請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93779完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何昊哲 | zh_TW |
| dc.contributor.advisor | Hao-Che Ho | en |
| dc.contributor.author | 廖育麟 | zh_TW |
| dc.contributor.author | Yu-Lin Liao | en |
| dc.date.accessioned | 2024-08-08T16:09:39Z | - |
| dc.date.available | 2024-08-09 | - |
| dc.date.copyright | 2024-08-08 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-01 | - |
| dc.identifier.citation | [1]Afifi, Z., Chu, H. J., Kuo, Y. L., Hsu, Y. C., Wong, H. K., & Zeeshan Ali, M. (2019). Residential flood loss assessment and risk mapping from high-resolution simulation. Water, 11(4), 751.
[2]Ahiablame, L. M., Engel, B. A., & Chaubey, I. (2012). Effectiveness of low impact development practices: literature review and suggestions for future research. Water, Air, & Soil Pollution, 223, 4253-4273. [3]Akther, M., He, J., Chu, A., Huang, J., & Van Duin, B. (2018). A review of green roof applications for managing urban stormwater in different climatic zones. Sus-tainability, 10(8), 2864. [4]Alkema, D. (2007). Simulating floods: on the application of a 2D hydraulic model for flood hazard and risk assessment. [5]Batalini de Macedo, M., Nobrega Gomes Junior, M., Pereira de Oliveira, T. R., H. Giacomoni, M., Imani, M., Zhang, K., ... & Mendiondo, E. M. (2022). Low Impact Development practices in the context of United Nations Sustainable Development Goals: A new concept, lessons learned and challenges. Critical Reviews in Envi-ronmental Science and Technology, 52(14), 2538-2581. [6]Bean, E. Z., Hunt, W. F., & Bidelspach, D. A. (2004). Study on the surface infil-tration rate of permeable pavements. In Critical transitions in water and environ-mental resources management (pp. 1-10). [7]Birch, W. S., Drescher, M., Rooney, R. C., & Pittman, J. (2024). Influences of ur-ban stormwater management ponds on wetlandscape connectivity. Canadian Water Resources Journal/Revue canadienne des ressources hydriques, 49(1), 64-79. [8]Bisht, D. S., Chatterjee, C., Kalakoti, S., Upadhyay, P., Sahoo, M., & Panda, A. (2016). Modeling urban floods and drainage using SWMM and MIKE URBAN: a case study. Natural hazards, 84, 749-776. [9]Bracken, L. J., & Croke, J. (2007). The concept of hydrological connectivity and its contribution to understanding runoff‐dominated geomorphic systems. Hydrological Processes: An International Journal, 21(13), 1749-1763. [10]Bracken, L. J., Wainwright, J., Ali, G. A., Tetzlaff, D., Smith, M. W., Reaney, S. M., & Roy, A. G. (2013). Concepts of hydrological connectivity: Research ap-proaches, pathways and future agendas. Earth-Science Reviews, 119, 17-34. [11]Charalambous, K., Bruggeman, A., Eliades, M., Camera, C., & Vassiliou, L. (2019). Stormwater retention and reuse at the residential plot level—green roof experiment and water balance computations for long-term use in cyprus. Water, 11(5), 1055. [12]Chen, M., Shyamprasad, S., Heineman, M. C., & Carter, C. S. (2008). Representa-tion of non-directly connected impervious area in SWMM runoff modeling. Journal of Water Management Modeling. [13]Chocat, B., Krebs, P., Marsalek, J., Rauch, W., & Schilling, W. (2001). Urban drainage redefined: from stormwater removal to integrated management. Water Science and Technology, 43(5), 61-68. [14]Damodaram, C., & Zechman, E. M. (2013). Simulation-optimization approach to design low impact development for managing peak flow alterations in urbanizing watersheds. Journal of Water Resources Planning and Management, 139(3), 290-298. [15]Dasallas, L., Kim, Y., & An, H. (2019). Case study of HEC-RAS 1D–2D coupling simulation: 2002 Baeksan flood event in Korea. Water, 11(10), 2048. [16]Erena, S. H., Worku, H., & De Paola, F. (2018). Flood hazard mapping using FLO-2D and local management strategies of Dire Dawa city, Ethiopia. Journal of Hydrology: Regional Studies, 19, 224-239. [17]Grebel, J. E., Mohanty, S. K., Torkelson, A. A., Boehm, A. B., Higgins, C. P., Maxwell, R. M., ... & Sedlak, D. L. (2013). Engineered infiltration systems for ur-ban stormwater reclamation. Environmental Engineering Science, 30(8), 437-454. [18]Huber, W., & Roesner, L. (2012). The History and Evolution of the EPA SWMM. [19]Hunt, W. F., Traver, R. G., Davis, A. P., Emerson, C. H., Collins, K. A., & Stagge, J. H. (2010). Low impact development practices: designing to infiltrate in urban environments. [20]Hwang, J., Rhee, D. S., & Seo, Y. (2017). Implication of directly connected imper-vious areas to the mitigation of peak flows in urban catchments. Water, 9(9), 696. [21]Jiang, C., Li, J., Hu, Y., Yao, Y., & Li, H. (2022). Construction of water-soil-plant system for rainfall vertical connection in the concept of sponge city: a review. Journal of Hydrology, 605, 127327. [22]Kirtman, B., Power, S. B., Adedoyin, A. J., Boer, G. J., Bojariu, R., Camilloni, I., ... & Wang, H. J. (2013). Near-term climate change: projections and predictability. [23]Kong FanHua, K. F., Ban YuLong, B. Y., Yin HaiWei, Y. H., James, P., & Dronova, I. (2017). Modeling stormwater management at the city district level in response to changes in land use and low impact development. [24]Lee, J. G., Nietch, C. T., & Panguluri, S. (2018). Drainage area characterization for evaluating green infrastructure using the Storm Water Management Model. Hy-drology and earth system sciences, 22(5), 2615-2635. [25]Li, H., Sharkey, L. J., Hunt, W. F., & Davis, A. P. (2009). Mitigation of impervious surface hydrology using bioretention in North Carolina and Maryland. Journal of Hydrologic Engineering, 14(4), 407-415. [26]Lisenbee, W. A., Hathaway, J. M., & Winston, R. J. (2022). Modeling bioretention hydrology: Quantifying the performance of DRAINMOD-Urban and the SWMM LID module. Journal of Hydrology, 612, 128179. [27]Lisenbee, W. A., Hathaway, J. M., & Winston, R. J. (2022). Modeling bioretention hydrology: Quantifying the performance of DRAINMOD-Urban and the SWMM LID module. Journal of Hydrology, 612, 128179. [28]Liu, T., Lawluvy, Y., Shi, Y., & Yap, P. S. (2021). Low impact development (LID) practices: A review on recent developments, challenges and prospects. Water, Air, & Soil Pollution, 232(9), 344. [29]Loperfido, J. V., Noe, G. B., Jarnagin, S. T., & Hogan, D. M. (2014). Effects of distributed and centralized stormwater best management practices and land cover on urban stream hydrology at the catchment scale. Journal of Hydrology, 519, 2584-2595. [30]Marchi, L., Cavalli, M., Sangati, M., & Borga, M. (2009). Hydrometeorological controls and erosive response of an extreme alpine debris flow. Hydrological Pro-cesses: An International Journal, 23(19), 2714-2727. [31]Mark, O., & Andersen, H. Mitigation of Climate Change Impacts on Urban Drain-age Systems. [32]Nicklin, H., Leicher, A. M., Dieperink, C., & Van Leeuwen, K. (2019). Under-standing the costs of inaction–an assessment of pluvial flood damages in two Eu-ropean cities. Water, 11(4), 801. [33]Rezaei, A. R., Ismail, Z., Niksokhan, M. H., Dayarian, M. A., Ramli, A. H., & Yusoff, S. (2021). Optimal implementation of low impact development for urban stormwater quantity and quality control using multi-objective optimization. Envi-ronmental monitoring and assessment, 193, 1-22. [34]Roy, A. H., & Shuster, W. D. (2009). Assessing impervious surface connectivity and applications for watershed management 1. JAWRA Journal of the American Water Resources Association, 45(1), 198-209. [35]Semadeni-Davies, A., Hernebring, C., Svensson, G., & Gustafsson, L. G. (2008). The impacts of climate change and urbanisation on drainage in Helsingborg, Swe-den: Suburban stormwater. Journal of hydrology, 350(1-2), 114-125. [36]Shafique, M., & Kim, R. (2017). Retrofitting the low impact development practices into developed urban areas including barriers and potential solution. Open Geosci-ences, 9(1), 240-254. [37]Shih, S. S., Kuo, P. H., & Lai, J. S. (2019). A nonstructural flood prevention meas-ure for mitigating urban inundation impacts along with river flooding effects. Journal of environmental management, 251, 109553. [38]Slonecker, E. T., Jennings, D. B., & Garofalo, D. (2001). Remote sensing of imper-vious surfaces: A review. Remote Sensing Reviews, 20(3), 227-255. [39]Stelling, G. S. (2012, November). Quadtree flood simulations with sub-grid digital elevation models. In Proceedings of the institution of civil engineers-water man-agement (Vol. 165, No. 10, pp. 567-580). Thomas Telford Ltd. [40]VanWoert, N. D., Rowe, D. B., Andresen, J. A., Rugh, C. L., Fernandez, R. T., & Xiao, L. (2005). Green roof stormwater retention: effects of roof surface, slope, and media depth. Journal of environmental quality, 34(3), 1036-1044. [41]Western, A. W., Blöschl, G., & Grayson, R. B. (2001). Toward capturing hydro-logically significant connectivity in spatial patterns. Water Resources Research, 37(1), 83-97. [42]Zhou, Q., & Feng, J. (2023). How does flow connection path and vertical spatial layout of LIDs affect urban runoff? A new LID construction method based on re-fined landuse and hydrologic characterization. Journal of Hydrology, 623, 129809. [43]Ziervogel, G., New, M., Archer van Garderen, E., Midgley, G., Taylor, A., Hamann, R., ... & Warburton, M. (2014). Climate change impacts and adaptation in South Africa. Wiley Interdisciplinary Reviews: Climate Change, 5(5), 605-620. [44]內政部營建署(2009)。雨水下水道設施維護管理手冊。 [45]內政部營建署(2015)。水環境低衝擊開發操作手冊總報告。 [46]內政部營建署下水道誌政府自辦雨水篇(2011)。 [47]王价巨、張馨心(2016)。埤塘與滯洪空間關聯性探討—以桃園為例。都市與計劃。2016年6月第四十三卷第二期第157~187頁。 [48]王嘉和、游翔麟、梁益詮、王嘉瑜、張倉榮(2019)。「街道及下水道之雙排水系統快速淹水模擬」。農業工程學報 第65卷第1期。 [49]王福杰.(2018)。3Di應用於淹水即時預報之研究。國立成功大學水利及海洋工程學系研究所學位論文。1-117。 [50]出流管制計畫書與規劃書檢核基準及洪峰流量計算方法(2019)。行政院公報 第 025 卷 第 028 期。 [51]台灣大學慶齡工業研究中心(2019)。應用高速降雨逕流模式協助擬定都市積水防治策略。 [52]朱志民、林政侑(2016)。不同土地開發類型滯洪設施之探討。水土保持學報 48 (3): 1817–1830。 [53]何宇申(2013)。FLOW-2D應用於中壢都會區的淹水模擬。國立台灣大學土木工程學研究所學位論文。 [54]何媚華(2014)。中永和地區都市排洪系統最佳管理措施之探討。國立台灣大學土木工程學研究所學位論文,1-95。 [55]李明儒(2010)。雨水下水道淤積對於都市淹水之影響評估。國立交通大學土木工程研究所碩士論文。 [56]林士惟(2018)。多目標基因演算法於韌性城市評估之研究。國立台灣大學土木工程學研究所學位論文,1-98。 [57]徐硯庭(2014)。低衝擊開發運用在高都市化地區的減洪效益-以新北市中永和地區為例。國立台灣大學土木工程學研究所學位論文。 [58]桃園水文地質環境 地層下陷防治資訊網官方網站。 [59]桃園市政府(2010)。縣市管河川及區域排水整體改善計畫。 [60]桃園市政府(2018)。桃園市水災危險潛勢地區保全計畫。 [61]桃園市政府(2021)。桃園市地區災害特性、情境(規模)設定或災害潛勢分析。 [62]黃莉雅(2021)。考量內外水動態模擬下之逕流分擔策略成效評估。國立台灣大學土木工程學研究所學位論文,1-118。 [63]經濟部水利署(2022)。中華民國一一一年台灣水文年報。 [64]經濟部水利署(2022)。出流管制計畫書與規劃書檢核基準及洪峰流量計算方法 [65]蔡耀隆(2005),雨水滯蓄系統在區域供水雨暴雨逕流管理之應用。國立臺灣海洋大學河海工程學系博士學位論文。 [66]賴桂文(2016)。HEC-RAS水理模式2D模組介紹及應用。學術天地-工程技術新知,1-17。 [67]賴曉薇、洪景山(2010)。定量降水預報指引評估。中央氣象局。 [68]魏曉萍、李欣輯、葉克家(2014)。極端颱風事件流量模擬之災害衝擊風險分析 [69]羅偉峻(2013)。考量減效果下中和地區最佳雨水貯集系統設計。國立台灣大學土木工程學系。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93779 | - |
| dc.description.abstract | 低衝擊開發(Low impact development, LID)常作為降低洪災的手段,過去在利用水理模式評估 LID 的減洪效益時,受制於數值模式的限制僅粗略使用土地利用分類,忽略物理機制與管理策略,導致模擬結果與事實偏差大。本研究提出改良式的 LID模擬方法,同時考慮優化土地利用類型以得到更真實的淹水模擬。用雨水管理模型(Storm Water Management Model, SWMM)評估 LID 對區域之影響,缺乏考量二維漫地流,因此本研究採取 3Di 模式(3Di water management, 3Di)來進行評估,此模式有高精度、時空、高程及漫地流的特性。本研究所提出的改良方法為利用中間流結合表面緩衝透水面模擬與不透水面的交互作用,同時導入優化土地利用進行減洪成效評估。模擬結果與傳統方法(中間流、SWMM)和現地實驗比較,顯示改良方法更貼近實驗值。以綠屋頂為例,改良方法、SWMM、中間流的洪峰流量分別為 4.3 x10-5、6.8 x10-5、6.3 x10-5cms,本研究的方法更貼近現地結果的 3.9 x10-5cms。
以中壢區與中原大學為研究區域進行大尺度驗證並討論優化土地利用的差異,用 5m 解析度 DEM 模擬 24 小時三種重現期降雨,結果顯示 10 年重現期時,考慮改良式 LID 與優化土地利用的模擬,洪峰流量會下降 38.3%,流量歷線也相對延遲,20 年重現期時,洪峰流量則會下降 9.7%。對於 LID 較多的區域,優化土地利用對於 LID 更能有效增加滲透及減少逕流來發揮作用。本研究提出的方法增加 LID 模擬的準確性與靈活性,而分散式設置 LID 顯示能有效處理地表逕流,減少排水系統的壓力。此外優化土地利用能準確的模擬水從不透水面傳遞至透水面,於 LID 儲水爾後溢流量排出雨水管之現況。 | zh_TW |
| dc.description.abstract | Low impact development (LID) is frequently employed as a means of reducing flood ing. In the past, when evaluating the flood reduction benefits of LID using hydrological models, the limitations of the numerical model were not fully considered. This resulted in a significant discrepancy between the simulation results and the actual situation. This study proposes an improved LID simulation method that considers optimisation of land use types to obtain a more realistic flooding simulation. The Storm Water Management Model (SWMM) is used to evaluate the impacts of LID on the area, which lacks consideration of two-dimensional diffuse flow. Therefore, this study employs the 3Di water management (3Di) model, which has the characteristics of high accuracy, spatial and temporal, elevation and diffuse flow. The LID in this study comprises green roofs, rain gardens, permeable paving and rain barrels. These elements are employed to simulate the interaction between permeable and impermeable layers by optimising the land use and introducing a buffer permeable layer to simulate the flood mitigation effectiveness. The modified approach in volved the use of intermediate flow in conjunction with the surface buffer permeable layer function for the simulation. The results demonstrated that the modified approach yielded more accurate results than the use of intermediate flow alone, SWMM, and in situ experi ments. In the Case of the green roof, the peak flow rates of the original method, SWMM, and intermediate flow are 4.3, 6.8, and 6.3 (x10-5)cms, respectively. In contrast, the method proposed in this study is closer to the field results of 3.9 x10-5 cms.
A comprehensive validation was conducted in Jungli District and Chung Yuan Uni versity as the study area to assess the disparity in land optimisation. The rainfall was sim ulated with a 5-meter resolution digital elevation model (DEM) for three return periods of 24 hours. The results demonstrate that the peak flow rate is reduced by 38.3% and the flow histories are relatively delayed for the 10-year return period, with a reduction of 9.7% for the 20-year return period when considering the modified LID and land optimisation simu lations. The proposed method enhances the precision and adaptability of the LID simula tion. The implementation of decentralised LIDs can effectively address surface runoff and alleviate the pressure on the drainage system. Furthermore, optimised land use can accu rately simulate the phenomenon of water passing from the impermeable layer to the per meable layer, and then being stored in the LIDs before overflowing out of the stormwater drains. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:09:39Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-08T16:09:39Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
謝辭 II 摘要 III ABSTRACT IV 目次 VI 圖次 X 表次 XV 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究流程 4 第二章 文獻回顧 5 2.1 都市淹水與模式介紹 5 2.1.1 FLO-2D 6 2.1.2 SOBEK 8 2.1.3 SWMM 8 2.1.4 Mike 10 2.1.5 InfoWorks ICM 11 2.1.6 HEC-RAS 12 2.1.7 NTU-2DFIM 13 2.1.8 3Di 13 2.2 低衝擊開發(Low Impact Development,LID) 17 2.2.1 LID元件 17 2.2.2 LID評估方法 21 2.3 優化土地利用 29 第三章 研究方法與理論 33 3.1 3Di模式 33 3.1.1 控制方程式 34 3.1.2 數值方法 35 3.1.3 模式設定 39 3.2 LID模擬方法 40 3.2.1 原始設定方法 40 3.2.2 改進模式設定方法 42 3.3 土地利用優化原則 45 第四章 研究區域 47 4.1地理位置與水文條件 47 4.2氣候與水文測站 49 4.3排水系統 52 4.4 土地利用與經濟發展 54 第五章 模式設置 56 5.1 3Di模式建置 56 5.1.1一維參數資料與全域設定 58 5.1.2二維參數設定 59 5.2 LID模式驗證建置過程 64 5.3 LID區域建置 66 5.3.1 LID設置 66 5.3.2雨水桶設置 68 5.4優化土地利用區域建置 70 5.5模型驗證 73 5.6模擬情境 75 5.7模式結果計算方法 79 第六章 結果與討論 81 6.1改良LID方法驗證 81 6.2.LID不同型態之情境比較 84 6.2.1Case-a和Case-b情境驗證 84 6.2.2 有無雨水桶之淹水差異 88 6.3 LID在優化土地利用下不同重現期之比較 92 6.3.1 原始與優化情境比較 92 6.3.2 有無設置LID之優化比較 96 6.3.3 不同情境下LID的策略 100 第七章 結論與建議 104 7.1結論 104 7.2建議 106 參考文獻 107 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 低衝擊開發(LID) | zh_TW |
| dc.subject | 都市韌性 | zh_TW |
| dc.subject | 優化土地利用 | zh_TW |
| dc.subject | 3Di模式 | zh_TW |
| dc.subject | 淹水模擬 | zh_TW |
| dc.subject | Land Use Optimisation | en |
| dc.subject | 3Di model | en |
| dc.subject | Urban Resilience | en |
| dc.subject | Flood Simulation | en |
| dc.subject | Low Impact Development (LID) | en |
| dc.title | 評估緩衝透水面對都市洪水模擬之影響 | zh_TW |
| dc.title | Evaluating the Impact of Buffered Pervious Surface on Urban Flooding Simulation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李鴻源;葉克家 | zh_TW |
| dc.contributor.oralexamcommittee | Hong-Yuan Lee;Ke-Jia Ye | en |
| dc.subject.keyword | 低衝擊開發(LID),3Di模式,優化土地利用,淹水模擬,都市韌性, | zh_TW |
| dc.subject.keyword | Low Impact Development (LID),3Di model,Land Use Optimisation,Flood Simulation,Urban Resilience, | en |
| dc.relation.page | 112 | - |
| dc.identifier.doi | 10.6342/NTU202402369 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-05 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2029-07-26 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 6.89 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
