請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93776
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蕭大智 | zh_TW |
dc.contributor.advisor | Ta-Chih Hsiao | en |
dc.contributor.author | 趙婞佑 | zh_TW |
dc.contributor.author | Shing-Yow Chao | en |
dc.date.accessioned | 2024-08-08T16:08:26Z | - |
dc.date.available | 2024-08-09 | - |
dc.date.copyright | 2024-08-08 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-01 | - |
dc.identifier.citation | Aliaga, D., Tuovinen, S., Zhang, T., Lampilahti, J., Li, X., Ahonen, L., Kokkonen, T., Nieminen, T., Hakala, S., Paasonen, P., Bianchi, F., Worsnop, D., Kerminen, V. M., & Kulmala, M. (2023). Nanoparticle ranking analysis: Determining new particle formation (NPF) event occurrence and intensity based on the concentration spectrum of formed (sub-5 nm) particles. Aerosol Research, 1(1), 81-92. https://doi.org/10.5194/ar-1-81-2023
An, J., Wang, H., Shen, L., Zhu, B., Zou, J., Gao, J., & Kang, H. (2015). Characteristics of new particle formation events in Nanjing, China: Effect of water-soluble ions. Atmospheric Environment, 108, 32-40. https://doi.org/https://doi.org/10.1016/j.atmosenv.2015.01.038 Beddows, D. C. S., Dall'osto, M., & Harrison, R. M. (2010). An enhanced procedure for the merging of atmospheric particle size distribution data measured using electrical mobility and time-of-flight analysers. Aerosol Science and Technology, 44(11), 930-938. https://doi.org/10.1080/02786826.2010.502159 Chen, G., Morawska, L., Zhang, W., Li, S., Cao, W., Ren, H., Wang, B., Wang, H., Knibbs, L. D., Williams, G., Guo, J., & Guo, Y. (2018). Spatiotemporal variation of PM1 pollution in China. Atmospheric Environment, 178, 198-205. https://doi.org/https://doi.org/10.1016/j.atmosenv.2018.01.053 Chen, Y., Masiol, M., Squizzato, S., Chalupa, D. C., Zikova, N., Pokorna, P., Rich, D. Q., & Hopke, P. K. (2022). Long-term trends of ultrafine and fine particle number concentrations in New York State: Apportioning between emissions and dispersion. Environmental Pollution, 310, 119797. https://doi.org/10.1016/j.envpol.2022.119797 Chu, B., Kerminen, V. M., Bianchi, F., Yan, C., Petäjä, T., & Kulmala, M. (2019). Atmospheric new particle formation in China. Atmos. Chem. Phys., 19(1), 115-138. https://doi.org/10.5194/acp-19-115-2019 Dai, Q., Liu, B., Bi, X., Wu, J., Liang, D., Zhang, Y., Feng, Y., & Hopke, P. K. (2020). Dispersion normalized PMF provides insights into the significant changes in source contributions to PM2.5 after the COVID-19 outbreak. Environmental Science & Technology, 54(16), 9917-9927. https://doi.org/10.1021/acs.est.0c02776 Dal Maso, M., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T., Aalto, P. P., & Lehtinen, K. E. (2005). Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytiälä, Finland. Boreal Environment Research, 10(5), 323. Dal Maso, M., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T., Aalto, P. P., & Lehtinen, K. E. J. (2005). Formation and growth of fresh atmospheric aerosols: Eight years of aerosol size distribution data from SMEAR II, Hyytiälä, Finland [Article]. Boreal Environment Research, 10(5), 323-336. https://www.scopus.com/inward/record.uri?eid=2-s2.0-27744502076&partnerID=40&md5=b71b493c6ce68a3dd80e9a954a690202 Dunn, M. J., Jiménez, J.-L., Baumgardner, D., Castro, T., McMurry, P. H., & Smith, J. N. (2004). Measurements of Mexico City nanoparticle size distributions: Observations of new particle formation and growth. Geophysical Research Letters, 31(10). https://doi.org/https://doi.org/10.1029/2004GL019483 Garratt, J. R. (1994). Review: the atmospheric boundary layer. Earth-Science Reviews, 37(1), 89-134. https://doi.org/https://doi.org/10.1016/0012-8252(94)90026-4 Geiser, M., & Kreyling, W. G. (2010). Deposition and biokinetics of inhaled nanoparticles. Particle and Fibre Toxicology, 7(1), 2. https://doi.org/10.1186/1743-8977-7-2 Habre, R., Zhou, H., Eckel, S. P., Enebish, T., Fruin, S., Bastain, T., Rappaport, E., & Gilliland, F. (2018). Short-term effects of airport-associated ultrafine particle exposure on lung function and inflammation in adults with asthma. Environment international, 118, 48-59. Hamed, A., Joutsensaari, J., Mikkonen, S., Sogacheva, L., Dal Maso, M., Kulmala, M., Cavalli, F., Fuzzi, S., Facchini, M. C., Decesari, S., Mircea, M., Lehtinen, K. E. J., & Laaksonen, A. (2007). Nucleation and growth of new particles in Po Valley, Italy. Atmos. Chem. Phys., 7(2), 355-376. https://doi.org/10.5194/acp-7-355-2007 Holzworth, G. C. (1967). Mixing depths, wind speeds and air pollution potential for selected locations in the united states. Journal of Applied Meteorology and Climatology, 6(6), 1039-1044. https://doi.org/https://doi.org/10.1175/1520-0450(1967)006<1039:MDWSAA>2.0.CO;2 Janhäll, S., M. Jonsson, Å., Molnár, P., A. Svensson, E., & Hallquist, M. (2004). Size resolved traffic emission factors of submicrometer particles. Atmospheric Environment, 38(26), 4331-4340. https://doi.org/https://doi.org/10.1016/j.atmosenv.2004.04.018 Jeong, C.-H., Hopke, P. K., Chalupa, D., & Utell, M. (2004). Characteristics of nucleation and growth events of ultrafine particles measured in Rochester, NY. Environmental Science & Technology, 38(7), 1933-1940. https://doi.org/10.1021/es034811p Jiang, J., Wei, Y., Wang, Y., Wang, X., Lin, X., Guo, T., Sun, X., Li, Z., Zhang, Y., Wu, G., Wu, W., Chen, S., Sun, H., Zhang, W., & Hao, Y. (2024). The impact of long-term PM1 exposure on all-cause mortality and its interaction with BMI: A nationwide prospective cohort study in China. Science of The Total Environment, 912, 168997. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.168997 Kalkavouras, P., Grivas, G., Stavroulas, I., Petrinoli, K., Bougiatioti, A., Liakakou, E., Gerasopoulos, E., & Mihalopoulos, N. (2024). Source apportionment of fine and ultrafine particle number concentrations in a major city of the Eastern Mediterranean. Sci Total Environ, 915, 170042. https://doi.org/10.1016/j.scitotenv.2024.170042 Kanawade, V. P., Shika, S., Pöhlker, C., Rose, D., Suman, M. N. S., Gadhavi, H., Kumar, A., Nagendra, S. M. S., Ravikrishna, R., Yu, H., Sahu, L. K., Jayaraman, A., Andreae, M. O., Pöschl, U., & Gunthe, S. S. (2014). Infrequent occurrence of new particle formation at a semi-rural location, Gadanki, in tropical Southern India. Atmospheric Environment, 94, 264-273. https://doi.org/https://doi.org/10.1016/j.atmosenv.2014.05.046 Kerminen, V.-M., Chen, X., Vakkari, V., Petäjä, T., Kulmala, M., & Bianchi, F. (2018). Atmospheric new particle formation and growth: Review of field observations. Environmental Research Letters, 13(10), 103003. https://doi.org/10.1088/1748-9326/aadf3c Kim, Y., Yoon, S.-C., Kim, S.-W., Kim, K.-Y., Lim, H.-C., & Ryu, J. (2013). Observation of new particle formation and growth events in Asian continental outflow. Atmospheric Environment, 64, 160-168. https://doi.org/https://doi.org/10.1016/j.atmosenv.2012.09.057 Kompalli, S. K., Nair, V. S., Jayachandran, V., Gogoi, M. M., & Babu, S. S. (2020). Particle number size distributions and new particle formation events over the northern Indian Ocean during continental outflow. Atmospheric Environment, 238, 117719. https://doi.org/https://doi.org/10.1016/j.atmosenv.2020.117719 Kuang, B., Zhang, F., Shen, J., Shen, Y., Qu, F., Jin, L., Tang, Q., Tian, X., & Wang, Z. (2022). Chemical characterization, formation mechanisms and source apportionment of PM2.5 in north Zhejiang Province: The importance of secondary formation and vehicle emission. Science of The Total Environment, 851, 158206. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.158206 Lai, L. W., & Cheng, W. L. (2009). Air quality influenced by urban heat island coupled with synoptic weather patterns. Sci Total Environ, 407(8), 2724-2733. https://doi.org/10.1016/j.scitotenv.2008.12.002 Lee, K.-C. (2024). The impact and control strategy of atmospheric oxidation capacity on secondary aerosol National Taiwan University]. Lehtinen, K. E. J., Dal Maso, M., Kulmala, M., & Kerminen, V.-M. (2007). Estimating nucleation rates from apparent particle formation rates and vice versa: Revised formulation of the Kerminen–Kulmala equation. Journal of Aerosol Science, 38(9), 988-994. https://doi.org/10.1016/j.jaerosci.2007.06.009 Levy, I., Mahrer, Y., & Dayan, U. (2009). Coastal and synoptic recirculation affecting air pollutants dispersion: A numerical study. Atmospheric Environment, 43(12), 1991-1999. https://doi.org/https://doi.org/10.1016/j.atmosenv.2009.01.017 Li, Y., Li, J., Zhao, Y., Lei, M., Zhao, Y., Jian, B., Zhang, M., & Huang, J. (2021). Long-term variation of boundary layer height and possible contribution factors: A global analysis. Science of The Total Environment, 796, 148950. https://doi.org/10.1016/j.scitotenv.2021.148950 Lin, Y. C., Lin, C. Y., Lin, P. H., Engling, G., Lan, Y.-Y., Kuo, T.-H., Hsu, W. T., & Ting, C.-C. (2011). Observations of ozone and carbon monoxide at Mei-Feng mountain site (2269ma.s.l.) in Central Taiwan: Seasonal variations and influence of Asian continental outflow. Science of The Total Environment, 409(16), 3033-3042. https://doi.org/https://doi.org/10.1016/j.scitotenv.2011.04.023 Liu, Y., Huang, J., Wang, T., Li, J., Yan, H., & He, Y. (2022). Aerosol-cloud interactions over the Tibetan Plateau: An overview. Earth-Science Reviews, 234, 104216. https://doi.org/https://doi.org/10.1016/j.earscirev.2022.104216 Manigrasso, M., Natale, C., Vitali, M., Protano, C., & Avino, P. (2017). Pedestrians in Traffic Environments: Ultrafine Particle Respiratory Doses. International Journal of Environmental Research and Public Health, 14(3). Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., & Gomis, M. (2021). Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 2(1), 2391. McMurry, P. H., & Friedlander, S. K. (1979). New particle formation in the presence of an aerosol. Atmospheric Environment (1967), 13(12), 1635-1651. https://doi.org/https://doi.org/10.1016/0004-6981(79)90322-6 Miller, M. R., & Newby, D. E. (2020). Air pollution and cardiovascular disease: car sick. Cardiovascular research, 116(2), 279-294. Mishra, S., Tripathi, S. N., Kanawade, V. P., Haslett, S. L., Dada, L., Ciarelli, G., Kumar, V., Singh, A., Bhattu, D., Rastogi, N., Daellenbach, K. R., Ganguly, D., Gargava, P., Slowik, J. G., Kulmala, M., Mohr, C., El-Haddad, I., & Prevot, A. S. H. (2023). Rapid night-time nanoparticle growth in Delhi driven by biomass-burning emissions. Nature Geoscience, 16(3), 224-230. https://doi.org/10.1038/s41561-023-01138-x O'Dowd, C. D., Geever, M., Hill, M. K., Smith, M. H., & Jennings, S. G. (1998). New particle formation: Nucleation rates and spatial scales in the clean marine coastal environment. Geophysical Research Letters, 25(10), 1661-1664. https://doi.org/https://doi.org/10.1029/98GL01005 Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., & Cox, C. (2004). Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology, 16(6-7), 437-445. https://doi.org/10.1080/08958370490439597 Organization, W. H. (2021). WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Pateraki, S., Asimakopoulos, D. N., Maggos, T., Assimakopoulos, V. D., Bougiatioti, A., Bairachtari, K., Vasilakos, C., & Mihalopoulos, N. (2020). Chemical characterization, sources and potential health risk of PM2.5 and PM1 pollution across the Greater Athens Area. Chemosphere, 241, 125026. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.125026 Peng, Y., Liu, X., Dai, J., Wang, Z., Dong, Z., Dong, Y., Chen, C., Li, X., Zhao, N., & Fan, C. (2017). Aerosol size distribution and new particle formation events in the suburb of Xi'an, northwest China. Atmospheric Environment, 153, 194-205. https://doi.org/https://doi.org/10.1016/j.atmosenv.2017.01.022 Peter H. McMurry, M. F. S., James S. Vickery, Marjorie Shepherd, Roger McClellan, Spyros Pandis, George Hidy, Thompson Pace, Fred Fehsenfeld, Don Hastie, Paul Solomon, Judy Chow, Charles Blanchard, Jeff Brook, Elizabeth Vega, John Watson, Christian Seigneur, Michael Moran, Ivar Tombach, Karen McDonald, James Vickery, Peter McMurry. (2004). Particulate matter science for policy makers: A NARSTO assessment. Qi, X. M., Ding, A. J., Nie, W., Petäjä, T., Kerminen, V. M., Herrmann, E., Xie, Y. N., Zheng, L. F., Manninen, H., Aalto, P., Sun, J. N., Xu, Z. N., Chi, X. G., Huang, X., Boy, M., Virkkula, A., Yang, X. Q., Fu, C. B., & Kulmala, M. (2015). Aerosol size distribution and new particle formation in the western Yangtze River Delta of China: 2 years of measurements at the SORPES station. Atmos. Chem. Phys., 15(21), 12445-12464. https://doi.org/10.5194/acp-15-12445-2015 Shang, D., Tang, L., Fang, X., Wang, L., Yang, S., Wu, Z., Chen, S., Li, X., Zeng, L., Guo, S., & Hu, M. (2022). Variations in source contributions of particle number concentration under long-term emission control in winter of urban Beijing. Environmental Pollution, 304, 119072. https://doi.org/https://doi.org/10.1016/j.envpol.2022.119072 Shen, L., Cheng, Y., Bai, X., Dai, H., Wei, X., Sun, L., Yang, Y., Zhang, J., Feng, Y., Li, Y. J., Chen, D.-R., Liu, J., & Gui, H. (2022). Vertical profile of aerosol number size distribution during a haze pollution episode in Hefei, China. Science of The Total Environment, 814, 152693. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.152693 Sipilä, M., Berndt, T., Petäjä, T., Brus, D., Vanhanen, J., Stratmann, F., Patokoski, J., Mauldin III, R. L., Hyvärinen, A.-P., & Lihavainen, H. (2010). The role of sulfuric acid in atmospheric nucleation. Science, 327(5970), 1243-1246. Su, Y. H. (2024). Enhancing aerosol characterization: Merging particle size distributions and retrieving chemical composition National Taiwan University]. Sun, Y., Zhou, X., & Wang, W. (2016). Aerosol size distributions during haze episodes in winter in Jinan, China. Particuology, 28, 77-85. https://doi.org/https://doi.org/10.1016/j.partic.2015.12.001 Tang, L., Shang, D., Fang, X., Wu, Z., Qiu, Y., Chen, S., Li, X., Zeng, L., Guo, S., & Hu, M. (2021). More significant impacts from new particle formation on haze formation during COVID-19 lockdown. Geophysical Research Letters, 48(8), e2020GL091591. https://doi.org/https://doi.org/10.1029/2020GL091591 Tang, L., Yu, H., Ding, A., Zhang, Y., Qin, W., Wang, Z., Chen, W., Hua, Y., & Yang, X. (2016). Regional contribution to PM1 pollution during winter haze in Yangtze River Delta, China. Science of The Total Environment, 541, 161-166. https://doi.org/https://doi.org/10.1016/j.scitotenv.2015.05.058 Vallabani, N. V. S., Gruzieva, O., Elihn, K., Juárez-Facio, A. T., Steimer, S. S., Kuhn, J., Silvergren, S., Portugal, J., Piña, B., Olofsson, U., Johansson, C., & Karlsson, H. L. (2023). Toxicity and health effects of ultrafine particles: Towards an understanding of the relative impacts of different transport modes. Environmental Research, 231, 116186. https://doi.org/https://doi.org/10.1016/j.envres.2023.116186 Vu, T. V., Delgado-Saborit, J. M., & Harrison, R. M. (2015). Review: Particle number size distributions from seven major sources and implications for source apportionment studies. Atmospheric Environment, 122, 114-132. https://doi.org/10.1016/j.atmosenv.2015.09.027 Wang, J., Li, M., Li, L., Zheng, R., Fan, X., Hong, Y., Xu, L., Chen, J., & Hu, B. (2022a). Particle number size distribution and new particle formation in Xiamen, the coastal city of Southeast China in wintertime. Science of The Total Environment, 826, 154208. https://doi.org/10.1016/j.scitotenv.2022.154208 Wang, J., Li, M., Li, L., Zheng, R., Fan, X., Hong, Y., Xu, L., Chen, J., & Hu, B. (2022b). Particle number size distribution and new particle formation in Xiamen, the coastal city of Southeast China in wintertime. Sci Total Environ, 826, 154208. https://doi.org/10.1016/j.scitotenv.2022.154208 Wang, Z. B., Hu, M., Sun, J. Y., Wu, Z. J., Yue, D. L., Shen, X. J., Zhang, Y. M., Pei, X. Y., Cheng, Y. F., & Wiedensohler, A. (2013). Characteristics of regional new particle formation in urban and regional background environments in the North China Plain. Atmos. Chem. Phys., 13(24), 12495-12506. https://doi.org/10.5194/acp-13-12495-2013 Wehner, B., Wiedensohler, A., Tuch, T. M., Wu, Z. J., Hu, M., Slanina, J., & Kiang, C. S. (2004). Variability of the aerosol number size distribution in Beijing, China: New particle formation, dust storms, and high continental background. Geophysical Research Letters, 31(22). https://doi.org/https://doi.org/10.1029/2004GL021596 Wu, Z., Hu, M., Liu, S., Wehner, B., Bauer, S., Ma ßling, A., Wiedensohler, A., Petäjä, T., Dal Maso, M., & Kulmala, M. (2007). New particle formation in Beijing, China: Statistical analysis of a 1-year data set. Journal of Geophysical Research: Atmospheres, 112(D9). https://doi.org/https://doi.org/10.1029/2006JD007406 Xiao, S., Wang, M. Y., Yao, L., Kulmala, M., Zhou, B., Yang, X., Chen, J. M., Wang, D. F., Fu, Q. Y., Worsnop, D. R., & Wang, L. (2015). Strong atmospheric new particle formation in winter in urban Shanghai, China. Atmos. Chem. Phys., 15(4), 1769-1781. https://doi.org/10.5194/acp-15-1769-2015 Yeh, J.-F. (2023). Sources apportionment of atmospheric visibility degradation in central Taiwan: From the perspective of particle size distribution National Taiwan University]. Young, L.-H., Hsu, C.-S., Hsiao, T.-C., Lin, N.-H., Tsay, S.-C., Lin, T.-H., Lin, W.-Y., & Jung, C.-R. (2023). Sources, transport, and visibility impact of ambient submicrometer particle number size distributions in an urban area of central Taiwan. Science of The Total Environment, 856, 159070. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.159070 Zhang, R., Wang, G., Guo, S., Zamora, M. L., Ying, Q., Lin, Y., Wang, W., Hu, M., & Wang, Y. (2015). Formation of urban fine particulate matter. Chemical Reviews, 115(10), 3803-3855. https://doi.org/10.1021/acs.chemrev.5b00067 Zhang, X., Zhang, Y., Sun, J., Zheng, X., Li, G., & Deng, Z. (2017). Characterization of particle number size distribution and new particle formation in an urban environment in Lanzhou, China. Journal of Aerosol Science, 103, 53-66. https://doi.org/https://doi.org/10.1016/j.jaerosci.2016.10.010 Zhang, Y., Chen, Y., Jiang, N., Wang, S., Zhang, R., Lv, Z., Hao, X., & Wei, Y. (2023). Chemical-composition characteristics of PM1 and PM2.5 and effects on pH and light-extinction coefficients under different pollution levels in Zhengzhou, China. Journal of Cleaner Production, 409, 137274. https://doi.org/https://doi.org/10.1016/j.jclepro.2023.137274 Zhang, Y. M., Zhang, X. Y., Sun, J. Y., Lin, W. L., Gong, S. L., Shen, X. J., & Yang, S. (2011). Characterization of new particle and secondary aerosol formation during summertime in Beijing, China. Tellus B: Chemical and Physical Meteorology, 63(3), 382-394. https://doi.org/10.1111/j.1600-0889.2011.00533.x Zhou, C., Wei, G., Zheng, H., Russo, A., Li, C., Du, H., & Xiang, J. (2019). Effects of potential recirculation on air quality in coastal cities in the Yangtze River Delta. Science of The Total Environment, 651, 12-23. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.08.423 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93776 | - |
dc.description.abstract | 大氣中的氣膠由各種粒徑範圍的微粒組成,而不同粒徑範圍的氣膠具有不同的影響。微粒粒徑分布 (Particle Size Distribution, PSD) 描述了不同粒徑範圍內微粒濃度的變化。新微粒生成 (New Particle Formation, NPF) 為氣體前驅物轉變為微粒的過程,是氣膠二次生成的重要過程之一,會導致成核模 (< 25 nm) 微粒數目濃度大幅增加,從而劇烈改變PSD,這一現象對全球氣候及人體健康產生重大影響。由於NPF在不同季節和地區的發生頻率和強度不同,本研究於臺灣臺中地區架設了IMPACT監測站,利用電移動度粒徑分佈掃描儀 (SMPS) 及氣動粒徑分布儀 (APS) 對從11.8奈米至20微米的粒徑分布進行為期一年半的監測,以探討不同季節間PSD的特徵及變化,同時利用Ranking Analysis的方法針對臺灣本土的NPF現象進行全面性的討論,以解析其發生條件、頻率及影響。
結果顯示,四季的PSD受氣象條件影響,在春季及冬季觀察到較高的表面積濃度及體積濃度,而這兩種濃度皆由積累模 (100-1000 nm) 粒子主導。春季的低風速及冬季的低邊界層高度不利於大氣擴散,使污染物容易累積,影響空氣品質並導致能見度劣化。此外,春冬兩季午間因光化學作用的加強,微粒發生二次生成,導致更高的PM1.0質量濃度。除了本地污染外,冬季強勁的東北季風還帶來了傳輸污染物的影響,使冬季近六成的時間段被定義為PM1.0污染事件 (PM1.0 > 17.96 μg/m³)。當PM1.0污染事件發生時,觀察到了硝酸鹽的二次生成現象。 夏季是質量濃度相對低的季節,但卻發現了頻繁的NPF現象。將NPF分為十個不同強度以進行條件比較,並將強度前20% 的觀測日定義為Strong-NPF,其中夏季有高達27~50%的時間被定義為Strong-NPF。比較結果顯示,夏季較高的太陽輻射和溫度皆為影響NPF的重要氣象因素,同時,夏季較低的質量濃度也有利於NPF的發生,使夏季成為臺灣NPF的好發季節。NPF多於早晨6:00開始,隨著太陽輻射及溫度的上升,成核模數目濃度大幅增加且微粒持續增長至艾肯模 (25-100 nm)。此時凝結速率 (Condensation Sink, CS) 與PM1.0質量濃度皆持續增加,NPF的現象會持續至中午12:00後,並隨NPF強度增加而延長。當CS12-25小於1.71×10-4 1/s 時,容易發生高強度的NPF。 由於NPF多發生於較乾淨的環境中,PM1.0的些微上升對現階段空氣品質的影響有限,但NPF期間大幅上升的成核模數目濃度會增加氣膠對健康的威脅。最後,透過NPF的案例分析揭示了二氧化硫 (SO2) 及臭氧 (O3) 間反應產生硫酸 (H2SO4) 可能為NPF的主要化學反應機制。 | zh_TW |
dc.description.abstract | Atmospheric aerosols consist of particles across a wide range of sizes, each having distinct impacts. Particle Size Distribution (PSD) describes the variation in particle concentration across different size ranges. New Particle Formation (NPF) is the process by which gaseous precursors convert into particles, representing a crucial mechanism in secondary aerosol formation. This process significantly increases the number concentration of nucleation mode particles (< 25 nm), dramatically altering the PSD, which in turn has significant implications for global climate and human health. Since the frequency and intensity of NPF varies with season and region, this study involved the IMPACT monitoring station in Taichung, Taiwan, which used a Scanning Mobility Particle Sizer (SMPS) and an Aerodynamic Particle Sizer (APS) to conduct an 18-month monitoring campaign of particle size distributions ranging from 11.8 nanometers to 20 micrometers. The study aims to explore the seasonal characteristics and variations of PSD and to comprehensively discuss the local NPF phenomena in Taiwan using ranking analysis to elucidate their conditions of occurrence, frequency, and impacts.
The results indicate that seasonal PSD is influenced by meteorological conditions, with higher surface area and volume concentrations observed in spring and winter, primarily driven by accumulation mode (100-1000 nm) particles. The low wind speeds in spring and low boundary layer heights in winter hinder atmospheric dispersion, leading to the accumulation of pollutants, which severely affects air quality and reduces visibility. Additionally, intensified photochemical reactions during the midday in spring and winter led to secondary particle formation, resulting in higher PM1.0 mass concentrations. Besides local pollution, the strong northeast monsoon in winter also contributed to pollution transport, resulting in almost 60% of the winter period being defined as PM1.0 pollution events (PM1.0 > 17.96 μg/m3). During these PM1.0 pollution events, secondary nitrate growth was also observed. Summer had relatively low mass concentrations but frequent NPF events. NPF was classified into ten intensity levels for conditional comparison, with the top 20% of observation days defined as Strong-NPF. In summer, 27-50% of the time was classified as Strong-NPF. The comparison indicates that higher solar radiation and temperatures in summer are significant meteorological factors influencing NPF. Additionally, the lower mass concentrations in summer are conducive to NPF, making summer the peak season for NPF in Taiwan. NPF typically starts around 6:00 A.M., with nucleation mode number concentrations increasing sharply with increasing solar radiation and temperature and particles growing into the Aitken mode (25-100 nm). During this time, condensation sink (CS) and PM1.0 mass concentrations increased, with NPF phenomena continuing past noon and extending with higher NPF intensities. High-intensity NPF was more likely to occur when CS12-25 was below 1.71×10⁻4 1/s. Since NPF frequently occurs in cleaner environments, the slight rise in PM1.0 has a limited impact on current air quality. However, the significant rise in nucleation mode particle number concentration during NPF increases the health threat posed by aerosols. Finally, case studies on NPF have shown that the reaction between SO2 and O3 to form H2SO4 may be a primary mechanism driving NPF. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:08:26Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-08T16:08:26Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 I
摘要 II Abstract IV Contents VI List of Figures VIII List of Tables XI List of Abbreviations XII Chapter 1. Introduction 1 Chapter 2. Methodology 5 2.1. Measurement Site and Sampling Time 5 2.2. Instrumentation and Measurements 6 2.2.1 Overview of the Monitoring Instrumentation 6 2.2.2 The Characteristics of Particle Number Size Distributions 9 2.2.3 Light Extinction Coefficient (bext) of Aerosols 10 2.3. Data Analysis 11 2.3.1 Season Classification 11 2.3.2 NPF Classify: Δ𝑁12-25 Rank Analysis 11 2.3.3 Calculation of Condensation Sink (CS) and Formation Rate (FR) 14 Chapter 3. Results and Discussion 16 3.1 Seasonal Characteristics 16 3.1.1 Meteorological Conditions 16 3.1.2 Particle Size Distribution (PSD) 21 3.1.3 Seasonal Particle Size Distribution in PM1.0 Pollution Degradation 28 3.2 New Particle Formation 37 3.2.1 Seasonal Intensity and Frequency of NPF 37 3.2.2 Exploration of Impact Factors for Summer NPF 41 3.2.3 The Condensation Sink (CS) and the Formation Rate (FR) of NPF 49 3.2.4 Case Study 55 Chapter 4. Conclusion 61 Reference 64 Supplemental Information 70 口試委員意見回覆 82 | - |
dc.language.iso | en | - |
dc.title | 台灣中部之季節性粒徑分布與新微粒生成 | zh_TW |
dc.title | Seasonal Particle Size Distribution and New Particle Formation in Central Taiwan | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林文印;林能暉;陳裕政;丁育頡 | zh_TW |
dc.contributor.oralexamcommittee | Wen-Yinn Lin;Neng-Huei Lin;Yu-Cheng Chen;Yu-Chieh Ting | en |
dc.subject.keyword | 微粒粒徑分布,新微粒生成,成核模微粒,PM1.0質量濃度,季節變化, | zh_TW |
dc.subject.keyword | Particle size distribution,new particle formation,nucleation mode particles,PM1.0 mass concentration,seasonal variation, | en |
dc.relation.page | 89 | - |
dc.identifier.doi | 10.6342/NTU202402847 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-05 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 環境工程學研究所 | - |
dc.date.embargo-lift | 2029-07-31 | - |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 此日期後於網路公開 2029-07-31 | 13.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。