Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93762
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何昊哲zh_TW
dc.contributor.advisorHao-Che Hoen
dc.contributor.author錢柏丞zh_TW
dc.contributor.authorPo-Cheng Chienen
dc.date.accessioned2024-08-07T17:09:26Z-
dc.date.available2024-08-08-
dc.date.copyright2024-08-07-
dc.date.issued2024-
dc.date.submitted2024-08-02-
dc.identifier.citation1. Abd Elbasit, M. A., Yasuda, H., & Salmi, A. (2011). Application of piezoelectric transducers in simulated rainfall erosivity assessment. Hydrological Sciences Journal, 56(1), 187-194.
2. Abudi, I., Carmi, G., & Berliner, P. (2012). Rainfall simulator for field runoff studies. Journal of Hydrology, 454, 76-81.
3. Agassi, M., & Bradford, J. (1999). Methodologies for inter-rill soil erosion studies. Soil and Tillage Research, 49, 277-287.
4. Aksoy, H., Unal, N. E., Cokgor, S., Gedikli, A., Yoon, J., Koca, K., ... & Eris, E. (2012). A rainfall simulator for laboratory-scale assessment of rainfall-runoff-sediment transport processes over a two-dimensional flume. Catena, 98, 63-72.
5. Aleotti, P. (2004). A warning system for rainfall-induced shallow failures. Engineering Geology, 73(3-4), 247-265.
6. Arkin, P. A., & Meisner, B. N. (1987). The relationship between large-scale convective rainfall and cold over the western hemisphere during 1982–1984. Monthly Weather Review, 115, 51–74.
7. Balasubramaniam, A., & Pasricha, S. (2022). Object detection in autonomous vehicles: Status and open challenges. arXiv preprint arXiv:2201.07706.
8. Battan, L. J. (1973). Radar observation of the atmosphere.
9. Bellon, A., Lovejoy, S., & Austin, G. L. (1980). Combining satellite and radar data for the short-range forecasting of precipitation. Monthly Weather Review, 108, 1554–1556.
10. Berne, A., & Krajewski, W. F. (2013). Radar for hydrology: Unfulfilled promise or unrecognized potential? Advances in Water Resources, 51, 357–366.
11. Borup, M., Grum, M., Linde, J. J., & Mikkelsen, P. S. (2016). Dynamic gauge adjustment of high-resolution X-band radar data for convective rain storms: Model-based evaluation against measured combined sewer overflow. Journal of Hydrology, 539, 687–699.
12. Bosio, R., Cagninei, A., & Poggi, D. (2023). Large laboratory simulator of natural rainfall: From drizzle to storms. Water, 15(12), 2205.
13. Bryan, R. B. (1981). Soil erosion under simulated rainfall in the field and laboratory: Variability of erosion under controlled conditions.
14. Cerdà, A. (1999). Simuladores de lluvia y su aplicación a la Geomorfología: Estado de la cuestión. Cuadernos de investigación geográfica, 25, 45-84.
15. Chen, C. Y., & Fujita, M. (2013). An analysis of rainfall-based warning systems for sediment disasters in Japan and Taiwan. International Journal of Erosion Control Engineering, 6(2), 47-57.
16. Chen, H., & Chandrasekar, V. (2015). The quantitative precipitation estimation system for Dallas–Fort Worth (DFW) urban remote sensing network. Journal of Hydrology, 531, 259–271.
17. Christiansen, J. E. (1941). The uniformity of application of water by sprinkler system. Agricultural Engineering, 22, 89-92.
18. Colli, M., Lanza, L. G., La Barbera, P., & Chan, P. W. (2014). Measurement accuracy of weighing and tipping-bucket rainfall intensity gauges under dynamic laboratory testing. Atmospheric Research, 144, 186–194.
19. Coudray, N., Ocampo, P. S., Sakellaropoulos, T., et al. (2018). Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nature Medicine, 24, 1559–1567.
20. Das, S. K., Konwar, M., Chakravarty, K., & Deshpande, S. M. (2017). Raindrop size distribution of different cloud types over the Western Ghats using simultaneous measurements from Micro-Rain Radar and disdrometer. Atmospheric Research, 186, 72-82.
21. Davis, S., & Mermelstein, P. (1980). Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(4), 357-366.
22. Erpul, G., Norton, L. D., & Gabriels, D. (2003). Sediment transport from interrill areas under wind-driven rain. Journal of Hydrology, 276(1-4), 184-197.
23. Farabet, C., Couprie, C., Najman, L., & LeCun, Y. (2012). Scene parsing with multiscale feature learning, purity trees, and optimal covers. In Proc. International Conference on Machine Learning.
24. Feingold, G., & Levin, Z. (1986). The lognormal fit to raindrop spectra from frontal convective clouds in Israel. Journal of Climate and Applied Meteorology, 25(9), 1346-1363.
25. Feng, G., Sharratt, B., & Vaddella, V. (2013). Windblown soil crust formation under light rainfall in a semiarid region. Soil and Tillage Research, 128, 91-96.
26. Ferraro, R. R., Weng, F., Grody, N. C., & Basist, A. (1996). An eight-year (1987–1994) time series of rainfall, clouds, water vapor, snow cover and sea ice derived from SSM/I measurements. Bulletin of the American Meteorological Society, 77, 891–905.
27. Fornis, R. L., Vermeulen, H. R., & Nieuwenhuis, J. D. (2005). Kinetic energy–rainfall intensity relationship for Central Cebu, Philippines for soil erosion studies. Journal of Hydrology, 300(1-4), 20-32.
28. Foster, I. D. L., Fullen, M. A., Brandsma, R. T., & Chapman, A. S. (2000). Drip‐screen rainfall simulators for hydro‐and pedo‐geomorphological research: The Coventry experience. Earth Surface Processes and Landforms, 25(7), 691-707.
29. Fulton, R. A., Breidenbach, J. P., Seo, D. J., & Miller, D. A. (1998). The WSR‐88D rainfall algorithm. Weather and Forecasting, 13(2), 377–395.
30. Gao, C., Braun, S., Kiselev, I., Anumula, J., Delbruck, T., & Liu, S. C. (2019, May). Real-time speech recognition for IoT purpose using a delta recurrent neural network accelerator. In 2019 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1-5). IEEE.
31. Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 580-587).
32. Goudenhoofdt, E., & Delobbe, L. (2013). Statistical characteristics of convective storms in Belgium derived from volumetric weather radar observations. Journal of Applied Meteorology and Climatology, 52(4), 918–934.
33. Graves, A., Mohamed, A.-r., & Hinton, G. (2013). Speech recognition with deep recurrent neural networks. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 6645-6649). IEEE.
34. Grismer, M. (2012). Standards vary in studies using rainfall simulators to evaluate erosion. California Agriculture, 66(3), 102-107.
35. Habib, E., Krajewski, W. F., & Kruger, A. (2001). Sampling errors of tipping-bucket rain gauge measurements. Journal of Hydrologic Engineering, 6(3), 159–166.
36. Harrison, D. L., Scovell, R. W., & Kitchen, M. (2009). High‐resolution precipitation estimates for hydrological uses. Proceedings of the Institution of Civil Engineers: Water Management, 162(2), 125–135.
37. Hignett, C. T., Gusli, S., Cass, A., & Besz, W. (1995). An automated laboratory rainfall simulation system with controlled rainfall intensity, raindrop energy and soil drainage. Soil Technology, 8(1), 31-42.
38. Hu, Z., & Srivastava, R. C. (1995). Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observations. Journal of the Atmospheric Sciences, 52(10), 1761-1783.
39. Huanzheng, Y. (2020). Design and implementation of Chinese speech recognition model based on deep learning. 9, 10-12.
40. Huuskonen, A., Saltikoff, E., & Holleman, I. (2014). The operational weather radar network in Europe. Bulletin of the American Meteorological Society, 95(6), 897–907.
41. Instrumentation Monthly. (2013). Environment Agency trials rain monitoring technology. Retrieved from http://instrumentation.co.uk/environment-agency-trials-rain-monitoring-technology/
42. Iserloh, T., Ries, J. B., Arnáez, J., Boix-Fayos, C., Butzen, V., Cerdà, A., ... & Wirtz, S. (2013). European small portable rainfall simulators: A comparison of rainfall characteristics. Catena, 110, 100-112.
43. Jamali, B., Bach, P. M., & Deletic, A. (2020). Rainwater harvesting for urban flood management–an integrated modelling framework. Water Research, 171, 115372.
44. Johannsen, L. L., Zambon, N., Strauss, P., Dostal, T., Neumann, M., Zumr, D., ... & Klik, A. (2020). Impact of disdrometer types on rainfall erosivity estimation. Water, 12(4), 963.
45. Kavka, P., Rodrigo-Comino, J. (2021). Chapter 17 - Rainfall simulation experiments as a tool for process research in soil science, hydrology, and geomorphology. In Rodrigo-Comino, J. (Ed.), Precipitation (pp. 395-418). Elsevier.
46. Kidd, C. (1998). On rainfall retrieval using polarization-corrected temperatures. International Journal of Remote Sensing, 19, 981–996.
47. Kincaid, D. C., Solomon, K. H., & Oliphant, J. C. (1996). Drop size distribution for irrigation sprinklers. Transactions of ASAE, 39(3), 839-845.
48. Kinnell, P. I. A. (1981). Rainfall intensity‐kinetic energy relationships for soil loss prediction. Soil Science Society of America Journal, 45(1), 153-155.
49. Kohl, R. A. (1974). Drop size distribution from medium-sized agricultural sprinklers. Transactions of ASAE, 17(4), 690-693.
50. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems (pp. 1097-1105).
51. La Barbera, P., Lanza, L. G., & Stagi, L. (2002). Tipping bucket mechanical errors and their influence on rainfall statistics and extremes. Water Science & Technology, 45(2), 1–9.
52. Lanza, L. G., Leroy, M., van der Meulen, J., & Ondrás, M. (2005). The WMO laboratory intercomparison of rainfall intensity gauges—Instruments and observing methods (Rep. 82). Geneva, Switzerland: World Meteorological Organization.
53. Laws, J. O., & Parsons, D. A. (1943). The relation of raindrop-size to intensity. Transactions of the American Geophysical Union, 24, 452.
54. Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Vol. 2, pp. 2169-2178). IEEE.
55. Le, T. H. (2011). Applying Artificial Neural Networks for Face Recognition. Advances in Artificial Neural Systems, 2011, Article ID 673016, 16 pages.
56. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.
57. Liu, C., Guo, L., Ye, L., Zhang, S., Zhao, Y., & Song, T. (2018). A review of advances in China’s flash flood early-warning system. Natural Hazards, 92, 619-634.
58. Logan, B. (2000). Mel frequency cepstral coefficients for music modeling. In ISMIR (Vol. 1, pp. 71-77).
59. Lovejoy, S., & Austin, G. L. (1979). The delineation of rain areas from visible and IR satellite data from GATE and mid-latitudes. Atmosphere–Ocean, 17, 77–92.
60. Marr, D., & Poggio, T. (1976). Cooperative computation of stereo disparity. Science, 194(4262), 283-287.
61. Marshall, J. S., & Palmer, W. M. K. (1948). The distribution of raindrops with size. Journal of Meteorology, 5(4), 165-166.
62. Marshall, J., Langille, R., & Palmer, W. M. K. (1947). Measurement of rainfall by radar. Journal of Meteorology, 4(5), 186–192.
63. McKee, J. L., & Binns, A. D. (2015). A review of gauge–radar merging methods for quantitative precipitation estimation in hydrology. Canadian Water Resources Journal/Revue canadienne des ressources hydriques, 41(1-2), 186–203.
64. Meneghini, R., & Kozu, T. (1990). Spaceborne weather radar. Norwood.
65. Meyer, L. D., & Harmon, W. C. (1979). Multiple-intensity rainfall simulator for erosion research on row sideslopes. Transactions of the ASAE, 22, 100-103.
66. Mhaske, S. N., Pathak, K., & Basak, A. (2019). A comprehensive design of rainfall simulator for the assessment of soil erosion in the laboratory. Catena, 172, 408-420.
67. Molini, A., Lanza, L. G., & La Barbera, P. (2005). The impact of tipping-bucket raingauge measurement errors on design rainfall for urban-scale applications. Hydrological Processes, 19(5), 1073–1088.
68. Nadal‐Romero, E., & Regüés, D. (2009). Detachment and infiltration variations as consequence of regolith development in a Pyrenean badland system. Earth Surface Processes and Landforms, 34(6), 824-838.
69. Nanding, N., Rico-Ramirez, M. A., & Han, D. (2015). Comparison of different radar-raingauge rainfall merging techniques. Journal of Hydroinformatics, 17(3), 422.
70. Nichols, M., & Sexton, H. (1932). A method of studying soil erosion. Agricultural Engineering, 13(4), 101-103.
71. Ning, F., et al. (2005). Toward automatic phenotyping of developing embryos from videos. IEEE Transactions on Image Processing, 14, 1360–1371.
72. Pall, R., Dickinson, W. T., Beals, D., & McGirr, R. (1983). Development and calibration of a rainfall simulator. Canadian Agricultural Engineering, 25(2), 181-187.
73. Pan, Y., Tian, Y., Liu, X., Gu, D., & Hua, G. (2016). Urban big data and the development of city intelligence. Engineering, 2(2), 171-178.
74. Paz, I., Willinger, B., Gires, A., Ichiba, A., Monier, L., Zobrist, C., et al. (2018). Multifractal comparison of reflectivity and polarimetric rainfall data from C‐ and X‐band radars and respective hydrological responses of a complex catchment model. Water, 10(3), 269.
75. Rabiei, E., Haberlandt, U., Sester, M., Fitzner, D., & Wallner, M. (2016). Areal rainfall estimation using moving cars – computer experiments including hydrological modeling. Hydrology and Earth System Sciences, 20, 3907–3922.
76. Rabiner, L. R., & Juang, B. H. (1999).Fundamentals of speech recognition. Tsinghua University Press.
77. Raghavan, S. (2003). Radar meteorology – atmospheric and oceanographic sciences library (Vol. 563). Springer.
78. Reddy, D. R., Roucos, S., & Wilpon, J. G. (1978). Harpy: A fast and accurate speech recognition system. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(6), 575-582.
79. Ryzhkov, A., Diederich, M., Zhang, P., & Simmer, C. (2014). Potential utilization of specific attenuation for rainfall estimation, mitigation of partial beam blockage, and radar networking. Journal of Atmospheric and Oceanic Technology, 31(3), 599–619.
80. Salem, H. M., et al. (2014). Effect of reservoir tillage on rainwater harvesting and soil erosion control under a developed rainfall simulator. Catena, 113, 353-362.
81. Salles, C., Poesen, J., & Sempere-Torres, D. (2002). Kinetic energy of rain and its functional relationship with intensity. Journal of Hydrology, 257(1-4), 256-270.
82. Sempere-Torres, D., Porrà, J. M., & Creutin, J.-D. (1998). Experimental evidence of a general description for raindrop size distribution properties. Journal of Geophysical Research: Atmospheres, 103(D2), 1785-1797.
83. Serio, M. A., Carollo, F. G., & Ferro, V. (2019). Raindrop size distribution and terminal velocity for rainfall erosivity studies: A review. Journal of Hydrology, 576, 210-228.
84. Shailaja, K., & Anuradha, B. (2016). Effective face recognition using deep learning based linear discriminant classification. 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Chennai, India, pp. 1-6.
85. Sideris, I., Gabella, M., Erdin, R., & Germann, U. (2014). Realtime radar–rain-gauge merging using spatio-temporal co-kriging with external drift in the alpine terrain of Switzerland. Quarterly Journal of the Royal Meteorological Society, 140(680), 1097–1111.
86. Sophia Bahddou, W., Otten, W., Whalley, W. R., Shin, H.-C., El Gharous, M., & Rickson, R. J. (2023). Changes in soil surface properties under simulated rainfall and the effect of surface roughness on runoff, infiltration and soil loss. Geoderma, 431, 116341.
87. Takahashi, N., Gygli, M., Pfister, B., & Van Gool, L. (2016). Deep convolutional neural networks and data augmentation for acoustic event detection. arXiv preprint arXiv:1604.07160.
88. Tan, M. L., & Yang, X. (2020). Effect of rainfall station density, distribution and missing values on SWAT outputs in tropical region. Journal of Hydrology, 584, 124660.
89. Tang, D., Wang, Y., & Dong, W. (2018). Deep learning for acoustic event detection and classification: A comprehensive review. IEEE/CAA Journal of Automatica Sinica, 5(4), 854-868.
90. Ulbrich, C. W., & Atlas, D. (1998). Rainfall microphysics and radar properties: Analysis methods for drop size spectra. Journal of Applied Meteorology, 37(9), 912-923.
91. United Nations Framework Convention on Climate Change. (1992). United Nations Framework Convention on Climate Change.
92. United Nations Office for Disaster Risk Reduction. (2020). The human cost of disasters: An overview of the last 20 years (2000-2019).
93. Upton, G. J. G., & Rahimi, A. R. (2003). On-line detection of errors in tipping-bucket raingauges. Journal of Hydrology, 278(1-4), 197–212.
94. Van Dijk, A. I. J. M., Bruijnzeel, L. A., & Rosewell, C. J. (2002). Rainfall intensity–kinetic energy relationships: A critical literature appraisal. Journal of Hydrology, 261(1-4), 1-23.
95. Varma, K. (2018). Measurement of precipitation from satellite radiometers (visible, infrared, and microwave): Physical basis, methods, and limitations. In Remote Sensing of Aerosols, Clouds, and Precipitation (pp. 223-248).
96. Villarini, G., & Krajewski, W. (2010). Review of the different sources of uncertainty in single polarization radar‐based estimates of rainfall. Surveys in Geophysics, 31(1), 107–129.
97. Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses: a guide to conservation planning (No. 537). Department of Agriculture, Science and Education Administration.
98. World Meteorological Organization. (2008). Chapter 3: Precipitation measurement. In Guide to Hydrological Practices (Vol. 1: Hydrology – From Measurement to Hydrological Information (MO-No. 168)). Geneva, Switzerland.
99. Yakupoglu, T., Ozdemir, N., Ekberli, I., & Ozturk, E. (2018). A modified rainfall simulator: Design principles, rainfall characteristics and simulation ability to natural rains. FEB-Fresenius Environmental Bulletin, 2834.
100. Yoon, S. S., & Nakakita, E. (2017). Application of an X‐band multiparameter radar network for rain‐based urban flood forecasting. Journal of Hydrologic Engineering, 22(5).
101. Zhang, G., Sun, J., & Brandes, E. A. (2006). Improving parameterization of rain microphysics with disdrometer and radar observations. Journal of the Atmospheric Sciences, 63(4), 1273-1290.
102. Zhang, Y., Chai, L., Feng, D., & Wang, Q. (2019). Audio-based bird species identification using deep learning techniques. In 2019 International Conference on Artificial Intelligence and Computer Science (AICS) (pp. 35-39). IEEE.
103. Greenpeace Taiwan. (2022). 熱浪、野火、暴雨、洪災頻傳,2022年上半年全球極端天氣事件總整理. Greenpeace 綠色和平臺灣.
104. 吳宜昭、龔楚媖、王安翔、于宜強(2016)。台灣地區短延時強降雨事件氣候特性分析。國家災害防救科技中心災害防救電子報, 132。
105. 國發會經濟發展處(2022)。臺灣2050淨零排放路徑及策略。台灣經濟論衡,20(2), 77-80。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93762-
dc.description.abstract根據聯合國國際減災策略組織(United Nations Office for Disaster Risk Reduction)指出,過去20年來氣候變遷造成的極端氣候使全球經濟損失約2.97兆美元。為降低災害的影響,即時的水文資料,尤其是降雨量,對於水資源應用是相當重要的因素。傳統的雨量觀測方法易受到站點覆蓋率、障礙物遮蔽或影像解析度的影響,使得量測不確定性高。本研究提出量測降雨時的光學影像和聲波,透過深度學習演算法來分辨降雨強度的方法。實驗設置分為三種類,一是自製的人造降雨影像,二是利用長1.2公尺、寬1.2公尺、高3.6公尺的人工降雨模擬器,模擬4種降雨強度區間,所有情境的降雨皆達到終端速度的85%以上,三是5場真實降雨。利用攝影機拍攝不同強度的降雨同時藉由麥克風收錄雨滴撞擊在硬質塑膠上的聲音,降雨量的率定則以雨量筒進行。所收錄的音訊需轉換為梅爾頻率倒譜係數(Mel-Frequency Cepstral Coefficients),並與同步拍攝的影像分別導入卷積神經網路(Convolutional Neural Network)模型中進行運算。研究結果表明,本研究所提出的影像及音訊辨識模型整合並匯入邊緣運算裝置方法,訓練測試集準確度於白天與夜晚分別達到99.88%與99.75%。未來結合物聯網技術,能提升防災應變、洪水預警與智慧城市的相關應用,能有效降低氣候變遷對人類的衝擊。zh_TW
dc.description.abstractAccording to the United Nations Office for Disaster Risk Reduction, the last two decades have seen climate-induced extreme weather events impose an economic burden of approximately US$2.97 trillion globally. To address the repercussions, real-time hydrological data, specifically rainfall patterns, are essential in water resource management. Traditional methodologies for rainfall measurement face inherent uncertainties due to limited station coverage, physical obstructions, and image resolution constraints. To combat these challenges, our study introduces a novel method utilizing deep learning algorithms, integrating optical imagery and acoustic signals from precipitation. This methodology was validated in a controlled rainfall simulator, replicating four distinct rainfall intensities. A high-resolution optical device was employed to document precipitation, while the acoustic signature of raindrops on a rigid surface was captured concurrently. The recorded auditory data, transformed into Mel-Frequency Cepstral Coefficients (MFCC), was combined with synchronized optical data and processed via a Convolutional Neural Network (CNN). Preliminary findings suggest that this integrated approach, when embedded in edge computing devices, offers real-time rainfall intensity quantification. Coupling this technology with the Internet of Things (IoT) could enhance disaster response and flood warning systems, fortifying our resilience against climate change's adverse impacts.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-07T17:09:26Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-07T17:09:26Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 I
誌謝 II
摘要 III
Abstract IV
目 次 V
圖 次 IX
表 次 XIV
第1章 緒論 1
1.1研究動機 1
1.2研究目的 3
1.3論文架構 4
第2章 文獻回顧 5
2.1主流降雨量量測 5
2.1.1雨量計 5
2.1.2氣象雷達 8
2.1.3氣象衛星 10
2.2影像辨識方法 12
2.3音訊辨識方法 14
2.4雨滴特性 15
2.5人工降雨模擬器 18
第3章 實驗設置 22
3.1降雨強度分類 22
3.2人造降雨 24
3.3人工降雨模擬器 26
3.3.1模擬器設計 26
3.3.2模擬器性能 28
3.3.3數據收集 34
3.4真實降雨 37
3.4.1數據收集系統設計 37
3.4.2 數據收集 40
第4章 研究方法 42
4.1卷積神經網路 42
4.2影像辨識模型 44
4.2.1三層影像辨識模型 44
4.2.2五層影像辨識模型 46
4.2.3七層影像辨識模型 47
4.2.4 VGG-16 48
4.2.5 ResNet 50 49
4.3音訊辨識模型 51
4.3.1梅爾倒頻譜係數 51
4.3.2一層音訊辨識模型 55
4.3.3三層音訊辨識模型 56
4.3.4五層音訊辨識模型 57
4.4影像辨識和音訊辨識結果之合併方法 58
第5章 研究成果與討論 59
5.1影像辨識模型應用於人造降雨之結果 59
5.2影像辨識模型應用於人工降雨模擬器之結果 71
5.2.1白天之降雨強度影像辨識結果 71
5.2.1夜晚之降雨強度影像辨識結果 78
5.3影像辨識模型應用於真實降雨之結果 86
5.4音訊辨識模型應用於人工降雨模擬器之結果 88
5.4.1白天之降雨強度音訊辨識結果 88
5.4.2夜晚之降雨強度音訊辨識結果 95
5.5音訊辨識模型應用於真實降雨之結果 103
5.6影像辨識模型與音訊辨識模型合併之辨識結果 104
第6章 結論與建議 106
6.1結論 106
6.2建議 107
參考文獻 108
-
dc.language.isozh_TW-
dc.subject降雨強度量測zh_TW
dc.subjectMFCCzh_TW
dc.subjectCNNzh_TW
dc.subject音訊辨識zh_TW
dc.subject影像辨識zh_TW
dc.subjectImage classificationen
dc.subjectDeep learningen
dc.subjectAcoustic classificationen
dc.subjectRainfall estimationen
dc.subjectConvolution Neural Networken
dc.title應用光學和聲學儀器以深度學習演算法分類降雨強度之研究zh_TW
dc.titleApplying Deep Learning Algorithm Combined with Optical and Acoustic Devices to Determine Rainfall Intensityen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee韓仁毓;甯方璽zh_TW
dc.contributor.oralexamcommitteeJen-Yu Han;Fang-Hsi Ningen
dc.subject.keyword降雨強度量測,影像辨識,音訊辨識,CNN,MFCC,zh_TW
dc.subject.keywordRainfall estimation,Image classification,Acoustic classification,Deep learning,Convolution Neural Network,en
dc.relation.page115-
dc.identifier.doi10.6342/NTU202402759-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-06-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2029-07-30-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
10.21 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved