請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93775完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾宇鳳 | zh_TW |
| dc.contributor.advisor | Yufeng Jane Tseng | en |
| dc.contributor.author | 楊美美 | zh_TW |
| dc.contributor.author | DANIELLE PENELLA P. YU | en |
| dc.date.accessioned | 2024-08-08T16:07:38Z | - |
| dc.date.available | 2024-08-09 | - |
| dc.date.copyright | 2024-08-07 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-30 | - |
| dc.identifier.citation | [1] Al-Qazzaz, N. K., Ali, S. H. B., Ahmad, S. A., Chellappan, K., Islam, M. S., & Escudero, J. (2014). Role of EEG as biomarker in the early detection and classification of dementia. The Scientific World Journal, 2014.
[2] Vecchio, F., Babiloni, C., Lizio, R., Fallani, F. D. V., Blinowska, K., Verrienti, G., ... & Rossini, P. M. (2013). Resting state cortical EEG rhythms in Alzheimer's disease: toward EEG markers for clinical applications: a review. Supplements to Clinical neurophysiology, 62, 223-236. [3] Cassani, R., Estarellas, M., San-Martin, R., Fraga, F. J., & Falk, T. H. (2018). Systematic review on resting-state EEG for Alzheimer’s disease diagnosis and progression assessment. Disease markers, 2018. [4] Miltiadous, A., Tzimourta, K. D., Afrantou, T., Ioannidis, P., Grigoriadis, N., Tsalikakis, D. G., ... & Tzallas, A. T. (2023). A dataset of scalp EEG recordings of Alzheimer’s disease, frontotemporal dementia and healthy subjects from routine EEG. Data, 8(6), 95. [5] Abhang, P. A., Gawali, B. W., & Mehrotra, S. C. (2016). Introduction to EEG-and speech-based emotion recognition. Academic Press. [6] Malek, N., Baker, M. R., Mann, C., & Greene, J. (2017). Electroencephalographic markers in dementia. Acta Neurologica Scandinavica, 135(4), 388-393. [7] Jackson, C. E., & Snyder, P. J. (2008). Electroencephalography and event-related potentials as biomarkers of mild cognitive impairment and mild Alzheimer’s disease. Alzheimer's & Dementia, 4(1), S137-S143. [8] Cedazo-Minguez, A., & Winblad, B. (2010). Biomarkers for Alzheimer’s disease and other forms of dementia: clinical needs, limitations and future aspects. Experimental gerontology, 45(1), 5-14. [9] Wang, Z., Liu, A., Yu, J., Wang, P., Bi, Y., Xue, S., ... & Zhang, W. (2024). The effect of aperiodic components in distinguishing Alzheimer’s disease from frontotemporal dementia. GeroScience, 46(1), 751-768. [10] Miltiadous, A., Tzimourta, K. D., Giannakeas, N., Tsipouras, M. G., Afrantou, T., Ioannidis, P., & Tzallas, A. T. (2021). Alzheimer’s disease and frontotemporal dementia: A robust classification method of EEG signals and a comparison of validation methods. Diagnostics, 11(8), 1437. [11] van der Stelt, O., & Belger, A. (2007). Application of electroencephalography to the study of cognitive and brain functions in schizophrenia. Schizophrenia bulletin, 33(4), 955-970. [12] Bob, P., Palus, M., Susta, M., & Glaslova, K. (2008). EEG phase synchronization in patients with paranoid schizophrenia. Neuroscience letters, 447(1), 73-77. [13] Perrottelli, A., Giordano, G. M., Brando, F., Giuliani, L., & Mucci, A. (2021). EEG-based measures in at-risk mental state and early stages of schizophrenia: a systematic review. Frontiers in psychiatry, 12, 653642. [14] Härtner, L., Keil, T. W., Kreuzer, M., Fritz, E. M., Wenning, G. K., Stefanova, N., & Fenzl, T. (2017). Distinct parameters in the EEG of the PLP α-SYN mouse model for multiple system atrophy reinforce face validity. Frontiers in behavioral neuroscience, 10, 252. [15] Tăuţan, A. M., Ionescu, B., & Santarnecchi, E. (2021). Artificial intelligence in neurodegenerative diseases: A review of available tools with a focus on machine learning techniques. Artificial Intelligence in Medicine, 117, 102081. [16] Wang, Q., Meng, L., Pang, J., Zhu, X., & Ming, D. (2020). Characterization of EEG data revealing relationships with cognitive and motor symptoms in Parkinson's disease: a systematic review. Frontiers in aging neuroscience, 12, 587396. [17] Jafari, Z., Kolb, B. E., & Mohajerani, M. H. (2020). Neural oscillations and brain stimulation in Alzheimer’s disease. Progress in neurobiology, 194, 101878. [18] Shabanpour, M., Kaboodvand, N., & Iravani, B. (2022). Parkinson's disease is characterized by sub-second resting-state spatio-oscillatory patterns: A contribution from deep convolutional neural network. NeuroImage: Clinical, 36, 103266. [19] Nour, M., Senturk, U., & Polat, K. (2023). Diagnosis and classification of Parkinson's disease using ensemble learning and 1D-PDCovNN. Computers in Biology and Medicine, 161, 107031. [20] Liu, H., Huang, Z., Deng, B., Chang, Z., Yang, X., Guo, X., ... & Wang, Q. (2023). QEEG signatures are associated with nonmotor dysfunctions in Parkinson's disease and atypical parkinsonism: an integrative analysis. Aging and disease, 14(1), 204. [21] Webster, K., & Ro, T. (2020). Visual modulation of resting state α oscillations. Eneuro, 7(1). [22] Zawiślak-Fornagiel, K., Ledwoń, D., Bugdol, M., Romaniszyn-Kania, P., Małecki, A., Gorzkowska, A., & Mitas, A. W. (2023). The increase of theta power and decrease of alpha/theta ratio as a manifestation of cognitive impairment in parkinson’s disease. Journal of Clinical Medicine, 12(4), 1569. [23] Liu, X., Zhang, C., Ji, Z., Ma, Y., Shang, X., Zhang, Q., ... & Yu, H. (2016). Multiple characteristics analysis of Alzheimer’s electroencephalogram by power spectral density and Lempel–Ziv complexity. Cognitive neurodynamics, 10, 121-133. [24] Choi, J., Ku, B., You, Y. G., Jo, M., Kwon, M., Choi, Y., ... & Kim, J. U. (2019). Resting-state prefrontal EEG biomarkers in correlation with MMSE scores in elderly individuals. Scientific reports, 9(1), 10468. [25] Hwang, E., Han, H. B., Kim, J. Y., & Choi, J. H. (2020). High-density EEG of auditory steady-state responses during stimulation of basal forebrain parvalbumin neurons. Scientific Data, 7(1), 288. [26] Koshiyama, D., Nishimura, R., Usui, K., Fujioka, M., Tada, M., Kirihara, K., ... & Kasai, K. (2024). Cortical white matter microstructural alterations underlying the impaired gamma-band auditory steady-state response in schizophrenia. Schizophrenia, 10(1), 32. [27] Tada, M., Kirihara, K., Koshiyama, D., Nagai, T., Fujiouka, M., Usui, K., ... & Kasai, K. (2023). Alterations of auditory-evoked gamma oscillations are more pronounced than alterations of spontaneous power of gamma oscillation in early stages of schizophrenia. Translational Psychiatry, 13(1), 218. [28] Ieracitano, C., Mammone, N., Hussain, A., & Morabito, F. C. (2020). A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia. Neural Networks, 123, 176-190. [29] Light, G. A., Hsu, J. L., Hsieh, M. H., Meyer-Gomes, K., Sprock, J., Swerdlow, N. R., & Braff, D. L. (2006). Gamma band oscillations reveal neural network cortical coherence dysfunction in schizophrenia patients. Biological psychiatry, 60(11), 1231-1240. [30] Deguchi, K., Takeuchi, H., Sasaki, I., Tsukaguchi, M., Touge, T., & Nishioka, M. (2001). Impaired novelty P3 potentials in multiple system atrophy—correlation with orthostatic hypotension. Journal of the neurological sciences, 190(1-2), 61-67. [31] Griskova-Bulanova, I., Dapsys, K., Melynyte, S., Voicikas, A., Maciulis, V., Andruskevicius, S., & Korostenskaja, M. (2018). 40 Hz auditory steady-state response in schizophrenia: Sensitivity to stimulation type (clicks versus flutter amplitude-modulated tones). Neuroscience Letters, 662, 152-157. [32] van Deursen, J. A., Vuurman, E. F., van Kranen-Mastenbroek, V. H., Verhey, F. R., & Riedel, W. J. (2011). 40-Hz steady state response in Alzheimer's disease and mild cognitive impairment. Neurobiology of aging, 32(1), 24–30. https://doi.org/10.1016/j.neurobiolaging.2009.01.002 [33] Hua, X., Church, K., Walker, W., L'Hostis, P., Viardot, G., Danjou, P., Hendrix, S., & Moebius, H. J. (2022). Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of the Positive Modulator of HGF/MET, Fosgonimeton, in Healthy Volunteers and Subjects with Alzheimer's Disease: Randomized, Placebo-Controlled, Double-Blind, Phase I Clinical Trial. Journal of Alzheimer's disease : JAD, 86(3), 1399–1413. https://doi.org/10.3233/JAD-215511 [34] Sugiyama, S., Ohi, K., Kuramitsu, A., Takai, K., Muto, Y., Taniguchi, T., Kinukawa, T., Takeuchi, N., Motomura, E., Nishihara, M., Shioiri, T., & Inui, K. (2021). The Auditory Steady-State Response: Electrophysiological Index for Sensory Processing Dysfunction in Psychiatric Disorders. Frontiers in psychiatry, 12, 644541. https://doi.org/10.3389/fpsyt.2021.644541 [35] Jadi, M. P., Behrens, M. M., & Sejnowski, T. J. (2016). Abnormal Gamma Oscillations in N-Methyl-D-Aspartate Receptor Hypofunction Models of Schizophrenia. Biological psychiatry, 79(9), 716–726. https://doi.org/10.1016/j.biopsych.2015.07.005 [36] Sambati, L., Calandra-Buonaura, G., Giannini, G., Cani, I., Provini, F., Poda, R., Oppi, F., Stanzani Maserati, M., & Cortelli, P. (2020). Cognitive profile and its evolution in a cohort of multiple system atrophy patients. Frontiers in Neurology, 11. https://doi.org/10.3389/fneur.2020.537360 [37] Kawai, Y., Suenaga, M., Takeda, A., Ito, M., Watanabe, H., Tanaka, F., ... & Sobue, G. (2008). Cognitive impairments in multiple system atrophy: MSA-C vs MSA-P. Neurology, 70(16_part_2), 1390-1396. [38] Jellinger, K. A. (2020). Multiple system atrophy-a clinicopathological update. Free Neuropathology, 1. [39] Aoki, N., Boyer, P. J., Lund, C., Lin, W. L., Koga, S., Ross, O. A., ... & Dickson, D. W. (2015). Atypical multiple system atrophy is a new subtype of frontotemporal lobar degeneration: frontotemporal lobar degeneration associated with α-synuclein. Acta neuropathologica, 130, 93-105. [40] Jellinger, K. A. (2018). Multiple system atrophy: an oligodendroglioneural synucleinopathy. Journal of Alzheimer's Disease, 62(3), 1141-1179. [41] Yokota, Y., Tanaka, S., Miyamoto, A., & Naruse, Y. (2017). Estimation of human workload from the auditory steady-state response recorded via a wearable electroencephalography system during walking. Frontiers in human neuroscience, 11, 314. [42] Shi, Z., Zhang, J., Zhao, P., Li, X., Liu, S., Wu, H., ... & Ji, Y. (2023). Characteristics of mild cognitive impairment and associated factors in MSA patients. Brain Sciences, 13(4), 582. [43] Kim, M. J., Youn, Y. C., & Paik, J. (2023). Deep learning-based EEG analysis to classify normal, mild cognitive impairment, and dementia: Algorithms and dataset. NeuroImage, 272, 120054. [44] Shalbaf, A., Bagherzadeh, S., & Maghsoudi, A. (2020). Transfer learning with deep convolutional neural network for automated detection of schizophrenia from EEG signals. Physical and Engineering Sciences in Medicine, 43, 1229-1239. [45] Aslan, Z., & Akin, M. (2020). Automatic Detection of Schizophrenia by Applying Deep Learning over Spectrogram Images of EEG Signals. Traitement du Signal, 37(2). [46] Jeong, T., Park, U., & Kang, S. W. (2022). Novel quantitative electroencephalogram feature image adapted for deep learning: Verification through classification of Alzheimer’s disease dementia. Frontiers in Neuroscience, 16, 1033379. [47] Wang, Z., Feng, J., Jiang, R., Shi, Y., Li, X., Xue, R., ... & Deng, W. (2022). Automated rest eeg-based diagnosis of depression and schizophrenia using a deep convolutional neural network. IEEE Access, 10, 104472-104485. [48] Barros, C., Roach, B., Ford, J. M., Pinheiro, A. P., & Silva, C. A. (2022). From sound perception to automatic detection of schizophrenia: an EEG-based deep learning approach. Frontiers in Psychiatry, 12, 813460. [49] Snell, J., Swersky, K., & Zemel, R. (2017). Prototypical networks for few-shot learning. Advances in neural information processing systems, 30. [50] Li, H., Dong, W., Mei, X., Ma, C., Huang, F., & Hu, B. G. (2019, May). LGM-Net: Learning to generate matching networks for few-shot learning. In International conference on machine learning (pp. 3825-3834). PMLR. [51] Finn, C., Abbeel, P., & Levine, S. (2017, July). Model-agnostic meta-learning for fast adaptation of deep networks. In International conference on machine learning (pp. 1126-1135). PMLR. [52] Gharoun, H., Momenifar, F., Chen, F., & Gandomi, A. (2023). Meta-learning approaches for few-shot learning: A survey of recent advances. ACM Computing Surveys. [53] Walsh, R., Abdelpakey, M. H., Shehata, M. S., & Mohamed, M. M. (2022). Automated human cell classification in sparse datasets using few-shot learning. Scientific Reports, 12(1), 2924. [54] Shaban, M., & Amara, A. W. (2022). Resting-state electroencephalography based deep-learning for the detection of Parkinson’s disease. Plos one, 17(2), e0263159. [55] Morabito, F. C., Ieracitano, C., & Mammone, N. (2023). An explainable Artificial Intelligence approach to study MCI to AD conversion via HD-EEG processing. Clinical EEG and Neuroscience, 54(1), 51-60. [56] Wang, B., Li, L., Verma, M., Nakashima, Y., Kawasaki, R., & Nagahara, H. (2021). Mtunet: Few-shot image classification with visual explanations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 2294-2298). [57] Xie, Y., Wang, K., Meng, J., Yue, J., Meng, L., Yi, W., ... & Ming, D. (2023). Cross-dataset transfer learning for motor imagery signal classification via multi-task learning and pre-training. Journal of Neural Engineering, 20(5), 056037. [58] Vinyals, O., Blundell, C., Lillicrap, T., & Wierstra, D. (2016). Matching networks for one shot learning. Advances in neural information processing systems, 29. [59] Torabinikjeh, M., Asayesh, V., Dehghani, M., Kouchakzadeh, A., Marhamati, H., & Gharibzadeh, S. (2022). Correlations of frontal resting-state EEG markers with MMSE scores in patients with Alzheimer’s disease. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 58(1), 31. [60] Mueller, V., Brehmer, Y., Von Oertzen, T., Li, S. C., & Lindenberger, U. (2008). Electrophysiological correlates of selective attention: a lifespan comparison. BMC neuroscience, 9, 1-21. [61] Meghdadi, A. H., Stevanović Karić, M., McConnell, M., Rupp, G., Richard, C., Hamilton, J., ... & Berka, C. (2021). Resting state EEG biomarkers of cognitive decline associated with Alzheimer’s disease and mild cognitive impairment. PloS one, 16(2), e0244180. [62] Rossini, P. M., Di Iorio, R., Vecchio, F., Anfossi, M., Babiloni, C., Bozzali, M., ... & Dubois, B. (2020). Early diagnosis of Alzheimer’s disease: the role of biomarkers including advanced EEG signal analysis. Report from the IFCN-sponsored panel of experts. Clinical Neurophysiology, 131(6), 1287-1310. [63] Johannesen, J. K., Bi, J., Jiang, R., Kenney, J. G., & Chen, C. M. A. (2016). Machine learning identification of EEG features predicting working memory performance in schizophrenia and healthy adults. Neuropsychiatric electrophysiology, 2, 1-21. [64] Hong, L. E., Summerfelt, A., Mitchell, B. D., O’Donnell, P., & Thaker, G. K. (2012). A shared low-frequency oscillatory rhythm abnormality in resting and sensory gating in schizophrenia. Clinical Neurophysiology, 123(2), 285-292. [65] Wang, J., Tang, Y., Curtin, A., Chan, R. C., Wang, Y., Li, H., ... & Wang, J. (2018). Abnormal auditory-evoked gamma band oscillations in first-episode schizophrenia during both eye open and eye close states. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 86, 279-286. [66] Koshiyama, D., Kirihara, K., Tada, M., Nagai, T., Fujioka, M., Ichikawa, E., ... & Kasai, K. (2018). Electrophysiological evidence for abnormal glutamate-GABA association following psychosis onset. Translational psychiatry, 8(1), 211. [67] Han, C., Zhao, X., Li, M., Haihambo, N., Teng, J., Li, S., ... & Gao, M. (2023). Enhancement of the neural response during 40 Hz auditory entrainment in closed-eye state in human prefrontal region. Cognitive Neurodynamics, 17(2), 399-410. [68] Güntekin, B., Aktürk, T., Yıldırım, E., Yılmaz, N. H., Hanoğlu, L., & Yener, G. (2020). Abnormalities in auditory and visual cognitive processes are differentiated with theta responses in patients with Parkinson's disease with and without dementia. International Journal of Psychophysiology, 153, 65-79. [69] Pirtošek, Z., Jahanshahi, M., Barrett, G., & Lees, A. J. (2001). Attention and cognition in bradykinetic‐rigid syndromes: An event‐related potential study. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 50(5), 567-573. [70] Jellinger, K. A. (2023). Depression in dementia with Lewy bodies: a critical update. Journal of Neural Transmission, 130(10), 1207-1218. [71] Doan, D. N. T., Ku, B., Choi, J., Oh, M., Kim, K., Cha, W., & Kim, J. U. (2021). Predicting dementia with prefrontal electroencephalography and event-related potential. Frontiers in aging neuroscience, 13, 659817. [72] Depression and cognitive impairment in MSA: Multiple system atrophy. Multiple System Atrophy Coalition. (n.d.). Retrieved October 19, 2022, from https://www.multiplesystematrophy.org/about-msa/depression-cognitive-impairment/ [73] Constant, I., & Sabourdin, N. (2012). The EEG signal: a window on the cortical brain activity. Pediatric Anesthesia, 22(6), 539-552. [74] Osipova, D., Pekkonen, E., & Ahveninen, J. (2006). Enhanced magnetic auditory steady-state response in early Alzheimer’s disease. Clinical Neurophysiology, 117(9), 1990-1995. [75] Koshiyama, D., Miyakoshi, M., Thomas, M. L., Joshi, Y. B., Molina, J. L., Tanaka-Koshiyama, K., ... & Light, G. A. (2021). Unique contributions of sensory discrimination and gamma synchronization deficits to cognitive, clinical, and psychosocial functional impairments in schizophrenia. Schizophrenia Research, 228, 280-287. [76] Koshiyama, D., Miyakoshi, M., Joshi, Y. B., Nakanishi, M., Tanaka‐Koshiyama, K., Sprock, J., & Light, G. A. (2021). Source decomposition of the frontocentral auditory steady‐state gamma band response in schizophrenia patients and healthy subjects. Psychiatry and Clinical Neurosciences, 75(5), 172-179. [77] Trambaiolli, L. R., Spolaôr, N., Lorena, A. C., Anghinah, R., & Sato, J. R. (2017). Feature selection before EEG classification supports the diagnosis of Alzheimer’s disease. Clinical Neurophysiology, 128(10), 2058-2067. [78] Cassani, R., Falk, T. H., Fraga, F. J., Cecchi, M., Moore, D. K., & Anghinah, R. (2017). Towards automated electroencephalography-based Alzheimer’s disease diagnosis using portable low-density devices. Biomedical Signal Processing and Control, 33, 261-271. [79] Chen, Y., Liu, Z., Xu, H., Darrell, T., & Wang, X. (2021). Meta-baseline: Exploring simple meta-learning for few-shot learning. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 9062-9071). [80] Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision (pp. 618-626). [81] Vununu, C., Lee, S. H., & Kwon, K. R. (2018). A deep feature extraction method for HEp-2 cell image classification. Electronics, 8(1), 20. [82] Tamang, T., Baral, S., & Paing, M. P. (2022). Classification of white blood cells: A comprehensive study using transfer learning based on convolutional neural networks. Diagnostics, 12(12), 2903. [83] Koshiyama, D., Miyakoshi, M., Joshi, Y. B., Molina, J. L., Tanaka-Koshiyama, K., Sprock, J., ... & Light, G. A. (2020). A distributed frontotemporal network underlies gamma-band synchronization impairments in schizophrenia patients. Neuropsychopharmacology, 45(13), 2198-2206. [84] Cao, T., Law, M., & Fidler, S. (2019). A theoretical analysis of the number of shots in few-shot learning. arXiv preprint arXiv:1909.11722. [85] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). [86] Babadi, B., & Brown, E. N. (2014). A review of multitaper spectral analysis. IEEE Transactions on Biomedical Engineering, 61(5), 1555-1564. [87] Jmail, N., Gavaret, M., Wendling, F., Kachouri, A., Hamadi, G., Badier, J. M., & Bénar, C. G. (2011). A comparison of methods for separation of transient and oscillatory signals in EEG. Journal of neuroscience methods, 199(2), 273-289. [88] Lindau, M., Jelic, V., Johansson, S. E., Andersen, C., Wahlund, L. O., & Almkvist, O. (2003). Quantitative EEG abnormalities and cognitive dysfunctions in frontotemporal dementia and Alzheimer’s disease. Dementia and geriatric cognitive disorders, 15(2), 106-114. [89] Rice, D. M., Buchsbaum, M. S., Starr, A., Auslander, L., Hagman, J., & Evans, W. J. (1990). Abnormal EEG slow activity in left temporal areas in senile dementia of the Alzheimer type. Journal of gerontology, 45(4), M145-M151. [90] Ouchani, M., Gharibzadeh, S., Jamshidi, M., & Amini, M. (2021). A review of methods of diagnosis and complexity analysis of Alzheimer’s disease using EEG signals. BioMed Research International, 2021(1), 5425569. [91] Kwon, J. S., O'Donnell, B. F., Wallenstein, G. V., Greene, R. W., Hirayasu, Y., Nestor, P. G., ... & McCarley, R. W. (1999). Gamma frequency–range abnormalities to auditory stimulation in schizophrenia. Archives of general psychiatry, 56(11), 1001-1005. [92] Singh, K., & Malhotra, D. (2023). Meta-health: learning-to-learn (Meta-learning) as a next generation of deep learning exploring healthcare challenges and solutions for rare disorders: a systematic analysis. Archives of Computational Methods in Engineering, 30(7), 4081-4112. [93] Goldstein, M. R., Peterson, M. J., Sanguinetti, J. L., Tononi, G., & Ferrarelli, F. (2015). Topographic deficits in alpha-range resting EEG activity and steady state visual evoked responses in schizophrenia. Schizophrenia research, 168(1-2), 145-152. [94] Murphy, M., & Öngür, D. (2019). Decreased peak alpha frequency and impaired visual evoked potentials in first episode psychosis. NeuroImage: Clinical, 22, 101693. [95] Candelaria-Cook, F. T., Schendel, M. E., Ojeda, C. J., Bustillo, J. R., & Stephen, J. M. (2020). Reduced parietal alpha power and psychotic symptoms: test-retest reliability of resting-state magnetoencephalography in schizophrenia and healthy controls. Schizophrenia Research, 215, 229-240. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93775 | - |
| dc.description.abstract | 失智症患者的靜息態和聽覺穩定狀態反應 (ASSR) 相關腦電圖 (EEG) 訊號,如腦電圖減慢、伽瑪相位鎖定和功率調變改變,通常能揭露患者的認知異常。傳統上,腦電圖的分析涉及使用功率譜密度(PSD) 地形圖、試驗間一致性(ITC) 計算和事件相關頻譜擾動(ERSP) 分析等技術將訊號轉換為空間頻率和時間頻率之影像表示。這樣的方法可以凸顯關鍵的細微差別以進行準確的診斷和解釋。隨著深度學習 (DL) 在推進診斷的關鍵解決方案展露頭角,透過可解釋的人工智慧 (xAI) 進行,它為傳統方法提供了一種可行、高效且重要的替代方案。而深度學習也揭示了腦電圖作為篩檢工具並協助找出神經退化性疾病個體生物標記的能力。
在這項研究中,我們專注於整合遷移學習、小樣本學習 (FSL) 和元學習技術,以最大化深度學習的潛力。我們收集了阿茲海默症 (AD) 、罕見疾病額顳葉失智症 (FTD) 和精神分裂症 (SZ)患者的腦電圖數據,以研究與失智症相關的差異特徵。閉眼時的靜息態腦電圖資料收集自 15 位AD患者、15 位 FTD 患者、16位SZ 患者以及 15位健康對照組 (HC)。此外,針對 ASSR 數據集我們收集了以40 Hz 刺激的數據,其中包括 10 名SZ 患者和 15 名 HC。 我們的方法採用預訓練的捲積神經網路 (CNN) 以及 miniImageNet 資料集來有效地分析不同腦電圖資料集。我們結合了FSL 和元學習,以增強模型在2-way 5-shot分類中的泛用性和適應性,其中每個episode 涉及從兩個類別中隨機採樣五個樣例,並在100 多個episode的穩健測試中對三個查詢進行測試。儘管神經退化性疾病研究中的數據可用性是個重大挑戰,而且我們的數據集規模相對較小,但相似的人類上皮細胞 2 型 (HEp-2 Cell) 數據集和血細胞計數和檢測 (BCCD)白血球數據集達到顯著的進步。 其中,HEp-2 細胞資料集包含13,596 張影像,分為六類(著絲粒、高爾基體、均質、核仁、核膜和斑點型),而BCCD 白血球資料集包括五類(嗜中性球、淋巴細胞、單核細胞、嗜酸性粒細胞和嗜鹼性粒細胞),總共12,436張影像,達到了55.1%的準確率。 相對 α 波段功率是靜息態腦電圖最顯著的特徵。使用含有殘差網路18 (ResNet-18) 的原型網路(prototypical network)和帶有ResNet-34 編碼器的匹配網路(matching network),我們分別實現了82.83% 和76.33% 的平均準確度。其中最具辨別能力的類別對是AD 和SZ(94.44%和 92.22% 的準確率)。相較之下,我們的結果表明,P4 和 Fz 通道在 ASSR 間相干性方面實現了最高性能,平均準確度分別為 68.83% 和 70.00%。另一方面,與事件相關的光譜擾動發現T5 和 Fz 通道是有區別性的,兩個模型的平均表現為 71.17% 和 69.33%。 為了更深入研究神經動力學,我們實作了梯度加權類活化映射 (Grad-CAM),這是 xAI 中的一個突出方法。這種方法大大增強了我們對疾病狀態和病理機制中振盪行為的理解,並可能有助於生物標記的辨識。 Grad-CAM 顯示頂葉的相對 α 功率降低,以及與靜止狀態下認知障礙的潛在關聯性。此外,基於ASSR 的Grad-CAM視覺化揭示了誘發功率和鎖相中明顯的伽馬帶振盪,表明N-甲基-D-天冬氨酸受體(NMDAR) 拮抗劑可能引起伽馬氨基丁酸(GABA) 中間神經元功能障礙。證據顯示,在 ASSR 任務期間,Fz 通道 ITC和ERSP在Grad-CAM 上減少,顯示 SZ 和 HC 受試者存在異常的神經同步和頻譜動態模式。這些神經損傷的模式會影響神經網路的完整性,而能揭示特定的大腦區域如何導致疾病。 總之,結合傳統腦電圖分析方法和新穎的深度學習技術使我們能夠解決神經退化性疾病研究中的關鍵挑戰。我們的方法不僅提高了其穩健性和有效性,還提高了複雜神經數據的可解釋性。因此,我們的方法能啟發新的臨床方案發展,以及加速新藥標的的發現。 | zh_TW |
| dc.description.abstract | Resting-state and auditory steady-state response (ASSR)-related electroencephalography (EEG) signals in individuals with dementia commonly reveal cognitive abnormalities, such as EEG slowing, gamma phase locking, and power modulation alterations. Traditionally, EEG analysis involves transforming signals into spatial frequency and time-frequency image representations using techniques via power spectral density (PSD) topographic maps, intertrial coherence (ITC) calculations, and event-related spectral perturbation (ERSP) analysis, highlighting crucial nuances essential for accurate diagnosis and interpretation. With the emergence of deep learning (DL) as a pivotal solution in advancing diagnostics, it offers a feasible, efficient, and crucial alternative to conventional methods for accurate differentiation, complemented by interpretation through explainable artificial intelligence (xAI). DL methods, in particular, reveal the ability of EEG to serve as a screening tool and assist in identifying biomarkers in individuals with neurodegenerative diseases.
In this study, we focus on integrating transfer learning, few-shot learning (FSL), and meta-learning techniques to maximize the potential of DL. EEG data from individuals with conditions such as Alzheimer’s disease (AD), a rare disease frontotemporal dementia (FTD), and schizophrenia (SZ) were collected to investigate differential features associated with dementia. Resting-state EEG data from the eyes-closed protocol were collected from 15 patients diagnosed with AD, 15 with FTD, 16 with SZ, as well as from 15 healthy controls (HCs). In addition, 40-Hz stimulus data for the ASSR dataset, consisting of 10 individuals with SZ and 15 HCs, were obtained. Our approach adopted pretrained convolutional neural networks (CNNs) along with the miniImageNet dataset benchmark to analyze diverse EEG datasets effectively. We incorporated FSL and meta-learning to enhance the models’ generalizability and rapid adaptability in 2-way 5-shot classification, where each episode involved randomly sampling five support examples from two classes and robust testing on three queries over 100 episodes. Despite major challenges with data availability in neurodegenerative disease research and the relatively small size of our datasets, significant improvements have been observed in similar test scenarios involving the Human Epithelial Cells type 2 (HEp-2 Cell) dataset and the Blood Cell Count and Detection (BCCD) White Blood Cell dataset. The HEp-2 Cell dataset comprises 13,596 images divided into six classes (Centromere, Golgi, Homogeneous, Nucleolar, Nuclear Membrane, and Speckled). In contrast, the BCCD White Blood Cell dataset includes five classes (Neutrophil, Lymphocyte, Monocyte, Eosinophil, and Basophil), totaling 12,436 images, achieving its highest accuracy of 55.1%. Relative alpha band power is the most distinguishing feature of resting-state EEG. Using a prototypical network with residual network-18 (ResNet-18) and a matching network with ResNet-34 encoders, we achieved mean accuracies of 82.83% and 76.33%, respectively, with the most discriminative class pair being AD and SZ (94.44% and 92.22% accuracies). In contrast, our results indicate that the P4 and Fz channels achieve the highest performance in ASSR intertrial coherence, with average accuracies of 68.83% and 70.00%, respectively. On the other hand, event-related spectral perturbations identify the T5 and Fz channels as discriminative, averaging 71.17% and 69.33% for both models. To delve deeper into neural dynamics, we implemented gradient-weighted class activation mapping (Grad-CAM), a prominent feature attribution in xAI. This method has greatly enhanced our understanding of oscillatory behavior in disease states and pathological mechanisms, potentially aiding in biomarker identification. The Grad-CAMs showed decreased relative alpha power in the parietal lobes and its possible association with cognitive impairment in the resting state. Moreover, ASSR-based Grad-CAM visualizations revealed distinct gamma band oscillations in evoked power and phase locking, suggesting probable gamma-aminobutyric acid (GABA)ergic interneuron dysfunction caused by N-methyl-D-aspartate receptor (NMDAR) antagonists. The evidence showed a reduction in Fz channel ITC and ERSP Grad-CAMs during the ASSR task, indicating aberrant neural synchrony and spectral dynamics patterns across SZ and HC subjects. These patterns underlying neurological impairments affect neural network integrity, thereby revealing how specific brain regions contribute to diseases. In conclusion, combining traditional EEG analysis methods and innovative DL techniques has allowed us to address critical challenges in neurodegenerative disease research. Our methodology improves its robustness and effectiveness and the interpretability of complex neural data. Thus, our approach may inspire the development of new clinical practices and expedite the discovery of new drug targets. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:07:36Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-08T16:07:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
Acknowledgement ii 中文摘要 iii ABSTRACT vi CONTENTS ix LIST OF FIGURES xii LIST OF TABLES xv Acknowledgement ii 中文摘要 iii ABSTRACT vi CONTENTS ix LIST OF FIGURES xii LIST OF TABLES xv Chapter 1 Introduction & Background 1 1.1 Electroencephalography (EEG) signals as cognitive biomarkers 1 1.1.1 Resting-state EEG 4 1.1.1.1 Prominent EEG slowing in power spectral density (PSD) and relative band power (RBP) 6 1.1.2 Auditory steady-state response (ASSR) EEG 11 1.1.2.1 Intertrial coherence (ITC) and event-related spectral perturbation (ERSP) 12 1.1.2.2 Gamma-aminobutyric acid (GABA) and N-methyl-D-aspartate receptor (NMDAR) dysfunction 13 1.1.2.3 Gamma band oscillation (GBO) abnormalities 15 1.2 EEG signal analysis with deep learning (DL) 17 1.3 Scope and limitations 25 1.4 Significance of the study 27 Chapter 2 Materials and Methods 29 2.1 Data collection 29 2.1.1 Ethics statement 29 2.1.2 Electrode placement 30 2.1.3 Clinical environment and experiment protocol 31 2.2 Preprocessing 36 2.2.1 Data standardization 37 2.2.1.1 Resampling and time duration cropping 37 2.2.1.2 Channel renaming, reordering, and selection 37 2.2.1.3 Montage setting and referencing 38 2.2.2 Filtering and Artifact Removal 38 2.2.3 Epoch segmentation, averaging, and rejection criteria 39 2.3 Feature extraction 39 2.3.1 Relative band power topographic maps 39 2.3.2 Gamma intertrial coherence and event-related spectral perturbation 40 2.4 Deep learning techniques 42 2.4.1 Transfer learning 43 2.4.2 Few-shot learning (FSL) with meta-learning 44 2.4.3 FSL algorithms 45 2.4.3.1 Prototypical network (PN) 45 2.4.3.2 Matching network (MN) 47 2.4.4 Gradient-weighted class activation mapping (Grad-CAM) 48 Chapter 3 Results 50 3.1 EEG slowing is evident in PSD and RBP topographic maps during the resting state 50 3.2 Aberrant neural synchrony and spectral dynamics in patients with SZ observed from grand average ERSPs during 40-Hz ASSR stimulation 54 3.3 Prototypical network: ResNet-18 outperforms ResNet-34 in transfer few-shot meta-learning classification based on the miniImageNet dataset 56 3.4 Matching network: ResNet-34 outperforms ResNet-18 in transfer few-shot meta-learning classification based on the miniImageNet dataset 60 3.5 EEG tests with superiorly performing PN and MN models 63 3.6 MN attention-enhanced Grad-CAMs reveal distinct visual patterns 69 3.6.1 miniImageNet 69 3.6.2 Alpha RBP topographic maps 70 3.6.3 Fz channel ITC and ERSP 72 Chapter 4 Discussion 75 Chapter 5 Conclusion 79 REFERENCES 80 | - |
| dc.language.iso | en | - |
| dc.subject | 伽馬氨基丁酸 | zh_TW |
| dc.subject | N-甲基-D-天冬氨酸受體 | zh_TW |
| dc.subject | 腦電圖 | zh_TW |
| dc.subject | 藥物靶標識別 | zh_TW |
| dc.subject | 生物標誌物解釋 | zh_TW |
| dc.subject | 癡呆認知異常 | zh_TW |
| dc.subject | 功率譜密度 | zh_TW |
| dc.subject | 聽覺穩態反應 | zh_TW |
| dc.subject | 事件相關譜擾動 | zh_TW |
| dc.subject | 試次間相干性 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 神經退行性疾病診斷 | zh_TW |
| dc.subject | 精神分裂症 | zh_TW |
| dc.subject | 額顳葉癡呆 | zh_TW |
| dc.subject | 阿爾茨海默病 | zh_TW |
| dc.subject | 少樣本學習 | zh_TW |
| dc.subject | 元學習 | zh_TW |
| dc.subject | 遷移學習 | zh_TW |
| dc.subject | 卷積神經網絡 | zh_TW |
| dc.subject | ResNet-18和ResNet-34編碼器 | zh_TW |
| dc.subject | 原型和匹配網絡 | zh_TW |
| dc.subject | 梯度加權類別激活映射 | zh_TW |
| dc.subject | Few-Shot Learning | en |
| dc.subject | N-methyl-D-aspartate Receptor | en |
| dc.subject | Biomarker Interpretation | en |
| dc.subject | Drug Target Identification | en |
| dc.subject | Gradient-Weighted Class Activation Mapping | en |
| dc.subject | Prototypical and Matching Networks | en |
| dc.subject | ResNet-18 and ResNet-34 Encoders | en |
| dc.subject | Convolutional Neural Networks | en |
| dc.subject | Transfer Learning | en |
| dc.subject | Meta-Learning | en |
| dc.subject | Gamma-aminobutyric Acid | en |
| dc.subject | Schizophrenia | en |
| dc.subject | Frontotemporal Dementia | en |
| dc.subject | Alzheimer’s Disease | en |
| dc.subject | Neurodegenerative Disease Diagnostics | en |
| dc.subject | Deep Learning | en |
| dc.subject | Intertrial Coherence | en |
| dc.subject | Event-Related Spectral Perturbation | en |
| dc.subject | Auditory Steady-State Response | en |
| dc.subject | Power Spectral Density | en |
| dc.subject | Cognitive Abnormalities in Dementia | en |
| dc.subject | Electroencephalography | en |
| dc.title | 透過可解釋的認知評估,研究轉移、少樣本和元學習在基於靜息態和聽覺穩定狀態反應腦電圖的神經退化性疾病診斷之生物標記識別 | zh_TW |
| dc.title | Investigating Transfer, Few-Shot, and Meta Learning for Biomarker Identification in Resting-State and Auditory Steady-State Response EEG-Based Diagnosis of Neurodegenerative Diseases with Interpretable Cognitive Assessments | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 謝明憲;劉虹翔;羅達中;蘇柏翰 | zh_TW |
| dc.contributor.oralexamcommittee | Ming-Hsien Hsieh;Hong-Hsiang Liu;Da-Zhong Luo;Bo-Han Su | en |
| dc.subject.keyword | 腦電圖,癡呆認知異常,功率譜密度,聽覺穩態反應,事件相關譜擾動,試次間相干性,深度學習,神經退行性疾病診斷,精神分裂症,額顳葉癡呆,阿爾茨海默病,少樣本學習,元學習,遷移學習,卷積神經網絡,ResNet-18和ResNet-34編碼器,原型和匹配網絡,梯度加權類別激活映射,伽馬氨基丁酸,N-甲基-D-天冬氨酸受體,生物標誌物解釋,藥物靶標識別, | zh_TW |
| dc.subject.keyword | Electroencephalography,Cognitive Abnormalities in Dementia,Power Spectral Density,Auditory Steady-State Response,Event-Related Spectral Perturbation,Intertrial Coherence,Deep Learning,Neurodegenerative Disease Diagnostics,Alzheimer’s Disease,Frontotemporal Dementia,Schizophrenia,Few-Shot Learning,Meta-Learning,Transfer Learning,Convolutional Neural Networks,ResNet-18 and ResNet-34 Encoders,Prototypical and Matching Networks,Gradient-Weighted Class Activation Mapping,Gamma-aminobutyric Acid,N-methyl-D-aspartate Receptor,Biomarker Interpretation,Drug Target Identification, | en |
| dc.relation.page | 92 | - |
| dc.identifier.doi | 10.6342/NTU202402285 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-02 | - |
| dc.contributor.author-college | 共同教育中心 | - |
| dc.contributor.author-dept | 智慧醫療與健康資訊碩士學位學程 | - |
| 顯示於系所單位: | 智慧醫療與健康資訊碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 3.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
