Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93719
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱士維zh_TW
dc.contributor.advisorShi-Wei Chuen
dc.contributor.author吳采穎zh_TW
dc.contributor.authorTsai-Ying Wuen
dc.date.accessioned2024-08-07T16:41:07Z-
dc.date.available2024-08-08-
dc.date.copyright2024-08-07-
dc.date.issued2024-
dc.date.submitted2024-07-29-
dc.identifier.citation1. Yan, C., et al., Automated and Accurate Detection of Soma Location and Surface Morphology in Large-Scale 3D Neuron Images. Plos One, 2013. 8(4): p. e62579.
2. Standring, S., Gray's anatomy e-book: the anatomical basis of clinical practice. 2021: Elsevier Health Sciences.
3. Tanouye, M.A. and A. Ferrus, Action Potentials in Normal and Shaker Mutant Drosophila. Journal of Neurogenetics, 1985. 2(4): p. 253-271.
4. Volgushev, M., et al., Onset Dynamics of Action Potentials in Rat Neocortical Neurons and Identified Snail Neurons: Quantification of the Difference. PLOS ONE, 2008. 3(4): p. e1962.
5. Bear, M., B. Connors, and M.A. Paradiso, Neuroscience: exploring the brain, enhanced edition: exploring the brain. 2020: Jones & Bartlett Learning.
6. McCormick, D.A., Chapter 12 - Membrane Potential and Action Potential, in From Molecules to Networks (Third Edition), J.H. Byrne, R. Heidelberger, and M.N. Waxham, Editors. 2014, Academic Press: Boston. p. 351-376.
7. Caldwell, J.H., Action Potential Initiation and Conduction in Axons, in Encyclopedia of Neuroscience, L.R. Squire, Editor. 2009, Academic Press: Oxford. p. 23-29.
8. Gouwens, N.W. and R.I. Wilson, Signal propagation in Drosophila central neurons. J Neurosci, 2009. 29(19): p. 6239-6249.
9. Berdondini, L., et al., Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab on a Chip, 2009. 9(18): p. 2644-2651.
10. Xu, D., et al., In-Cell Nanoelectronics: Opening the Door to Intracellular Electrophysiology. Nanomicro Lett, 2021. 13(1): p. 127.
11. Wininger, F.A., J.L. Schei, and D.M. Rector, Complete optical neurophysiology: toward optical stimulation and recording of neural tissue. Appl Opt, 2009. 48(10): p. D218-224.
12. Waters, J., A. Schaefer, and B. Sakmann, Backpropagating action potentials in neurones: measurement, mechanisms and potential functions. Prog Biophys Mol Biol, 2005. 87(1): p. 145-170.
13. Neilson, J.P., Fetal electrocardiogram (ECG) for fetal monitoring during labour. Cochrane database of systematic reviews, 2015(12).
14. Khanna, A., et al., Microstates in resting-state EEG: Current status and future directions. Neuroscience and Biobehavioral Reviews, 2015. 49: p. 105-113.
15. Stam, C.J., Use of magnetoencephalography (MEG) to study functional brain networks in neurodegenerative disorders. Journal of the Neurological Sciences, 2010. 289(1): p. 128-134.
16. Murakami, S. and Y. Okada, Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals. J Physiol, 2006. 575(Pt 3): p. 925-936.
17. Lohrke, J., et al., 25 Years of Contrast-Enhanced MRI: Developments, Current Challenges and Future Perspectives. Advances in Therapy, 2016. 33(1): p. 1-28.
18. Enyagina, I.M., et al., Implementing Methods for Calculating the Functional Connectivity of Regions of the Human Brain at Rest and Neuroimaging Using Data of Functional Nuclear Magnetic Resonance Imaging (fMRI). Physics of Particles and Nuclei Letters, 2021. 18: p. 496 - 501.
19. Chen, H.Y., C.B. Wilson, and R. Tycko, Enhanced spatial resolution in magnetic resonance imaging by dynamic nuclear polarization at 5 K. Proceedings of the National Academy of Sciences of the United States of America, 2022. 119(22).
20. Belliveau, J.W., et al., Functional mapping of the human visual cortex by magnetic resonance imaging. Science, 1991. 254(5032): p. 716-719.
21. De Carlos, J.A. and J. Borrell, A historical reflection of the contributions of Cajal and Golgi to the foundations of neuroscience. Brain Research Reviews, 2007. 55(1): p. 8-16.
22. Chen, Q., et al., Imaging neural activity using Thy1-GCaMP transgenic mice. Neuron, 2012. 76(2): p. 297-308.
23. Wang, W., C.K. Kim, and A.Y. Ting, Molecular tools for imaging and recording neuronal activity. Nature Chemical Biology, 2019. 15(2): p. 101-110.
24. Lin, M.Z. and M.J. Schnitzer, Genetically encoded indicators of neuronal activity. Nature Neuroscience, 2016. 19(9): p. 1142-1153.
25. Chen, T.-W., et al., Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature, 2013. 499(7458): p. 295-300.
26. Dana, H., et al., High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nature Methods, 2019. 16(7): p. 649-657.
27. Hill, D.K., The Effect of Stimulation on the Opacity of a Crustacean Nerve Trunk and Its Relation to Fibre Diameter. Journal of Physiology-London, 1950. 111(3-4): p. 283-303.
28. Cohen, L.B., R.D. Keynes, and B. Hille, Light Scattering and Birefringence Changes during Nerve Activity. Nature, 1968. 218(5140): p. 438-441.
29. Cohen, L.B., R.D. Keynes, and D. Landowne, Changes in light scattering that accompany the action potential in squid giant axons: potential-dependent components. J Physiol, 1972. 224(3): p. 701-725.
30. Cohen, L., Changes in neuron structure during action potential propagation and synaptic transmission. Physiological reviews, 1973. 53(2): p. 373-418.
31. Kim, S.A. and S.B. Jun, In-vivo Optical Measurement of Neural Activity in the Brain. Exp Neurobiol, 2013. 22(3): p. 158-166.
32. Foust, A.J. and D.M. Rector, Optically teasing apart neural swelling and depolarization. Neuroscience, 2007. 145(3): p. 887-899.
33. Carter, K.M., J.S. George, and D.M. Rector, Simultaneous birefringence and scattered light measurements reveal anatomical features in isolated crustacean nerve. Journal of Neuroscience Methods, 2004. 135(1): p. 9-16.
34. Ts'o, D.Y., et al., Functional organization of primate visual cortex revealed by high resolution optical imaging. Science, 1990. 249(4967): p. 417-420.
35. Rector, D.M., et al., Spatio-temporal mapping of rat whisker barrels with fast scattered light signals. NeuroImage, 2005. 26(2): p. 619-627.
36. Dong, C., et al., Fluorescence Imaging of Neural Activity, Neurochemical Dynamics, and Drug-Specific Receptor Conformation with Genetically Encoded Sensors. Annual Review of Neuroscience, 2022. 45(1): p. 273-294.
37. Kavalali, E.T. and E.M. Jorgensen, Visualizing presynaptic function. Nature Neuroscience, 2014. 17(1): p. 10-16.
38. Siegel, M.S. and E.Y. Isacoff, A Genetically Encoded Optical Probe of Membrane Voltage. Neuron, 1997. 19(4): p. 735-741.
39. St-Pierre, F., et al., High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nature Neuroscience, 2014. 17(6): p. 884-889.
40. Miyawaki, A., et al., Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin. Nature, 1997. 388(6645): p. 882-887.
41. Baker, B.J., et al., Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells. Journal of Neuroscience Methods, 2007. 161(1): p. 32-38.
42. Alexander-Dann, B., et al., Developments in toxicogenomics: understanding and predicting compound-induced toxicity from gene expression data. Molecular Omics, 2018. 14(4): p. 218-236.
43. Song, L., et al., Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophysical Journal, 1995. 68(6): p. 2588-2600.
44. Holloway, G.A. and D.W. Watkins, LASER DOPPLER MEASUREMENT OF CUTANEOUS BLOOD FLOW. Journal of Investigative Dermatology, 1977. 69(3): p. 306-309.
45. Bonner, R. and R. Nossal, Model for laser Doppler measurements of blood flow in tissue. Applied Optics, 1981. 20(12): p. 2097-2107.
46. Scholkmann, F., et al., A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. NeuroImage, 2014. 85: p. 6-27.
47. Villringer, A., et al., Near infrared spectroscopy (NIRS): A new tool to study hemodynamic changes during activation of brain function in human adults. Neuroscience Letters, 1993. 154(1): p. 101-104.
48. Mathiesen, C., et al., Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. The Journal of Physiology, 1998. 512(2): p. 555-566.
49. Sheth, S.A., et al., Linear and Nonlinear Relationships between Neuronal Activity, Oxygen Metabolism, and Hemodynamic Responses. Neuron, 2004. 42(2): p. 347-355.
50. Didier, M., et al., Membrane water for probing neuronal membrane potentials and ionic fluxes at the single cell level. Nature communications, 2018. 9(1): p. 5287.
51. Lee, H.J., Y. Jiang, and J.-X. Cheng, Label-free optical imaging of membrane potential. Current Opinion in Biomedical Engineering, 2019. 12: p. 118-125.
52. Lazebnik, M., et al., Functional optical coherence tomography for detecting neural activity through scattering changes. Optics Letters, 2003. 28(14): p. 1218-1220.
53. Stepnoski, R.A., et al., Noninvasive detection of changes in membrane potential in cultured neurons by light scattering. Proc Natl Acad Sci U S A, 1991. 88(21): p. 9382-9386.
54. Yang, Y., et al., Imaging Action Potential in Single Mammalian Neurons by Tracking the Accompanying Sub-Nanometer Mechanical Motion. ACS Nano, 2018. 12(5): p. 4186-4193.
55. Tang, J., et al., Imaging localized fast optical signals of neural activation with optical coherence tomography in awake mice. Optics Letters, 2021. 46(7): p. 1744-1747.
56. Foley, E.D.B., et al., Mass photometry enables label-free tracking and mass measurement of single proteins on lipid bilayers. Nature Methods, 2021. 18(10): p. 1247-1252.
57. Ling, T., et al., High-speed interferometric imaging reveals dynamics of neuronal deformation during the action potential. Proceedings of the National Academy of Sciences, 2020. 117(19): p. 10278-10285.
58. Villringer, A. and B. Chance, Non-invasive optical spectroscopy and imaging of human brain function. Trends in Neurosciences, 1997. 20(10): p. 435-442.
59. Ortega-Arroyo, J. and P. Kukura, Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy. Physical Chemistry Chemical Physics, 2012. 14(45): p. 15625-15636.
60. LaPorta, A. and D. Kleinfeld, Interferometric detection of action potentials. Cold Spring Harb Protoc, 2012. 2012(3): p. 307-311.
61. Ling, T., et al., Full-field interferometric imaging of propagating action potentials. Light: Science & Applications, 2018. 7(1): p. 107.
62. Lee, K., et al., Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications. Sensors, 2013. 13(4): p. 4170-4191.
63. Popescu, G., Chapter 5 Quantitative Phase Imaging of Nanoscale Cell Structure and Dynamics, in Methods in Cell Biology. 2008, Academic Press. p. 87-115.
64. Bhaduri, B., et al., Diffraction phase microscopy: principles and applications in materials and life sciences. Advances in Optics and Photonics, 2014. 6(1): p. 57-119.
65. Batabyal, S., et al., Label-free optical detection of action potential in mammalian neurons. Biomedical Optics Express, 2017. 8(8): p. 3700-3713.
66. Oh, S., et al., Label-Free Imaging of Membrane Potential Using Membrane Electromotility. Biophysical Journal, 2012. 103(1): p. 11-18.
67. Wang, Y., et al., Application of optical coherence tomography in clinical diagnosis. Journal of X-Ray Science and Technology, 2019. 27: p. 995-1006.
68. Ulrich, M., et al., Dynamic Optical Coherence Tomography in Dermatology. Dermatology, 2016. 232(3): p. 298-311.
69. Tang, P., et al., Measurement and visualization of stimulus-evoked tissue dynamics in mouse barrel cortex using phase-sensitive optical coherence tomography. Biomedical Optics Express, 2020. 11(2): p. 699-710.
70. Zhang, Y., et al., INS-fOCT: a label-free, all-optical method for simultaneously manipulating and mapping brain function. Neurophotonics, 2020. 7(1): p. 015014.
71. Tong, M.Q., et al., OCT intensity and phase fluctuations correlated with activity-dependent neuronal calcium dynamics in the Drosophila CNS [Invited]. Biomedical Optics Express, 2017. 8(2): p. 726-735.
72. Akkin, T., C. Joo, and J.F. de Boer, Depth-Resolved Measurement of Transient Structural Changes during Action Potential Propagation. Biophysical Journal, 2007. 93(4): p. 1347-1353.
73. Graf, B.W., et al., Detecting intrinsic scattering changes correlated to neuron action potentials using optical coherence imaging. Optics Express, 2009. 17(16): p. 13447-13457.
74. Uma Maheswari, R., et al., Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex. Optics Communications, 2002. 202(1): p. 47-54.
75. Maheswari, R.U., et al., Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo. Journal of Neuroscience Methods, 2003. 124(1): p. 83-92.
76. Young, G., et al., Quantitative mass imaging of single biological macromolecules. Science, 2018. 360(6387): p. 423-427.
77. Paredez, A.R., C.R. Somerville, and D.W. Ehrhardt, Visualization of Cellulose Synthase Demonstrates Functional Association with Microtubules. Science, 2006. 312(5779): p. 1491-1495.
78. Jiang, X., et al., Endo- and Exocytosis of Zwitterionic Quantum Dot Nanoparticles by Live HeLa Cells. ACS Nano, 2010. 4(11): p. 6787-6797.
79. Sadleir, K.R., et al., Presynaptic dystrophic neurites surrounding amyloid plaques are sites of microtubule disruption, BACE1 elevation, and increased Aβ generation in Alzheimer’s disease. Acta Neuropathologica, 2016. 132(2): p. 235-256.
80. Fogarty, M.J., P.G. Noakes, and M.C. Bellingham, Motor Cortex Layer V Pyramidal Neurons Exhibit Dendritic Regression, Spine Loss, and Increased Synaptic Excitation in the Presymptomatic hSOD1(G93A) Mouse Model of Amyotrophic Lateral Sclerosis. The Journal of Neuroscience, 2015. 35(2): p. 643-647.
81. Oreopoulos, J., R. Berman, and M. Browne, Chapter 9 - Spinning-disk confocal microscopy: present technology and future trends, in Methods in Cell Biology, J.C. Waters and T. Wittman, Editors. 2014, Academic Press. p. 153-175.
82. Movsisyan, N. and L.A. Pardo, Measurement of Microtubule Dynamics by Spinning Disk Microscopy in Monopolar Mitotic Spindles. Journal of visualized experiments : JoVE, 2019: p. 153.
83. WANG, E., C.M. BABBEY, and K.W. DUNN, Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems. Journal of Microscopy, 2005. 218(2): p. 148-159.
84. Taylor, R.W. and V. Sandoghdar, Interferometric Scattering Microscopy: Seeing Single Nanoparticles and Molecules via Rayleigh Scattering. Nano Letters, 2019. 19(8): p. 4827-4835.
85. Egger, M.D. and M. Petráň, New Reflected-Light Microscope for Viewing Unstained Brain and Ganglion Cells. Science, 1967. 157(3786): p. 305-307.
86. Ye, C., et al., Drosophila melanogaster as a model to study age and sex differences in brain injury and neurodegeneration after mild head trauma. Frontiers in Neuroscience, 2023. 17.
87. Pandey, U.B. and C.D. Nichols, Human Disease Models in Drosophila melanogaster and the Role of the Fly in Therapeutic Drug Discovery. Pharmacological Reviews, 2011. 63(2): p. 411-436.
88. Keene, A.C. and S. Waddell, Drosophila olfactory memory: single genes to complex neural circuits. Nature Reviews Neuroscience, 2007. 8(5): p. 341-354.
89. Kim, C.K., A. Adhikari, and K. Deisseroth, Integration of optogenetics with complementary methodologies in systems neuroscience. Nature Reviews Neuroscience, 2017. 18(4): p. 222-235.
90. Gunaydin, L.A., et al., Ultrafast optogenetic control. Nature Neuroscience, 2010. 13(3): p. 387-392.
91. Nagel, G., et al., Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proceedings of the National Academy of Sciences, 2003. 100(24): p. 13940-13945.
92. Boyden, E.S., et al., Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience, 2005. 8(9): p. 1263-1268.
93. Klapoetke, N.C., et al., Independent optical excitation of distinct neural populations. Nat Methods, 2014. 11(3): p. 338-346.
94. Hsiao, Y.-T., et al., Spinning disk interferometric scattering confocal microscopy captures millisecond timescale dynamics of living cells. Optics Express, 2022. 30(25): p. 45233-45245.
95. Kim, H., et al., Lethal effects of mitochondria via microfluidics. Bioengineering & Translational Medicine, 2023. 8(3): p. e10461.
96. Neginskaya, M.A., S.E. Morris, and E.V. Pavlov, Both ANT and ATPase are essential for mitochondrial permeability transition but not depolarization. iScience, 2022. 25(11): p. 105447.
97. Bon, P., et al., Fast Label-Free Cytoskeletal Network Imaging in Living Mammalian Cells. Biophysical Journal, 2014. 106(8): p. 1588-1595.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93719-
dc.description.abstract大腦掌控著動物的日常功能、情緒、意識、生命徵象等的重要器官。為了瞭解大腦複雜的功能運作,我們需要從最小單元出發,以神經元訊號的產生以及傳遞來切入,再進一步理解神經間功能性訊號的溝通。透過不同技術可以觀測到這些訊號的發生,如電生理學量測神經細胞的電訊號變化、螢光影像觀察特定離子訊號強度變化等,在這些眾多方法之中無標記影像技術提供了低侵入性、高時間/空間解析度以及可以避免標記式影像技術所導致的缺點,如螢光蛋白的光漂白、標記所需的成本及對樣品的影響。
神經訊號來源於動作電位的產生以及神經之間的離子流動,這些訊號具有訊號微弱、發生時間尺度小的特性造成觀測上的困難,加上神經訊號傳遞的過程建立於組織層級上,具有足夠的立體空間解析度也是另一個挑戰。因此我們透過開發具有高靈敏度、高速且具有軸向解析度的無標記影像技術以提供對於神經訊號新的觀察方式,也同時提供了之前技術所不具有的優點和更多資訊。
在使用無標記影像取得大腦功能性訊號的研究中,干涉式影像技術通過其對相位敏感的優點,尤其適合被用來偵測腦中這些微小訊號。干涉式散射顯微鏡(iSCAT)在干涉式影像技術之中擁有非常優異的靈敏度,可有效地測量這些訊號的變化,而普遍的干涉式散射顯微鏡不具有光學切片的能力,因此為了在腦組織的三維空間中偵測靈敏且快速的訊號變化,我們結合旋轉盤單元組件與干涉式散射顯微鏡開發了共軛焦干涉式散射顯微鏡 (C-iSCAT),使其具有光學切片和高速擷取的能力,加上客製元件達成光偏振方向的控制以及軟體調整,我們成功建構出具有高靈敏度的光學影像系統。另外在技術開發階段中,利用不同樣本進一步確認顯微鏡靈敏度、對比以及解析度,確認在多數情形下我們都能透過此系統取得具有足夠靈敏度且高速的影像訊號。
在本研究中,我們透過相對簡單的樣品如奈米粒子和生物培養細胞來展示我們系統的性能表現,其能夠穩定的在高速攝影(1000 fps) 下拍攝10奈米金粒子以及捕捉細胞內胞器如粒線體與內質網的動態影像。在腦成像方面,我們觀察到果蠅腦內的結構信息,可以觀察特定腦區如蕈狀體(MB)及觸角葉(AL)呈現不同的對比度,同時我們對動態的干涉散射訊號進行時間上變異性分析顯示腦內活動與訊號波動之間的關係。為了進一步獲取與刺激同步的功能訊號,我們利用光遺傳學技術在特定區域標記ChR2基因的果蠅樣本下進行藍光刺激實驗,通過傅立葉分析得到頻譜上的資訊,另外也試著透過統計不同實驗數據間時間上變異性的大小比較來分析刺激所導致的訊號變化。
zh_TW
dc.description.abstractThe brain plays a crucial role in controlling various physiological functions, emotions, consciousness, and vital signs in animals. To gain a comprehensive understanding of its complex workings, it is essential to study and record neuronal signals. Neuronal signaling occurs through the generation of action potentials and the transmission of ions influx. In recent years, several techniques have been developed for studying and recording these signals. Among them, label-free optical imaging approaches offer advantages such as reduced invasiveness, high spatiotemporal resolution, and the avoidance of labeling limitations, such as photobleaching, the cost for labeling and its potential effects.
In the field of label-free imaging for functional signal study, interferometric imaging techniques enable phase-sensitive detection of weak signals. While these interference-based approaches provide quantitative phase retrieval or phase information, interference reflection microscopy excels in sensitivity, which is critical for capturing the weak scattering signals associated with brain activity. Previous related studies mainly focused on the single neuron scale instead of brain tissue. To effectively capture these signals in the brain and detect the subtle and rapid signal changes in three-dimensional distribution, we developed confocal interference microscopy (CIM) by combining it with a spinning-disk unit. This combination allows for optical sectioning and fast acquisition speed. Moreover, through the design of polarization maintaining with customized elements and the system synchronization, we successfully developed the optical imaging system with high sensitivity. We carefully considered the principle in various conditions during observations with our system and described how it primarily functions as a phase-sensitive microscope.
In this work, we first demonstrated the system's performance in nanoparticles and cell samples, with the observation of the cellular organelles dynamics and the recording of 10 nm AuNPs under 1000 fps. We were able to observe clear dynamics of intracellular organelles. In brain imaging, we utilized our system to capture both in vivo and ex vivo Drosophila samples, generating structural contrast images. We also conducted an analysis of temporal fluctuations in the interferometric scattering signals, comparing different conditions. To detect brain functional signals, we designed a stimulation experiment using genetically modified Drosophila samples expressing ChR2 in specific brain regions. We recorded the interferometric scattering signals while activating ChR2 through stimulation at specific frequencies using a blue laser (488nm). We further applied Fourier transform analysis to examine the frequency components of the signals and conducted statistical analyses on the temporal variation differences during stimulation across multiple conditions. Unfortunately, we were unable to extract clear functional signals from the complex interferometric signals. However, there are still potential avenues for exploration in future studies. We provide further suggestions for the project's future directions and improvements.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-07T16:41:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-07T16:41:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要 iii
Abstract v
Content viii
Figure list xi
Table list xiii
Chapter 1. Introduction 1
1.1 The significance of brain research 1
1.2 Understanding brain through recording neuron signals 2
1.3 Common techniques for neuronal recording 3
1.4 Advantages of label-free imaging approaches 6
1.5 Label-free techniques for functional signals 8
1.6 Aim and Structure of this thesis 10
Chapter 2. Scattering-based label-free imaging methodologies 11
2.1 Scattering signals change during firing 11
2.2 Interference-based imaging techniques 11
2.3 Brain functional signal study with the interferometric imaging methods 13
2.4 Interferometric scattering (iSCAT) microscopy 15
2.5 Confocal interference microscopy 16
Chapter 3. Imaging system and brain stimulating 18
3.1 Fast, confocal label-free interference imaging 18
3.1.1 Confocal spinning disk microscopy 18
3.1.2 Principle of our confocal iSCAT microscopy 20
3.1.3 Polarization maintaining 24
3.1.4 Synchronization in spinning disk and camera 25
3.2 Sample selection – Drosophila sample 26
3.3 Brain stimulation methods 27
3.3.1 Electrical stimulation 27
3.3.2 Sensory stimulation 28
3.3.3 Optical stimulation 29
Chapter 4. Methods 31
4.1 Sample preparation 31
4.1.1 Nanoparticles preparation 31
4.1.2 Cell culture and staining 32
4.1.3 Drosophila sample 32
4.1.4 Selection of opsins for optogenetics: Channelrhodopsin-2 33
4.2 System setup 35
4.2.1 Laser engine 35
4.2.2 Confocal spinning disk unit (CSU) 36
4.2.3 Synchronization parameters for camera and CSU 37
4.2.4 Commercial inverted microscope 38
4.2.5 Polarization maintenance 39
4.2.6 Stimulation diagram and setup 41
Chapter 5. Results and discussions 44
5.1 System performance (Preliminary results) 44
5.1.1 Field-of-view (FOV) and pixel size under 100X objective 45
5.1.2 Shot noise limit in our system 46
5.1.3 Sensitivity: AuNPs demonstration 47
5.1.4 Spatial Resolution (for AuNPs and cell imaging) 48
5.1.5 Speed: particle tracking under 1000 frames per second 50
5.2 Biological Sample Characterization: Culture Cos7 cells 50
5.2.1 3D structural images with mammalian COS7 cell 51
5.2.2 Dynamic Imaging of Cellular Organelle Interactions 54
5.3 Confocal iSCAT Imaging of Drosophila Brain 55
5.3.1 Structural scattering images of Drosophila brain 55
5.3.2 Resolution in brain tissues 57
5.3.3 Dynamic scattering signals (Temporal fluctuation) 58
5.3.4 Relation between variation and the brain activity 60
5.4 Stimulation induced functional signals 61
5.4.1 Frequency analysis – Fourier Analysis in time domain 62
5.4.2 Variance statistics of the scattering signals between stimulated and unstimulated brains 64
5.5 Applicable adjustment for future experiments 66
Chapter 6. Conclusion 67
References 69
-
dc.language.isoen-
dc.subject無標記影像zh_TW
dc.subject相位靈敏性zh_TW
dc.subject果蠅腦影像zh_TW
dc.subject光遺傳學zh_TW
dc.subject共軛焦干涉式散射顯微鏡zh_TW
dc.subject干涉式散射顯微鏡zh_TW
dc.subject轉盤式共軛焦顯微鏡zh_TW
dc.subjectDrosophila brain imagingen
dc.subjectPhase sensitivityen
dc.subjectSpinning-disk confocal microscopyen
dc.subjectiSCATen
dc.subjectInterferometric scattering microscopyen
dc.subjectLabel-free imagingen
dc.subjectConfocal iSCATen
dc.subjectOptogeneticsen
dc.title以共軛干涉式散射顯微鏡偵測腦組織內高速動態訊號zh_TW
dc.titleConfocal interferometric scattering (iSCAT) microscopy capturing fast dynamics in brain tissuesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.coadvisor謝佳龍zh_TW
dc.contributor.coadvisorChia-Lung Hsiehen
dc.contributor.oralexamcommittee朱麗安;黃升龍zh_TW
dc.contributor.oralexamcommitteeLi-An Chu;Sheng-Lung Huangen
dc.subject.keyword無標記影像,干涉式散射顯微鏡,轉盤式共軛焦顯微鏡,相位靈敏性,果蠅腦影像,光遺傳學,共軛焦干涉式散射顯微鏡,zh_TW
dc.subject.keywordLabel-free imaging,Interferometric scattering microscopy,iSCAT,Spinning-disk confocal microscopy,Phase sensitivity,Drosophila brain imaging,Optogenetics,Confocal iSCAT,en
dc.relation.page75-
dc.identifier.doi10.6342/NTU202401823-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-31-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
dc.date.embargo-lift2025-07-22-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved