請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93782完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李宇修 | zh_TW |
| dc.contributor.advisor | Yu-Hsiu Lee | en |
| dc.contributor.author | 吳泳震 | zh_TW |
| dc.contributor.author | Yung-Chen Wu | en |
| dc.date.accessioned | 2024-08-08T16:10:56Z | - |
| dc.date.available | 2024-08-09 | - |
| dc.date.copyright | 2024-08-08 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-01 | - |
| dc.identifier.citation | Andy Gijbels, Jonas Smits, Laurent Schoevaerdts, Koen Willekens, Emmanuel B Vander Poorten, Peter Stalmans, and Dominiek Reynaerts. In-human robot-assisted retinal vein cannulation, a world first. Annals of biomedical engineering, 46:1676– 1685, 2018.
Anton Simorov, R Stephen Otte, Courtni M Kopietz, and Dmitry Oleynikov. Review of surgical robotics user interface: what is the best way to control robotic surgery? Surgical endoscopy, 26:2117–2125, 2012. Chang-Yan He, Long Huang, Yang Yang, Qing-Feng Liang, and Yong-Kang Li. Research and realization of a master-slave robotic system for retinal vascular bypass surgery. Chinese Journal of Mechanical Engineering, 31:1–10, 2018. HCM Meenink. Vitreo-retinal eye surgery robot: sustainable precision. 2011. Cheng-Wei Chen, Hsing-Chi Chen, Hung-Yu Yang, Xiang-Yan Zeng, Xian-Hao Wu, and Po-Chih Chen. intraocular robotic interventional system (iorbis): Mechanical design for distally-actuated instrument insertion and automatic tool change. Mechanism and Machine Theory, 167:104568, 2022. Cheng-Wei Chen, Yu-Hsiu Lee, Matthew J Gerber, Harrison Cheng, Yan-Chao Yang, Andrea Govetto, Anibal Andrés Francone, Stefano Soatto, Warren S Grundfest, Jean-Pierre Hubschman, et al. Intraocular robotic interventional surgical system (iriss): semi-automated oct-guided cataract removal. The International Journal of Medical Robotics and Computer Assisted Surgery, 14(6):e1949, 2018. Abbas Bataleblu, Rohollah Khorrambakht, and Hamid D Taghirad. Robust h∞-based control of aras-diamond: A vitrectomy eye surgery robot. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(20):5116–5131, 2021. Jean-Louis Bourges, Jean-Pierre Hubschman, Jason Wilson, Stephen Prince, TsuChin Tsao, and Steven Schwartz. Assessment of a hexapod surgical system for robotic micro-macro manipulations in ocular surgery. Ophthalmic research, 46(1):25–30, 2011. Manfred Spitznas. Motorized teleguided stereotactic micromanipulator for vitreous microsurgery. Archives of Ophthalmology, 101(4):623–630, 1983. Sumeet Khanduja, Ashish Kakkar, Saptrishi Majumdar, Rajpal Vohra, and Satpal Garg. Small gauge vitrectomy: recent update. Oman Journal of Ophthalmology, 6(1):3–11, 2013. David M Brown, Peter K Kaiser, Mark Michels, Gisele Soubrane, Jeffrey S Heier, Robert Y Kim, Judy P Sy, and Susan Schneider. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. New England Journal of Medicine, 355(14):1432–1444, 2006. Jeffrey N Weiss and Leon A Bynoe. Injection of tissue plasminogen activator into a branch retinal vein in eyes with central retinal vein occlusion. Ophthalmology, 108(12):2249–2257, 2001. Koen Willekens, Andy Gijbels, Laurent Schoevaerdts, Laure Esteveny, Tom Janssens, Bart Jonckx, Jean HM Feyen, Caroline Meers, Dominiek Reynaerts, Emmanuel Vander Poorten, et al. Robot-assisted retinal vein cannulation in an in vivo porcine retinal vein occlusion model. Acta ophthalmologica, 95(3):270–275, 2017. Kazuaki Kadonosono, Akira Arakawa, Shin Yamane, Eiichi Uchio, and Yasuo Yanagi. An experimental study of retinal endovascular surgery with a microfabricated needle. Investigative ophthalmology & visual science, 52(8):5790–5793, 2011. SA Boppart, TF Deutsch, and DW Rattner. Optical imaging technology in minimally invasive surgery: current status and future directions. Surgical endoscopy, 13:718–722, 1999. HS Himal. Minimally invasive (laparoscopic) surgery. Surgical Endoscopy And Other Interventional Techniques, 16:1647–1652, 2002. 王心儀、石宜銘. 膽結石. 臨床醫學, pages 298–304, 2012. B Jaffray. Minimally invasive surgery. Archives of disease in childhood, 90(5):537–542, 2005. KH Fuchs. Minimally invasive surgery. Endoscopy, 34(02):154–159, 2002. AGEM De Boer, JJB Van Lanschot, JW Van Sandick, JBF Hulscher, PFM Stalmeier, JCJM De Haes, HW Tilanus, H Obertop, and MAG Sprangers. Quality of life after transhiatal compared with extended transthoracic resection for adenocarcinoma of the esophagus. Journal of Clinical Oncology, 22(20):4202–4208, 2004. KW Maas, MA Cuesta, MI van Berge Henegouwen, J Roig, L Bonavina, C Rosman, SS Gisbertz, SSAY Biere, and DL Van Der Peet. Quality of life and late com plications after minimally invasive compared to open esophagectomy: results of a randomized trial. World journal of surgery, 39:1986–1993, 2015. Marco Scarpa, Francesca Erroi, Cesare Ruffolo, Eleonora Mollica, Lino Polese, Giulia Pozza, Lorenzo Norberto, Davide F D'Amico, and Imerio Angriman. Minimally invasive surgery for colorectal cancer: quality of life, body image, cosmesis, and functional results. Surgical endoscopy, 23:577–582, 2009. 邱弘毅、王英偉、熊昭, editor. 2017 年「國民健康訪問調查」結果報告. 財團法人國家衛生研究院, 2021. R Michel, C Wilkinson, and T Rice. Retinal detachment. St Louis: CV Mosby, 117,1990. BE Allf and E de Juan Jr. In vivo cannulation of retinal vessels. Graefe’s archive for clinical and experimental ophthalmology, 225(3):221–225, 1987. Sophie Rogers, Rachel L McIntosh, Ning Cheung, Lyndell Lim, Jie Jin Wang, Paul Mitchell, Jonathan W Kowalski, Hiep Nguyen, Tien Y Wong, International Eye Disease Consortium, et al. The prevalence of retinal vein occlusion: pooled data from population studies from the united states, europe, asia, and australia. Ophthalmology, 117(2):313–319, 2010. Danny Mitry, David G Charteris, Brian W Fleck, Harry Campbell, and Jaswinder Singh. The epidemiology of rhegmatogenous retinal detachment: geographical variation and clinical associations. British Journal of Ophthalmology, 94(6):678–684, 2010. Hrishikesh Vyawahare and Pranaykumar Shinde. Age-related macular degeneration: Epidemiology, pathophysiology, diagnosis, and treatment. Cureus, 14(9), 2022. Domenico Tripepi, Assad Jalil, Naseer Ally, Matilde Buzzi, George Moussa, Pierre-Raphaël Rothschild, Tommaso Rossi, Mariantonia Ferrara, and Mario R Romano. The role of subretinal injection in ophthalmic surgery: Therapeutic agent delivery and other indications. International Journal of Molecular Sciences, 24(13):10535, 2023. Deepti Pradhan, Lalit Agarwal, Ichhya Joshi, Anamika Kushwaha, Kshitij Aditya, and Archana Kumari. Internal limiting membrane peeling in macular hole surgery. GMS German Medical Science, 20, 2022. Cameron N Riviere and Patrick S Jensen. A study of instrument motion in retinal microsurgery. In Proceedings of the 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Cat. No. 00CH37143), volume 1, pages 59–60. IEEE, 2000. Basil Safwat, Eileen LM Su, Roger Gassert, Chee Leong Teo, and Etienne Burdet. The role of posture, magnification, and grip force on microscopic accuracy. Annals of biomedical engineering, 37:997–1006, 2009. Robert A MacLachlan, Brian C Becker, Jaime Cuevas Tabarés, Gregg W Podnar, Louis A Lobes, and Cameron N Riviere. Micron: an actively stabilized handheld tool for microsurgery. IEEE transactions on robotics, 28(1):195–212, 2011. Anirudha D Jagtap and Cameron N Riviere. Applied force during vitreoretinal microsurgery with handheld instruments. In The 26th annual international conference of the IEEE engineering in medicine and biology society, volume 1, pages 2771– 2773. IEEE, 2004. Puneet K Gupta, Pahick S Jensen, and Eugene de Juan. Surgical forces and tactile perception during retinal microsurgery. In Medical Image Computing and Computer-Assisted Intervention–MICCAI'99: Second International Conference, Cambridge, UK, September 19-22, 1999. Proceedings 2, pages 1218–1225. Springer, 1999. Brian Davies. A review of robotics in surgery. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 214(1):129– 140, 2000. Kevin Cleary and Charles Nguyen. State of the art in surgical robotics: clinical applications and technology challenges. Computer Aided Surgery, 6(6):312–328, 2001. Steve Charles, Hari Das, Timothy Ohm, Curtis Boswell, Guillermo Rodriguez, Robert Steele, and Dan Istrate. Dexterity-enhanced telerobotic microsurgery. In 1997 8th International Conference on Advanced Robotics. Proceedings. ICAR’97, pages 5–10. IEEE, 1997. Valentina Vitiello, Su-Lin Lee, Thomas P Cundy, and Guang-Zhong Yang. Emerging robotic platforms for minimally invasive surgery. IEEE reviews in biomedical engineering, 6:111–126, 2012. Joshua Leven, Darius Burschka, Rajesh Kumar, Gary Zhang, Steve Blumenkranz, Xiangtian Dai, Mike Awad, Gregory D Hager, Mike Marohn, Mike Choti, et al. Davinci canvas: a telerobotic surgical system with integrated, robot-assisted, laparoscopic ultrasound capability. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2005: 8th International Conference, Palm Springs, CA, USA, October 26-29, 2005, Proceedings, Part I 8, pages 811–818. Springer, 2005. Cinzia Freschi, Vincenzo Ferrari, Franca Melfi, Mauro Ferrari, Franco Mosca, and Alfred Cuschieri. Technical review of the da vinci surgical telemanipulator. The International Journal of Medical Robotics and Computer Assisted Surgery, 9(4):396– 406, 2013. Li-Ming Su. Role of robotics in modern urologic practice. Current Opinion in Urology, 19(1):63–64, 2009. Marc Remacle, Vyas MN Prasad, Georges Lawson, Laetitia Plisson, Vincent Bachy, and Sébastien Van der Vorst. Transoral robotic surgery (tors) with the medrobotics flex™ system: first surgical application on humans. European Archives of Oto-Rhino-Laryngology, 272:1451–1455, 2015. Axel Eickhoff, Jacques Van Dam, Ralf Jakobs, Valerie Kudis, Dirk Hartmann, Ulrich Damian, Uwe Weickert, Dieter Schilling, and Jürgen F Riemann. Computer-assisted colonoscopy (the neoguide endoscopy system): results of the first human clinical trial (“pace study"). Official journal of the American College of Gastroenterology| ACG, 102(2):261–266, 2007. Serhat Aksungur. Remote center of motion (rcm) mechanisms for surgical operations. International Journal of Applied Mathematics Electronics and Computers, 3(2):119–126, 2015. Murilo M Marinho, Mariana C Bernardes, and Antônio PL Bó. A programmable remote center-of-motion controller for minimally invasive surgery using the dual quaternion framework. In 5th IEEE RAS/ EMBS International Conference on Biomedical Robotics and Biomechatronics, pages 339–344. IEEE, 2014. Janez Funda, Russell H Taylor, Kreg Gruben, and David LaRose. Optimal motion control for teleoperated surgical robots. In Telemanipulator Technology and Space Telerobotics, volume 2057, pages 211–222. SPIE, 1993. Chin-Hsing Kuo and Jian S Dai. Robotics for minimally invasive surgery: a historical review from the perspective of kinematics. In International Symposium on History of Machines and Mechanisms: Proceedings of HMM 2008, pages 337–354. Springer, 2009. Chin-Hsing Kuo, Jian S Dai, and Prokar Dasgupta. Kinematic design considerations for minimally invasive surgical robots: an overview. The International Journal of Medical Robotics and Computer Assisted Surgery, 8(2):127–145, 2012. Hiroshi Makino. Development of the scara. Journal of Robotics and Mechatronics, 26(1):5–8, 2014. Doug Stewart. A platform with six degrees of freedom. Proceedings of the institution of mechanical engineers, 180(1):371–386, 1965. Bhaskar Dasgupta and TS1739334 Mruthyunjaya. The stewart platform manipulator: a review. Mechanism and machine theory, 35(1):15–40, 2000. Mohsen Moradi Dalvand and Bijan Shirinzadeh. Remote centre-of-motion control algorithms of 6-rrcrr parallel robot assisted surgery system (pramiss). In 2012 IEEE International Conference on Robotics and Automation, pages 3401–3406. IEEE, 2012. Youngjin Moon, Joon Beom Seo, and Jaesoon Choi. Development of new endeffector for proof-of-concept of fully robotic multichannel biopsy. IEEE/ASME Transactions on Mechatronics, 20(6):2996–3008, 2015. Sackier Jm. Robotically assisted laparoscopic surgery: From concept to development. Computer Integrated, 1995. Ken Masamune, Etsuko Kobayashi, Yoshitaka Masutani, Makoto Suzuki, Takeyoshi Dohi, Hiroshi Iseki, and Kintomo Takakura. Development of an mricompatible needle insertion manipulator for stereotactic neurosurgery. Journal of image guided surgery, 1(4):242–248, 1995. Abdelbadiâ Chaker, Abdelfattah Mlika, Med Amine Laribi, Lotfi Romdhane, and Saïd Zeghloul. Synthesis of spherical parallel manipulator for dexterous medical task. Frontiers of Mechanical Engineering, 7:150–162, 2012. Guanghua Zong, Xu Pei, Jingjun Yu, and Shusheng Bi. Classification and type synthesis of 1-dof remote center of motion mechanisms. Mechanism and machine theory, 43(12):1585–1595, 2008. Niravkumar A Patel, Jiawen Yan, David Levi, Reza Monfaredi, Kevin Cleary, and Iulian Iordachita. Body-mounted robot for image-guided percutaneous interventions: mechanical design and preliminary accuracy evaluation. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 1443–1448.IEEE, 2018. Genliang Chen, Jue Wang, Hao Wang, Chao Chen, Vincenzo Parenti-Castelli, and Jorge Angeles. Design and validation of a spatial two-limb 3r1t parallel manipulator with remote center-of-motion. Mechanism and Machine Theory, 149:103807, 2020. Abdullah Yaşır, Gökhan Kiper, and Mİ Can Dede. Kinematic design of a nonparasitic 2r1t parallel mechanism with remote center of motion to be used in minimally invasive surgery applications. Mechanism and Machine Theory, 153:104013, 2020. Zhiyi Wu, Tian He, Zhitao Su, Ye Liu, Jingliang He, and Yanan Huo. A modified technique for preventing lens–iris diaphragm retropulsion syndrome in vitrectomized eyes during phacoemulsification. Journal of Personalized Medicine, 13(3):418, 2023. Claus Eckardt. Transconjunctival sutureless 23-gauge vitrectomy. Retina, 25(2):208–211, 2005. S Rizzo F Patelli DR Chow. Essentials in ophthalmology vitreo-retinal surgery. HCM Meenink, R Hendrix, GJL Naus, MJ Beelen, H Nijmeijer, M Steinbuch, EJGM van Oosterhout, and MD de Smet. Robot-assisted vitreoretinal surgery. In Medical robotics, pages 185–209. Elsevier, 2012. Neil M Bressler. Age-related macular degeneration is the leading cause of blindness... Jama, 291(15):1900–1901, 2004. David S Friedman, Benita J O'Colmain, Beatriz Munoz, Sandra C Tomany, Cathy McCarty, PT De Jong, Barbara Nemesure, Paul Mitchell, John Kempen, et al. Prevalence of age-related macular degeneration in the united states. Arch ophthalmol, 122(4):564–572, 2004. Serge Resnikoff, Donatella Pascolini, Daniel Etya’Ale, Ivo Kocur, Ramachandra Pararajasegaram, Gopal P Pokharel, and Silvio P Mariotti. Global data on visual impairment in the year 2002. Bulletin of the world health organization, 82(11):844– 851, 2004. 69] Philip J Rosenfeld, David M Brown, Jeffrey S Heier, David S Boyer, Peter K Kaiser, Carol Y Chung, and Robert Y Kim. Ranibizumab for neovascular age-related macular degeneration. New England Journal of Medicine, 355(14):1419–1431, 2006. Tien Y Wong and Ingrid U Scott. Retinal-vein occlusion. New England Journal of Medicine, 363(22):2135–2144, 2010. David Yorston. Intravitreal injection technique. Community Eye Health, 27(87):47, 2014. Quezon City Philippines, Don Mariano Cui Street, and Fuente Osmeña. Consensus on the intravitreal injection technique among infants with retinopathy of prematurity by the vitreo-retina society of the philippines. Philipp J Ophthalmol, 45:65–69, 2020. Ashwin C Parenky, Saurabh Wadhwa, Hunter H Chen, Amardeep S Bhalla, Kenneth S Graham, and Mohammed Shameem. Container closure and delivery considerations for intravitreal drug administration. AAPS PharmSciTech, 22:1–13, 2021. Gholam A Peyman, Eleonora M Lad, and Darius M Moshfeghi. Intravitreal injection of therapeutic agents. Retina, 29(7):875–912, 2009. Franziska Ullrich, Stephan Michels, Daniel Lehmann, Roel S Pieters, Matthias Becker, and Bradley J Nelson. Assistive device for efficient intravitreal injections. Ophthalmic Surgery, Lasers and Imaging Retina, 47(8):752–762, 2016. WE Bolch, G Dietze, N Petoussi-Henss, and M Zankl. Dosimetric models of the eye and lens of the eye and their use in assessing dose coefficients for ocular exposures. Annals of the ICRP, 44(1_suppl):91–111, 2015. Abdullah Özkaya, Zeynep Alkın, Uğur Çelik, Kemal Yüksel, Engin Bilge Ozgurhan, Alper Ağca, Ahmet Taylan Yazıcı, and Ahmet Demirok. Comparing the effects of three different intravitreal injection techniques on vitreous reflux and intraocular pressure. Journal of ocular pharmacology and therapeutics, 29(3):325–329, 2013. W Richard Green, Chi Chao Chan, GM Hutchins, and JM Terry. Central retinal vein occlusion: a prospective histopathologic study of 29 eyes in 28 cases. Transactions of the American Ophthalmological Society, 79:371, 1981. Mohamed K Tameesh, Rohit R Lakhanpal, Gildo Y Fujii, Michael Javaheri, Terry H Shelley, Sam D’anna, Aaron C Barnes, Eyal Margalit, Michel Farah, Eugene De Juan Jr, et al. Retinal vein cannulation with prolonged infusion of tissue plasminogen activator (t-pa) for the treatment of experimental retinal vein occlusion in dogs. American journal of ophthalmology, 138(5):829–839, 2004. J Michael Lahey, Donald S Fong, and John Kearney. Intravitreal tissue plasminogen activator for acute central retinal vein occlusion, 1999. Berk Gonenc, Jeremy Chae, Peter Gehlbach, Russell H Taylor, and Iulian Iordachita. Towards robot-assisted retinal vein cannulation: A motorized force-sensing microneedle integrated with a handheld micromanipulator. Sensors, 17(10):2195, 2017. Jost B Jonas, Andreas M Schmidt, JA Müller-Bergh, UM Schlötzer-Schrehardt, and GO Naumann. Human optic nerve fiber count and optic disc size. Investigative ophthalmology & visual science, 33(6):2012–2018, 1992. Tsuneo Yoshikawa. Manipulability of robotic mechanisms. The international journal of Robotics Research, 4(2):3–9, 1985. Nikolaus Vahrenkamp and Tamim Asfour. Representing the robot’s workspace through constrained manipulability analysis. Autonomous Robots, 38:17–30, 2015. Tan Fung Chan and Rajiv V Dubey. A weighted least-norm solution based scheme for avoiding joint limits for redundant joint manipulators. IEEE transactions on Robotics and Automation, 11(2):286–292, 1995. Nikolaus Vahrenkamp, Tamim Asfour, Giorgio Metta, Giulio Sandini, and Rüdiger Dillmann. Manipulability analysis. In 2012 12th ieee-ras international conference on humanoid robots (humanoids 2012), pages 568–573. IEEE, 2012. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93782 | - |
| dc.description.abstract | 根據外科醫生手握持器械的姿勢,本論文旨在開發了一種用於眼科手術的串-並聯複合式機器人。每層的串聯分支都採用了五連桿機構,其優勢在於能夠提供遠端驅動並在重力方向上提高剛性。本研究所提出的機器人具有可變的遠端運動中心(Remote center of motion, RCM),允許在整個平台不平移的情況下補償眼球的小幅運動,與其他以固定遠端運動中心作為設計核心的醫療輔助機器人相比,可變動的RCM使得對準過程耗時更少。為了簡化多工具手術中更換刀具的流程,以及提高手術中刀具更換的效率,提出了一種被動工具交換機構,該機構利用幾何約束來裝載和卸載手術器械,而操作臂上的永久磁鐵提供足夠的固定力來約束工具。物理原型驗證了足夠的視網膜手術運動範圍並展示了工具交換的能力。 | zh_TW |
| dc.description.abstract | Deriving from the posture of instrument holding by human surgeons, this paper develops a hybrid parallel-serial robot for ophthalmic surgeries. Each serial branch utilizes a compact five-bar mechanism for distal actuation with increased rigidity in the direction of gravity. The designed robot manipulator features a variable remote center of motion (RCM), allowing for compensation of small eye ball movements without translating the entire platform. This makes alignment less time-consuming compared to fixed RCM designs. To streamline multi-tool surgeries, a passive tool exchange mechanism is proposed. The mechanism uses geometric constraints to load and unload surgical instruments, while permanent magnets on the manipulator provide adequate fixation force to constrain the tool. The physical prototype confirms a sufficient range of motion for retinal operations and demonstrates the tool exchange capability. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:10:56Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-08T16:10:56Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝i
摘要iii Abstract v 目次vii 圖次xi 表次xv 符號列表xvii 第一章緒論1 1.1微創手術的發展.............................1 1.2微創手術於眼球視網膜手術的發展與挑戰..............2 1.3機器人輔助手術的發展.........................4 1.4提出的方法及貢獻............................9 第二章臨床規格15 2.1眼球構造概覽..............................16 2.2眼內手術簡介..............................17 2.2.1玻璃體注射手術(Intravitrealinjection,IVI).............19 2.2.2視網膜靜脈注射(Retinalveininjection)..............21 第三章機構設計23 3.1XYZ三軸大行程移動平台.......................24 3.2串-並聯複合式機器人..........................26 3.2.1基座設計...............................26 3.2.2雙層五連桿機構...........................30 3.2.3球接頭機構..............................34 3.2.4進刀機構...............................36 3.3換刀平台.................................38 3.4連桿相對長度之於五連桿機構的誤差敏感度分析..........42 3.5有限元素分析..............................46 第四章運動學分析49 4.1順向運動學................................49 4.1.1五連桿機構..............................51 4.1.2球接頭機構..............................54 4.1.3進刀機構...............................56 4.1.4本章小結...............................60 4.2逆向運動學................................62 4.3遠端運動中心演算法..........................64 4.4機構下的物理約束探討.........................66 4.5虛擬的遠端運動中心分析........................70 第五章系統架構及整合77 5.1硬體整合.................................78 5.1.1目標處理器及馬達驅動板......................78 5.1.2雷射測距儀及XZ軸手動滑台...................80 5.1.3歸零機制及校正...........................81 5.2軟韌體整合................................83 5.2.1軟體端保護措施...........................84 第六章實驗結果87 6.1姿態控制實驗..............................87 6.2遠端運動中心可設置範圍及工作空間可達性驗證..........92 6.3刀具置換實驗..............................95 第七章結論與未來展望97 參考文獻99 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 眼科微創手術 | zh_TW |
| dc.subject | 手術輔助機器人 | zh_TW |
| dc.subject | 刀具置換 | zh_TW |
| dc.subject | 遠端運動中心 | zh_TW |
| dc.subject | 運動學 | zh_TW |
| dc.subject | 工作空間分析 | zh_TW |
| dc.subject | Ophthalmic surgery | en |
| dc.subject | Workspace analysis | en |
| dc.subject | Kinematics | en |
| dc.subject | Remote center of motion | en |
| dc.subject | Tool exchange | en |
| dc.subject | Medical robotics | en |
| dc.title | 微型化串並複合式眼科手術機器人設計與實作 | zh_TW |
| dc.title | The Design and Implementation of a Miniaturized Hybrid Parallel-Serial Robot for Ophthalmic Surgery | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳政維;張秉純 | zh_TW |
| dc.contributor.oralexamcommittee | Cheng-Wei Chen;Biing-Chwen Chang | en |
| dc.subject.keyword | 眼科微創手術,手術輔助機器人,刀具置換,遠端運動中心,運動學,工作空間分析, | zh_TW |
| dc.subject.keyword | Ophthalmic surgery,Medical robotics,Tool exchange,Remote center of motion,Kinematics,Workspace analysis, | en |
| dc.relation.page | 111 | - |
| dc.identifier.doi | 10.6342/NTU202402738 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-05 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 33.82 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
