請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93737
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李枝宏 | zh_TW |
dc.contributor.advisor | Ju-Hong Lee | en |
dc.contributor.author | 陳立恆 | zh_TW |
dc.contributor.author | Li-Heng Chen | en |
dc.date.accessioned | 2024-08-07T16:53:10Z | - |
dc.date.available | 2024-08-10 | - |
dc.date.copyright | 2024-08-07 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-31 | - |
dc.identifier.citation | Eran Fishler, Alex Haimovich, Rick Blum, Dmitry Chizhik, Len Cimini, and Reinaldo Valenzuela. “MIMO radar: An idea whose time has come”. In Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No. 04CH37509), pages 71–78. IEEE, 2004.
Haidong Yan, Jun Li, and Guisheng Liao. “Multitarget identification and localization using bistatic MIMO radar systems”. EURASIP Journal on Advances in Signal Processing, 2008:1–8, 2007. Robert A Monzingo and Thomas W Miller. Introduction to adaptive arrays. Scitech publishing, 2004. Yujie Gu and Amir Leshem. “Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation”. IEEE Transactions on Signal Processing, 60(7):3881–3885, 2012. Harry L Van Trees. “Optimum array processing: Part IV of detection, estimation, and modulation theory”. John Wiley & Sons, 2002. Palghat P Vaidyanathan and Piya Pal. “Sparse sensing with co-prime samplers and arrays”. IEEE Transactions on Signal Processing, 59(2):573–586, 2010. Piya Pal and Palghat P Vaidyanathan. “Coprime sampling and the MUSIC algorithm”. In 2011 Digital signal processing and signal processing education meeting (DSP/SPE), pages 289–294. IEEE, 2011. Yimin D Zhang, Moeness G Amin, and Braham Himed. “Sparsity-based DOA estimation using co-prime arrays”. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 3967–3971. IEEE, 2013. Chengwei Zhou, Zhiguo Shi, Yujie Gu, and Nathan A Goodman. “DOA estimation by covariance matrix sparse reconstruction of coprime array. In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2369–2373. IEEE, 2015. Zhiguo Shi, Chengwei Zhou, Yujie Gu, Nathan A Goodman, and Fengzhong Qu. “Source estimation using coprime array: A sparse reconstruction perspective. IEEE Sensors Journal, 17(3):755–765, 2016. Ralph Schmidt. “Multiple emitter location and signal parameter estimation”. IEEE transactions on antennas and propagation, 34(3):276–280, 1986. Lin Li, Fangfang Chen, Jisheng Dai, et al. “Separate DOD and DOA estimation for bistatic MIMO radar”. International Journal of Antennas and Propagation, 2016, 2016. Ju-Hong Lee and Yun-Xiang Li. “Multiple-input Multiple-out Radar Robust Beamforming Under Unknown Array Mutual Coupling”. In 2023 IEEE 5th Eurasia Conference on IOT, Communication and Engineering (ECICE), pages 100–104. IEEE, 2023. Lei Huang, Jing Zhang, Xu Xu, and Zhongfu Ye. “Robust adaptive beamforming with a novel interference-plus-noise covariance matrix reconstruction method”. IEEE Transactions on Signal Processing, 63(7):1643–1650, 2015. Pan Zhang, Zhiwei Yang, Gang Jing, and Teng Ma. “Adaptive beamforming via desired signal robust removal for interference-plus-noise covariance matrix reconstruction”. Circuits, Systems, and Signal Processing, 40:401–417, 2021. Jian Yang, Jian Lu, Xinxin Liu, and Guisheng Liao. “Robust null broadening beamforming based on covariance matrix reconstruction via virtual interference sources”. Sensors, 20(7):1865, 2020. Jisheng Dai, Xu Bao, Nan Hu, Chunqi Chang, and Weichao Xu. “A recursive RARE algorithm for DOA estimation with unknown mutual coupling”. IEEE Antennas and Wireless Propagation Letters, 13:1593–1596, 2014. 許恩齊.“Angle estimation for Bistatic MIMO Radars under Non-ideal Environments”. 國立臺灣大學電信工程學研究所碩士論文, 2019. Xiaoli Liu and Guisheng Liao. “Direction finding and mutual coupling estimation for bistatic MIMO radar”. Signal Processing, 92(2):517–522, 2012. Irving S Reed, John D Mallett, and Lawrence E Brennan. “Rapid convergence rate in adaptive arrays”. IEEE Transactions on Aerospace and Electronic Systems, (6):853863, 1974. Chengwei Zhou, Yujie Gu, Shibo He, and Zhiguo Shi. “A robust and efficient algorithm for coprime array adaptive beamforming”. IEEE Transactions on Vehicular Technology, 67(2):1099–1112, 2017. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93737 | - |
dc.description.abstract | 本篇論文主要探討在不匹配非理想情況下於雙邊基地互質天線多重輸入多重輸出雷達系統之強健演算法之設計,探討之常見的非理想環境包括: 天線間的未知耦合(unknown mutual coupling, UMC)、天線元件增益相位誤差(gain-phase error, GPE)等等。當這些多重誤差存在於環境中時,會使的系統效能產生嚴重的下降,因此許多強健演算法被提出,但這些演算法多是適用於均勻線性陣列天線(Uniform Linear Array, ULA),如果我們直接將這些演算法套用在互質陣列天線(Coprime Array, CPA)上,常常無法得到很好的強健效果。因此,如何在互質陣列天線與多重誤差存在的情況下,提出能保持良好效能的強健演算法是我們所探討的問題。
本篇論文中提出的演算法,當我們接收到資料向量時,首先會針對想要的訊號(desired signal)與其他的干擾(interference)做離開方向(direction of departure, DOD)與到達方向(direction of arrival, DOA)的角度估計,而傳統上二維MUSIC (Multiple Signal Classification)演算法,其計算複雜量過於龐大,因此分離資料向量為傳送端與接收端兩個部分,分別使用一維MUSIC估計DOD和DOA,以降低角度估計的計算複雜度。 接下來,已知估計的角度後,我們將提出方法估計UMC和GPE的係數,並為了得到進一步更精確的估計結果,有參考過去實驗室曾提出過的解最佳化問題,以及提出迭代估計的兩種方法。有了較為精確估計的結果後,我們可以重建去除掉想要的訊號後的干擾加雜訊自相關矩陣,進行波束成型以提升效能。 | zh_TW |
dc.description.abstract | This thesis mainly explores the design of the robust algorithm of the bistatic multiple-input multiple-output radar system with coprime array in the mismatch scenarios. The mismatch scenarios include gain-phase error (GPE) and unknown mutual coupling (UMC). When the multiple errors exist in the environment, the system performance will seriously decrease. Therefore, many robust algorithms have been presented. However, most of the algorithms are applicable to uniform linear array (ULA). Accordingly, if we directly apply these algorithms to the coprime array, we can seldom get good and robust effects. As a result, how to maintain good efficiency of algorithms in coprime array with multiple errors is what we are going to explore.
In our presented algorithm, first, we want to estimate the direction angle of departure (DOD) and arrival (DOA) based on the desired signal and other interferences after receiving data vector. However, if we use the two dimension MUSIC (Multiple Signal Classification) algorithm to estimate angles, it will lead to high computational complexity. In the purpose of solving this problem, we use the separate model to split the data vector into transmit part and receive part. Thus, we can use one dimension MUSIC algorithm to estimate DOD and DOA, respectively, to reduce the complexity. Next, we present the method to estimate GPE and UMC elements. Then, in order to get more precise estimations, we use two different ways to get it. One refers the method by solving optimization problem which our lab member has been presented, and another is by iteratively estimating parameters. With more precise estimations, we can reconstruct the interference-plus-noise covariance matrix, and perform the beamforming to robust the system performance. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-07T16:53:09Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-07T16:53:10Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii Abstract v 目次 vii 圖次 xi 符號列表 xiv 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 論文貢獻 2 1.4 論文架構 3 第二章 相位陣列天線基本概念與數學架構 5 2.1 相位陣列天線 Phased Array 5 2.1.1 均勻線性陣列天線 Uniform Linear Array (ULA) 6 2.1.2 互質陣列天線 Coprime Array (CLA) 6 2.2 可適性波束成型技術 8 2.2.1 MVDR Beamformer 9 2.2.2 MVDR Spectrum 10 2.2.3 MUSIC 演算法 11 2.2.4 IPNC 13 2.3 陣列天線常見的非理想環境 15 2.3.1 增益相位誤差 Gain-Phase Error (GPE) 15 2.3.2 未知天線耦合 Unknown Mutual Coupling (UMC) 16 第三章 雙邊基地多重輸入多重輸出雷達系統基本概念與數學架構 18 3.1 雙邊基地多重輸入多重輸出雷達系統 Bistatic MIMO Radar System 18 3.2 在Bistatic MIMO下的可適性波術成形技術 20 3.2.1 MVDR Beamformer 20 3.2.2 Separate Model與MVDR Beamformer 21 3.2.3 MVDR Spectrum 23 3.2.4 Separate MUSIC 演算法 23 3.2.5 Separate Model IPNC 24 3.3 雙邊基地多重輸入多重輸出系統常見的非理想環境 28 3.3.1 增益相位誤差 Gain-Phase Error (GPE) 28 3.3.2 未知天線耦合 Unknown Mutual Coupling (UMC) 29 第四章 在MIMO系統中對抗非理想環境之強健演算法 30 4.1 在非理想環境下的MVDR Beamformer 30 4.2 對抗非理想環境下的強健演算法 31 4.2.1 重建干擾加雜訊自相關IPNC矩陣 31 4.2.2 建立於IPNC上以對抗誤差環境之強健演算法 32 4.3 現存強健演算法應用於互質陣列天線下遇到的問題 35 第五章 在CPA MIMO系統中對抗非理想環境之強健演算法 39 5.1 Proposed Method #1 39 5.1.1 傳送端GPE矩陣、UMC矩陣、DOD角度估計 41 5.1.2 接收端GPE矩陣、UMC矩陣、DOA角度估計 44 5.1.3 Separate Model IPNC 47 5.2 Proposed Method #2 48 5.2.1 傳送端GPE矩陣、UMC矩陣、DOD角度估計 49 5.2.2 接收端GPE矩陣、UMC矩陣、DOA角度估計 51 5.2.3 Separate Model IPNC 53 第六章 實驗模擬 55 6.1 實驗參數設定 55 6.2 無誤差環境下的實驗模擬 59 6.3 誤差環境下的實驗模擬 62 6.3.1 GPE 62 6.3.2 UMC 68 6.3.3 GPE + UMC 72 6.3.4 結論 75 第七章 其他常見的非理想環境與實驗模擬 77 7.1 其他常見的非理想環境 77 7.1.1 天線元件位置擾動 Position Error (PE) 77 7.1.2 同調局部散射 Coherent Local Scattering (CLS) 78 7.2 其他誤差的實驗參數設定 78 7.3 其他誤差環境下的實驗模擬 79 7.3.1 PE 79 7.3.2 CLS 84 7.3.3 GPE + UMC + PE 89 7.3.4 GPE + UMC + CLS 92 7.3.5 GPE + UMC + PE + CLS 95 7.3.6 結論 97 第八章 總結與未來展望 99 參考文獻 101 | - |
dc.language.iso | zh_TW | - |
dc.title | 在不匹配環境下於雙邊基地互質天線多重輸入多重輸出雷達系統之強健性波束成型演算法 | zh_TW |
dc.title | Robust Beamforming Algorithm for Bistatic MIMO Radar System with Coprime Array under Mismatch Scenarios | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 劉俊麟;方文賢 | zh_TW |
dc.contributor.oralexamcommittee | Chun-Lin Liu;Wen-Hsien Fang | en |
dc.subject.keyword | 雙邊基地多重輸入多重輸出雷達系統,互質天線,天線間耦合現象,天線增益相位誤差,強健性波束成型,干擾加雜訊自相關矩陣, | zh_TW |
dc.subject.keyword | Bistatic multi-input multi-output radar system,Coprime array,Antenna mutual coupling effect,Gain-phase error,Robust beamforming,Interference-plus-noise covariance matrix, | en |
dc.relation.page | 103 | - |
dc.identifier.doi | 10.6342/NTU202402083 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-01 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 電信工程學研究所 | - |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 5.61 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。