Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93749
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor于昌平zh_TW
dc.contributor.advisorChang-Ping Yuen
dc.contributor.author陸尚言zh_TW
dc.contributor.authorSeong In Loken
dc.date.accessioned2024-08-07T16:59:08Z-
dc.date.available2024-08-08-
dc.date.copyright2024-08-07-
dc.date.issued2024-
dc.date.submitted2024-07-29-
dc.identifier.citationAmatayakul, W., & Ramnäs, O. (2001). Life cycle assessment of a catalytic converter for passenger cars. Journal of Cleaner Production, 9(5), 395-403.
Bond, D. R., & Lovley, D. R. (2003). Electricity production by Geobacter sulfurreducens attached to electrodes. Applied and Environmental Microbiology, 69(3), 1548-1555.
Call, D., & Logan, B. E. (2008). Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environmental Science & Technology, 42(9), 3401-3406.
Cao, F., Zhao, C., You, J., Hu, J., Zheng, D., & Song, G. L. (2019). The inhibitive effect of artificial seawater on magnesium corrosion. Advanced Engineering Materials, 21(8), 1900363.
Chae, K.-J., Choi, M.-J., Kim, K.-Y., Ajayi, F., Chang, I.-S., & Kim, I. S. (2010). Selective inhibition of methanogens for the improvement of biohydrogen production in microbial electrolysis cells. International Journal of Hydrogen Energy, 35(24), 13379-13386.
Chang, C.-C., Li, S.-L., Wu, Z.-X., & Yu, C.-P. (2023). Developing a novel computer numerical control-fabricated laminar-flow microfluidic microbial fuel cells as the bioelectrochemical sensor and power source: Enrichment, operation, and Cr (VI) detection. Biosensors and Bioelectronics, 226, 115119.
Cheng, S., & Logan, B. E. (2007a). Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochemistry Communications, 9(3), 492-496.
Cheng, S., & Logan, B. E. (2007b). Sustainable and efficient biohydrogen production via electrohydrogenesis. Proceedings of the National Academy of Sciences, 104(47), 18871-18873.
Ditzig, J., Liu, H., & Logan, B. E. (2007). Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR). International Journal of Hydrogen Energy, 32(13), 2296-2304.
Elgrishi, N., Rountree, K. J., McCarthy, B. D., Rountree, E. S., Eisenhart, T. T., & Dempsey, J. L. (2018). A practical beginner’s guide to cyclic voltammetry. Journal of Chemical Education, 95(2), 197-206.
Feng, Y., Yang, Q., Wang, X., & Logan, B. E. (2010). Treatment of carbon fiber brush anodes for improving power generation in air–cathode microbial fuel cells. Journal of Power Sources, 195(7), 1841-1844.
Freguia, S., Rabaey, K., Yuan, Z., & Keller, J. (2007). Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. Electrochimica Acta, 53(2), 598-603.
Hu, H., Fan, Y., & Liu, H. (2009). Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts. International Journal of Hydrogen Energy, 34(20), 8535-8542.
Jeremiasse, A. W., Hamelers, H. V., Saakes, M., & Buisman, C. J. (2010). Ni foam cathode enables high volumetric H2 production in a microbial electrolysis cell. International Journal of Hydrogen Energy, 35(23), 12716-12723.
Jin, X., Zhang, Y., Li, X., Zhao, N., & Angelidaki, I. (2017). Microbial electrolytic capture, separation and regeneration of CO2 for biogas upgrading. Environmental Science & Technology, 51(16), 9371-9378.
Khine, E. E., Koncz-Horvath, D., Kristaly, F., Ferenczi, T., Karacs, G., Baumli, P., & Kaptay, G. (2022). Synthesis and characterization of calcium oxide nanoparticles for CO2 capture. Journal of Nanoparticle Research, 24(7), 139.
Kim, B. H., Park, D. H., Shin, P. K., Chang, I. S., & Kim, H. J. (1999). Mediator-less biofuel cell. In: Google Patents.
Kim, H. J., Park, H. S., Hyun, M. S., Chang, I. S., Kim, M., & Kim, B. H. (2002). A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme and Microbial technology, 30(2), 145-152.
Kim, J. R., Cheng, S., Oh, S.-E., & Logan, B. E. (2007). Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environmental Science & Technology, 41(3), 1004-1009.
Kim, K.-Y., & Logan, B. E. (2019). Nickel powder blended activated carbon cathodes for hydrogen production in microbial electrolysis cells. International Journal of Hydrogen Energy, 44(26), 13169-13174.
Li, P., Lu, Luo, Jin. (2015). Method for determining bicarbonate content, carbonate content and total carbon dioxide (CO2) content in water.
Lin, F.-Y., Lin, Y.-Y., Li, H.-T., Ni, C.-S., Liu, C.-I., Guan, C.-Y., Chang, C.-C., Yu, C.-P., Chen, W.-S., & Liu, T.-Y. (2022). Trapa natans husk-derived carbon as a sustainable electrode material for plant microbial fuel cells. Applied Energy, 325, 119807.
Linggawati, A. (2016). Preparation and characterization of calcium oxide heterogeneous catalyst derived from Anadara granosa shell for biodiesel synthesis. KnE Engineering.
Liu, H., Grot, S., & Logan, B. E. (2005). Electrochemically assisted microbial production of hydrogen from acetate. Environmental Science & Technology, 39(11), 4317-4320.
Logan, B. E., Call, D., Cheng, S., Hamelers, H. V., Sleutels, T. H., Jeremiasse, A. W., & Rozendal, R. A. (2008). Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environmental Science & Technology, 42(23), 8630-8640.
Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: methodology and technology. Environmental Science & Technology, 40(17), 5181-5192.
Lu, L., Huang, Z., Rau, G. H., & Ren, Z. J. (2015). Microbial electrolytic carbon capture for carbon negative and energy positive wastewater treatment. Environmental Science & Technology, 49(13), 8193-8201.
Lu, L., Guest, J. S., Peters, C. A., Zhu, X., Rau, G. H., & Ren, Z. J. (2018). Wastewater treatment for carbon capture and utilization. Nature Sustainability, 1(12), 750-758.
Moreno-Jimenez, D. A., & Kim, K.-Y. (2022). Enhanced wettability improves catalytic activity of nickel-functionalized activated carbon cathode for hydrogen production in microbial electrolysis cells. Bioresource Technology, 350, 126881.
Nam, J.-Y., & Logan, B. E. (2011). Enhanced hydrogen generation using a saline catholyte in a two chamber microbial electrolysis cell. International Journal of Hydrogen Energy, 36(23), 15105-15110.
Rozendal, R. A., Hamelers, H. V., & Buisman, C. J. (2006). Effects of membrane cation transport on pH and microbial fuel cell performance. Environmental Science & Technology, 40(17), 5206-5211.
Rozendal, R. A., Sleutels, T. H. J. A., Hamelers, H. V., & Buisman, C. J. (2008). Effect of the type of ion exchange membrane on performance, ion transport, and pH in biocatalyzed electrolysis of wastewater. Water Science and Technology, 57(11), 1757-1762.
Rozendal, R. A., Harnisch, F., Jeremiasse, A., & Schroder, U. (2010). Chemically catalyzed cathodes in bioelectrochemical systems.
Rozendal, R. A., Hamelers, H. V., Euverink, G. J., Metz, S. J., & Buisman, C. J. (2006). Principle and perspectives of hydrogen production through biocatalyzed electrolysis. International Journal of Hydrogen Energy, 31(12), 1632-1640.
Ruiz, Y., Baeza, J. A., & Guisasola, A. (2016). Microbial electrolysis cell performance using non-buffered and low conductivity wastewaters. Chemical Engineering Journal, 289, 341-348.
Rustana, C., Muchtar, S., Sugihartono, I., Sasmitaningsihhiadayah, W., Madjid, A., & Hananto, F. (2021). The effect of voltage and electrode types on hydrogen production from the seawater electrolysis process. Journal of Physics: Conference Series,
Saputra, N. H., Wisudo, S. H., Riyanto, M., & Susanto, A. (2019). Penggunaan Elektroda Tembaga Dan Seng Dengan Elektrolit Air Laut Untuk Sumber Energi Lampu Led-Dip. Jurnal Teknologi Perikanan Dan Kelautan, 10(2), 135-147.
Seifan, M., Khajeh Samani, A., Hewitt, S., & Berenjian, A. (2017). The effect of cell immobilization by calcium alginate on bacterially induced calcium carbonate precipitation. Fermentation, 3(4), 57.
Selembo, P. A., Merrill, M. D., & Logan, B. E. (2010). Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells. International Journal of Hydrogen Energy, 35(2), 428-437.
Suparto, I. H., & Laia, D. P. O. (2023). Synthesis and Characterization of Hydroxyapatite from Polymesoda placans Shell using Wet Precipitation Method. JURNAL BIOS LOGOS, 13(1), 85-96.
Taufemback, W. F., Hotza, D., Recouvreux, D. d. O. S., Calegari, P. C., Pineda-Vásquez, T. G., Antônio, R. V., & Watzko, E. S. (2024). Techniques for obtaining and mathematical modeling of polarization curves in microbial fuel cells. Materials Chemistry and Physics, 128998.
Utomo, S. (2015). Pengaruh Konsentrasi Larutan NaNO2 sebagai Inhibitor terhadap Laju Korosi Besi dalam Media Air Laut. Jurnal Teknologi, 7(2), 93-103.
Wang, X., Feng, Y., Liu, J., Lee, H., Li, C., Li, N., & Ren, N. (2010). Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs). Biosensors and Bioelectronics, 25(12), 2639-2643.
Yu, C.-P., Liang, Z., Das, A., & Hu, Z. (2011). Nitrogen removal from wastewater using membrane aerated microbial fuel cell techniques. Water Research, 45(3), 1157-1164.
Zhang, L., Zhu, X., Li, J., Liao, Q., & Ye, D. (2011). Biofilm formation and electricity generation of a microbial fuel cell started up under different external resistances. Journal of Power Sources, 196(15), 6029-6035.
Zhang, Z., Du, J., & Shi, M. (2022). Quantitative analysis of the calcium hydroxide content of EVA-modified cement paste based on TG-DSC in a dual atmosphere. Materials, 15(7), 2660.
Zhu, X., & Logan, B. E. (2014). Microbial electrolysis desalination and chemical-production cell for CO2 sequestration. Bioresource Technology, 159, 24-29.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93749-
dc.description.abstract微生物電解池為一種新興的綠色能源科技,陽極的產電微生物能將廢水中之有機質代謝產生氫離子以及電子,分別透過陽離子交換膜和外電路傳送到陰極,另外藉由一外部電源施加電壓,並藉由陽極提供一部分電位,使陽極產生之氫離子與電子在陰極結合產生氫氣,此技術除了能處理廢水,同時還能產生無碳燃料氫能源。另外透過陰極合成海水中存在之無機碳成分,可不須透過額外之二氧化碳進料來源,即能將其與鈣離子反應生成碳酸鈣,實現產生氫能源的同時,也能進行碳捕捉,轉化成有價化學品再利用。
本實驗採集台北市迪化污水廠之污泥,在H-type雙槽式微生物電解池進行產氫及碳捕捉實驗,實驗運行過程中持續監測電化學活性以及水質變化。透過實驗結果顯示,當施加0.6 ~ 1.0 V之電壓時,其中以含有活性碳及鎳元素塗層之陰極電極表現最為突出,擁有比其他兩組未含有鎳元素之電極更高之電流密度以及產氫效能,尤其在施加電壓為0.6 V時,產氫速率分別高於未經過任何前處理以及僅含有活性碳塗層之陰極電極的66.5倍和12.5倍,由此可見鎳元素可作為析氫反應良好之催化劑。透過反應在陰極槽產生之鹼度,成功使陰極液為人工海水中之鈣離子與其反應為氫氧化鈣,再與碳酸氫鈉反應生成碳酸鈣,沉澱在電極表面與反應槽底部。水質分析部分,在水力停留時間為兩天之下,不同之施加電壓與COD去除率間並無明顯差異,均介於50 ~ 70%之間,而當水力停留時間為三天時,COD去除率均達到74%以上。
zh_TW
dc.description.abstractMicrobial electrolysis cell (MEC) are an emerging green energy technology. The exoelectrogens at the anode chamber oxidize the organic matter to produce protons and electrons, which are transferred to the cathode through a cation exchange membrane and an external circuit, respectively. An external power source is used to apply voltage, and part of the potential is provided by the anode, allowing the protons and electrons produced by the anode to generate hydrogen gas in cathode. This technology not only treats wastewater but also generates green energy resource. Additionally, inorganic carbon in the artificial seawater reacts with calcium ions to form calcium carbonate, eliminating the need for extra carbon dioxide. This process allows for simultaneous hydrogen production and carbon capture, converting captured carbon into valuable chemicals for reuse.
In this experiment, the sludge was collected from the Dihua Wastewater Treatment Plant in Taipei City. It was used in an H-type dual-chamber microbial electrolysis cell to conduct hydrogen production and carbon capture experiments. During the experiment, electrochemical and water quality changes were continuously monitored. The results showed that when a voltage of 0.6 to 1.0 V was applied, the cathode electrode with activated carbon and nickel coating performed the best, exhibiting higher current density and hydrogen production efficiency compared to the other two electrodes without nickel. When the applied voltage was 0.6 V, the hydrogen production rate was 66.5 times and 12.5 times higher than those of the untreated cathode electrode and the cathode electrode with only activated carbon coating, respectively. This indicates that nickel is an excellent catalyst for the hydrogen evolution reaction. Additionally, the alkalinity generated in the cathode chamber successfully reacted with calcium ions in the artificial seawater to form calcium hydroxide, which then reacted with sodium bicarbonate to produce calcium carbonate. The calcium carbonate precipitated on the electrode surface and at the bottom of the cathode chamber. Regarding water quality analysis, with a hydraulic retention time of two days, there was no significant difference in COD removal rate across different applied voltages, with rates ranging between 50% and 70%. When the hydraulic retention time was increased to three days, the COD removal rate reached above 74%.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-07T16:59:08Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-07T16:59:08Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 i
謝辭 ii
中文摘要 iii
Abstract iv
目次 vi
圖次 x
表次 xiii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 研究架構圖 3
第二章 文獻回顧 4
2.1 生物電化學之理論與發展 4
2.1.1 微生物燃料電池產電原理 4
2.1.2 微生物電解池之運行原理 6
2.2 微生物電解池運行之分析 8
2.2.1 陽極菌種及材料種類 8
2.2.2 陰極材料種類 8
2.2.3 交換膜之種類 10
2.2.4 微生物電解池之構型 11
2.3 碳捕捉技術 13
第三章 材料與方法 14
3.1 實驗藥品與設備 14
3.1.1 實驗藥品 14
3.1.2 實驗設備 17
3.2 微生物燃料電池系統 18
3.2.1 雙槽式微生物燃料電池之構型 18
3.2.2 菌種來源與馴養 18
3.2.3 微生物燃料電池之電極製備 19
3.2.4 雙槽式微生物燃料電池之運行 21
3.3 微生物電解池系統 23
3.3.1 雙槽式微生物電解池之構型 23
3.3.2 雙槽式微生物電解池產氫實驗之運行 23
3.3.3 雙槽式微生物電解池碳捕捉實驗之運行 25
3.4 電極特性分析 26
3.4.1 電壓量測與紀錄 26
3.4.2 循環伏安法分析 26
3.4.3 電化學阻抗分析 28
3.4.4 功率密度與極化曲線 30
3.4.5 SEM 32
3.4.6 X光繞射儀 32
3.5 水質項目分析 33
3.5.1 化學需氧量 33
3.5.2 pH值 33
3.5.3 碳酸氫根與碳酸根 33
3.6 氣體項目分析 36
3.6.1 氣體檢測方法 36
3.6.2 氣體產生量計算 37
3.7 微生物組態實驗 39
3.7.1 陽極表面微生物萃取 39
3.7.2 次世代定序 40
第四章 結果與討論 41
4.1 雙槽式微生物燃料電池之電化學分析 41
4.1.1 不同製備條件之陰極產電能力 41
4.1.2 循環伏安法 44
4.1.3 電化學阻抗譜 45
4.1.4 功率密度與極化曲線 46
4.1.5 掃描式電子顯微鏡 49
4.2 雙槽式電解池之產氫分析 51
4.2.1 COD 51
4.2.2 pH 52
4.2.3 系統回饋之電流與電流密度 56
4.2.4 氣相層析 59
4.3 雙槽式電解池之產氫與碳捕捉分析 64
4.3.1 氣相層析 64
4.3.2 COD 68
4.3.3 pH 69
4.3.4 碳酸氫根與碳酸根 71
4.3.5 SEM 73
4.3.6 XRD 79
4.4 雙槽式電解池之陽極表現 81
4.4.1 掃描式電子顯微鏡 81
第五章 結論與建議 83
5.1 結論 83
5.2 建議 84
參考文獻 85
附錄 89
附錄1 菌群結構分析 89
-
dc.language.isozh_TW-
dc.subject微生物電解zh_TW
dc.subject氫氣生產zh_TW
dc.subject海水zh_TW
dc.subject碳捕捉zh_TW
dc.subject鎳塗層電極zh_TW
dc.subjectseawateren
dc.subjecthydrogen productionen
dc.subjectNi-functionalized electrodeen
dc.subjectmicrobial electrolysisen
dc.subjectcarbon captureen
dc.title探討微生物電解池對產氫效率及碳捕捉的優化條件zh_TW
dc.titleOptimization of Hydrogen Production and Carbon Capture by Microbial Electrolysis Cellen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee官崇煜;李學霖zh_TW
dc.contributor.oralexamcommitteeChung-Yu Guan;Shiue-Lin Lien
dc.subject.keyword微生物電解,鎳塗層電極,氫氣生產,海水,碳捕捉,zh_TW
dc.subject.keywordmicrobial electrolysis,Ni-functionalized electrode,hydrogen production,seawater,carbon capture,en
dc.relation.page89-
dc.identifier.doi10.6342/NTU202402255-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-31-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
dc.date.embargo-lift2026-09-29-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
4.33 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved