2 Chapter 2. Literature Review 3 2.1. Conventional Desalination Technologies 3 2.2. Redox-flow Battery Desalination 7 2.2.1. The Construction and Operation Principle of RFB 7 2.2.2. Types of Redox-flow Electrolyte in RFB 9 2.3. Dye-Sensitized Solar Cell 11 2.3.1. The Construction and Operation Principle of DSSC 11 2.3.2. Factors Affecting the Performance of DSSC 14 2.4. Solar-Driven Redox-Flow Battery Desalination 23 2.4.1. The Construction and Operation Principle of SRFB 23 2.4.2. Overview of Previous SRFB Studies 25 Chapter 3. Materials and Methods 28 3.1. Materials and Instruments 28 3.2. Research Design 31 3.3. Experimental Methods 32 3.3.1. Preparation of N719-sensitized TiO2 Photoanode 32 3.3.2. Experimental Set-up and Operation 33 3.4. Characterization of N719-sensitized TiO2 Photoanode 37 3.5. Performance Indicators 38 Chapter 4. Results and Discussion 40 4.1. Photoanode Characterization 40 4.2. Chemical Characterization of Electrolyte and DSSC 42 4.3. Effect of Different Variables on DSSC Performance 44 4.4. Desalination Performance of SRFB System 47 4.4.1. SRFB Experiment of Four-chamber System 47 4.4.2. SRFB Experiment of Five-chamber System 52 Chapter 5. Conclusions and Suggestions 63 5.1. Conclusions 63 5.2. Suggestions 64 Reference 65 | - |
dc.language.iso | en | - |
dc.title | 以太陽能驅動之氧化還原液流式電池系統達成近零能耗脫鹽之研析 | zh_TW |
dc.title | Development of solar-driven redox-flow battery system aiming for zero-energy desalination | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 李公哲;林進榮 | zh_TW |
dc.contributor.oralexamcommittee | Kung-Cheh Li;Chin-Jung Lin | en |
dc.subject.keyword | 氧化還原液流式電池脫鹽技術,染料敏化電池,電化學脫鹽技術,光伏驅動脫鹽技術,淨零能耗, | zh_TW |
dc.subject.keyword | redox-flow battery desalination,dye-sensitized solar cell,electrochemical desalination technology,solar-driven desalination technology,zero-energy consumption, | en |
dc.relation.page | 76 | - |
dc.identifier.doi | 10.6342/NTU202401738 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-07-30 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 環境工程學研究所 | - |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 4.06 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。