Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93706
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor于昌平zh_TW
dc.contributor.advisorChang-Ping Yuen
dc.contributor.author陳凱婷zh_TW
dc.contributor.authorChan Hoi Tingen
dc.date.accessioned2024-08-07T16:36:16Z-
dc.date.available2024-08-10-
dc.date.copyright2024-08-07-
dc.date.issued2024-
dc.date.submitted2024-07-22-
dc.identifier.citationAllan, & Anthony, J. (1997). 'Virtual Water': A long-term solution for water-short Middle Eastern economies? the 1997 British Association Festival of Science, Roger Stevens Lecture Theatre, University of Leeds, Water and Development Session.
Anne-Marie Boulay, & Stephan Pfister. (2013). ISO 14046 Water Footprinting and Water Impact Assessment in LCA. WULCA. Retrieved March 9 from https://www.wulca-waterlca.org/pdf/Water_Footprint_class_LCAXIII_2013.pdf
Arkhangelsky, E., Levitsky, I., & Gitis, V. (2017). Considering energy efficiency in filtration of engineering nanoparticles. Water Science and Technology-Water Supply, 17(5), 1212-1218. https://doi.org/10.2166/ws.2017.023
ASTM International. (2018). Standard Guide for Ultra-Pure Water Used in the Electronics and Semiconductor Industries.
Berger, M., van der Ent, R., Eisner, S., Bach, V., & Finkbeiner, M. (2014). Water Accounting and Vulnerability Evaluation (WAVE): Considering Atmospheric Evaporation Recycling and the Risk of Freshwater Depletion in Water Footprinting. Environmental Science & Technology, 48(8), 4521-4528. https://doi.org/10.1021/es404994t
Bi, F., Zhao, H. Y., Zhang, L., Ye, Q., Chen, H. L., & Gao, C. J. (2014). Discussion on calculation of maximum water recovery in nanofiltration system. Desalination, 332(1), 142-146. https://doi.org/10.1016/j.desal.2013.11.017
Bjørn, A., Moltesen, A., Laurent, A., Owsianiak, M., Corona, A., Birkved, M., & Hauschild, M. Z. (2018). Life cycle inventory analysis. Life cycle assessment: Theory and practice, 117-165.
BLOWTAC. (n.d.). Agitation pump series CD. Retrieved March 31 from https://www.blowtac.com.tw/zh-TW/product/Submersible_Vortex_Sewage_Pumps-CD.html
Boulay, A.-M., Bulle, C., Bayart, J.-B., Deschênes, L., & Margni, M. (2011). Regional characterization of freshwater use in LCA: modeling direct impacts on human health. Environmental Science & Technology, 45(20), 8948-8957.
Boulay, A.-M., Hoekstra, A. Y., & Vionnet, S. (2013). Complementarities of water-focused life cycle assessment and water footprint assessment. In: ACS Publications.
Cheng, H. H., Yu, W. S., Tseng, S. C., Wu, Y. J., Hsieh, C. L., Lin, S. S., Chu, C. P., Huang, Y. D., Chen, W. R., Lin, T. F., & Whang, L. M. (2023). Reclaimed water in Taiwan: current status and future prospects [Article]. Sustainable Environment Research, 33(1), 14, Article 16. https://doi.org/10.1186/s42834-023-00177-8
Chew, C. M., Aroua, M. K., Hussain, M. A., & Ismail, W. M. Z. W. (2016). Evaluation of ultrafiltration and conventional water treatment systems for sustainable development: an industrial scale case study. Journal of Cleaner Production, 112, 3152-3163.
Den, W., Chen, C.-H., & Luo, Y.-C. (2018). Revisiting the water-use efficiency performance for microelectronics manufacturing facilities: Using Taiwan’s Science Parks as a case study. Water-energy nexus, 1(2), 116-133.
DuPont. (n.d.-a). FilmTec™ SW30HR-380 Wet. Retrieved Feb 15 from https://www.dupont.com/products/filmtecsw30hr380wet.html
DuPont. (n.d.-b). FilmTec™ SW30XLE-440i Wet. Retrieved Feb 15 from https://www.dupont.com/products/filmtecsw30xle440iwet.html
DuPont. (n.d.-c). Resource Center. Retrieved 14 Feb from https://www.dupont.com/resource-center.html?BU=water&restype=faq
DuPont. (n.d.-d). Resource Center. Retrieved 15 Feb from https://www.dupont.com/resource-center.html?BU=water&restype=faq
ecoinvent Database. (n.d.). ecoinvent. https://ecoinvent.org/
Gerbens-Leenes, W., Berger, M., & Allan, J. A. (2021). Water Footprint and Life Cycle Assessment: The Complementary Strengths of Analyzing Global Freshwater Appropriation and Resulting Local Impacts. Water, 13(6), Article 803. https://doi.org/10.3390/w13060803
Giammar, D. E., Greene, D. M., Mishrra, A., Rao, N., Sperling, J. B., Talmadge, M., Miara, A., Sitterley, K. A., Wilson, A., & Akar, S. (2021). Cost and energy metrics for municipal water reuse. ACS ES&T Engineering, 2(3), 489-507.
Goedkoop, M., Heijungs, R., Huijbregts, M., De Schryver, A., Struijs, J., & Van Zelm, R. (2009). ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level, 1, 1-126.
Hauschild, M. Z. (2005). Assessing environmental impacts in a life-cycle perspective. In: ACS Publications.
Hauschild, M. Z., Bonou, A., & Olsen, S. I. (2018). Life cycle interpretation. Life cycle assessment: Theory and practice, 323-334.
Hauschild, M. Z., & Huijbregts, M. A. (2015). Introducing life cycle impact assessment. Springer.
Hoekstra, A. Y. (2003). Virtual water trade. Proceedings of the International Expert Meeting on Virtual Water Trade,
Hoekstra, A. Y. (2015). The water footprint: The relation between human consumption and water use. In The water we eat: Combining virtual water and water footprints (pp. 35-48). Springer.
Hoekstra, A. Y., Chapagain, A. K., Aldaya, M. M., & Mekonnen, M. M. (2011). The water footprint assessment manual: Setting the global standard. Routledge.
Hoekstra, A. Y., Mekonnen, M. M., Chapagain, A. K., Mathews, R. E., & Richter, B. D. (2012). Global monthly water scarcity: blue water footprints versus blue water availability. PloS one, 7(2), e32688.
Huijbregts, M. A., Steinmann, Z. J., Elshout, P. M., Stam, G., Verones, F., Vieira, M., Zijp, M., Hollander, A., & Van Zelm, R. (2017). ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. The International Journal of Life Cycle Assessment, 22, 138-147.
ISO 14040:2006(en) Environmental management — Life cycle assessment — Principles and framework. (2006). https://www.iso.org/obp/ui/en/#iso:std:iso:14040:ed-2:v1:en
ISO 14046:2014(en) Environmental management — Water footprint — Principles, requirements and guidelines. (2014). https://www.iso.org/obp/ui/#iso:std:iso:14046:ed-1:v1:en
Kung Hai Enterprise Corp. (n.d.). Chemical Pump. Retrieved March 31 from https://www.khai.com.tw/en/chemical-pump
Lenntech. (n.d.). Home Processes Disinfection Chemical disinfectants Chloramines
Disinfectants Chloramines. https://www.lenntech.com/processes/disinfection/chemical/disinfectants-chloramines.htm
Lin, C.-C., Lin, J.-Y., Lee, M., & Chiueh, P.-T. (2017). Sector-wise midpoint characterization factors for impact assessment of regional consumptive and degradative water use. Science of the Total Environment, 607, 786-794.
Lin, S.-C., Lee, C.-M., Hong, Y.-R., & Chang, C.-K. (2020). Climate risk assessment and response in the semiconductor industry: Application of TCFD and hedge accounting methods. Journal of Business Administration, 45(2), 1-27.
Lu, C. R., Hou, H., Lee, M., & Hsu, C. C. (2022). TSMC S.T.S.P. Reclaimed Water Plant Commences Operation – The World’s First Industrial Reclaimed Water Plant for Advanced Semiconductor Processes. https://esg.tsmc.com/en/update/greenManufacturing/caseStudy/63/index.html
Mekonnen, M. M., Gerbens-Leenes, P., & Hoekstra, A. Y. (2016). Future electricity: The challenge of reducing both carbon and water footprint. Science of The Total Environment, 569, 1282-1288.
Pasqualino, J. C., Meneses, M., & Castells, F. (2011). Life cycle assessment of urban wastewater reclamation and reuse alternatives. Journal of Industrial Ecology, 15(1), 49-63.
Patton, S., Li, W., Couch, K. D., Mezyk, S. P., Ishida, K. P., & Liu, H. (2017). Impact of the ultraviolet photolysis of monochloramine on 1, 4-dioxane removal: new insights into potable water reuse. Environmental Science & Technology Letters, 4(1), 26-30.
Pearce, G. K. (2008). UF/MF pre-treatment to RO in seawater and wastewater reuse applications: a comparison of energy costs. Desalination, 222(1-3), 66-73. https://doi.org/10.1016/j.desal.2007.05.029
Pfister, S., Boulay, A. M., Berger, M., Hadjikakou, M., Motoshita, M., Hess, T., Ridoutt, B., Weinzettel, J., Scherer, L., Döll, P., Manzardo, A., Nunez, M., Verones, F., Humbert, S., Harding, K., Benini, L., Oki, T., Finkbeiner, M., & Henderson, A. (2017). Understanding the LCA and ISO water footprint: A response to Hoekstra (2016) "A critique on the water-scarcity weighted water footprint in LCA". Ecological Indicators, 72, 352-359. https://doi.org/10.1016/j.ecolind.2016.07.051
Pfister, S., Koehler, A., & Hellweg, S. (2009). Assessing the environmental impacts of freshwater consumption in LCA. Environmental Science & Technology, 43(11), 4098-4104.
Pintilie, L., Torres, C. M., Teodosiu, C., & Castells, F. (2016). Urban wastewater reclamation for industrial reuse: An LCA case study. Journal of Cleaner Production, 139, 1-14.
Polruang, S., Sirivithayapakorn, S., & Talang, R. P. N. (2018). A comparative life cycle assessment of municipal wastewater treatment plants in Thailand under variable power schemes and effluent management programs. Journal of Cleaner Production, 172, 635-648.
PRé Sustainability. (2017). Introduction to water footprinting. Retrieved 29 December from https://pre-sustainability.com/articles/introduction-to-water-footprinting/
Pureflow Inc. (n.d.). Basics of Ultrafiltration. Retrieved 14 Feb from https://pureflowinc.com/ultrafiltration/
Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W. P., Suh, S., Weidema, B. P., & Pennington, D. W. (2004). Life cycle assessment Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environment International, 30(5), 701-720. https://doi.org/10.1016/j.envint.2003.11.005
Selatile, M. K., Ray, S. S., Ojijo, V., & Sadiku, R. (2018). Recent developments in polymeric electrospun nanofibrous membranes for seawater desalination. RSC advances, 8(66), 37915-37938.
Sim, A., & Mauter, M. S. (2021). Cost and energy intensity of US potable water reuse systems. Environmental Science: Water Research & Technology, 7(4), 748-761.
Sustainability, P. (2023). SimaPro Tutorial. https://simapro.com/wp-content/uploads/2023/07/SimaPro-Tutorial.pdf
The Dow Chemical Company. (2011). Dow™ Ultrafiltration Product Manual. In (Vol. Version 3).
Tong, L., Liu, X., Liu, X., Yuan, Z., & Zhang, Q. (2013). Life cycle assessment of water reuse systems in an industrial park. Journal of environmental management, 129, 471-478.
TSMC. (2023). TSMC 2022 Sustainability Report. https://esg.tsmc.com/download/file/2022_sustainabilityReport/english/e-all.pdf
Tsurumi Pump. (n.d.). Submersible Aerator Series TRN/ BER PLS with Aeration Kit. Retrieved March 31 from https://www.tsurumipump.com.tw/products/water_treatment_equipment/pdf/TRN_BER_PLSwAK_IA121-C.pdf
Ullah, M. N., Mushtaq, M. U., Adil, M. A., Sanaullah, K., Ashas, R., & Sabir, R. (2023). Application of UF and RO for power plant's wastewater treatment and recycling for environmental sustainability. Journal of Water and Climate Change, 14(6), 1991-2006. https://doi.org/10.2166/wcc.2023.071
Vanham, D., Medarac, H., Schyns, J. F., Hogeboom, R. J., & Magagna, D. (2019). The consumptive water footprint of the European Union energy sector. Environmental Research Letters, 14(10), 104016.
Wang, Q., Huang, N., Cai, H., Chen, X., & Wu, Y. (2023). Water strategies and practices for sustainable development in the semiconductor industry. Water Cycle, 4, 12-16.
WRA. (2022). Statistic of Water Resources-Registered Amount of Diverted Water on General Water Right. Retrieved from https://wr.wra.gov.tw/WRTInfoAPI/FileUpload/Report/111/11520303.xls
WSTS. (2024). World Semiconductor Trade Statistics Blue Book. https://www.wsts.org/
You, S.-H., Tseng, D.-H., & Guo, G.-L. (2001). A case study on the wastewater reclamation and reuse in the semiconductor industry. Resources, Conservation and Recycling, 32(1), 73-81.
Zhang, X. B., Yang, Y. Y., Ngo, H. H., Guo, W. S., Wen, H. T., Wang, X. A., Zhang, J. Q., & Long, T. W. (2021). A critical review on challenges and trend of ultrapure water production process [Review]. Science of The Total Environment, 785, 13, Article 147254. https://doi.org/10.1016/j.scitotenv.2021.147254
Zhang, X. L., Jiang, J. J., Yuan, F., Song, W., Li, J., Xing, D. Y., Zhao, L., Dong, W. Y., Pan, X. H., & Gao, X. L. (2022). Estimation of water footprint in seawater desalination with reverse osmosis process. Environmental Research, 204, Article 112374. https://doi.org/10.1016/j.envres.2021.112374
丁執宇(1998)。生命週期衝擊評估方法介紹及應用。工業污染防治,(66)。
工業技術研究院綠能與環境研究所(2024)。再生能源發電量統計112年11月份月報
內政部國土管理署(2023)。中華民國 111 年度污水下水道統計要覽
台灣自來水公司(2023)。台灣自來水事業統計年報 111年統計年報
台灣電力公司(2023)。電源開發規劃。歷年發購電量占比。
自來水全球資訊網(2024)。坪頂淨水場南投縣竹山鎮坪頂裡坪頂路坪頂淨水場。
何承嶧、遊育晟、陳威豪、陳乃菁、劉彥均、王冠中、楊昭端(2019)。台水公司水安全計畫-以坪頂淨水場為例。自來水會刊,38(2),17-30。
財團法人工業技術研究院產業服務中心 (2021)。 水利署:2026年11座再生水廠日供33.4萬噸。 經濟部產業發展署。
財團法人中興工程顧問社環境工程研究中心(2023)。水的循環經濟。財團法人中興工程顧問社環境工程研究中心。
高雄市政府水利局 (2023)。 橋頭再生水廠興建進度超前 預定115年起供水台積電。
高雄市政府經濟發展局(2021a)。「楠梓產業園區設置計畫」可行性規劃報告公聽會暨「變更高雄市主要計畫(楠梓區)(原中油公司高雄煉油廠)(配合楠梓產業園區設置計畫)案」變更前座談會。
高雄市政府經濟發展局(2021b)。楠梓產業園區設置計畫環境影響說明書
陳昀(2023年)。拋二次能源轉型 賴清德:加速發展氫能、2030燃煤降至2成。自由時報。https://news.ltn.com.tw/news/politics/breakingnews/4463487
黃啓南(2022)。高雄市橋頭再生水廠興建移轉營運案招商說明會簡報。
經濟部工業局(2017年)。能源轉型路徑規劃106年能源及減碳辦公室第2次委員會議,。https://www.ey.gov.tw/File/FE659A8C337D69EB?A=C
經濟部工業局、財團法人台灣產業服務基金會 (2005)。 廢水污泥減量技術手冊 (第 1冊)。 經濟部工業局。
經濟部水利署(2021)。臺灣各區水資源經理基本計畫 (核定本)
經濟部水利署(2023a)。中華民國一一一年台灣水文年報總冊
經濟部水利署(2023b)。利用資訊。https://rwrisp.wra.gov.tw/wraInfo.aspx
經濟部水利署、台灣水環境再生協會(2022)。推動再生水發展計畫
經濟部水利署水利規劃分署(2022)。鳳山水資源中心再生水利用規劃。https://www.wrap.gov.tw/News_Content.aspx?n=26404&s=90408
臺南市永康水資源回收中心 (2023)。 臺南永康水資源回收中心參訪研討活動。 載於 財團法人中興工程科技研究發展基金會、財團法人中興工程顧問社、臺南市政府水利局 (主編)。
顏瑞田(2023)。台積電高雄2奈米廠拚2025年量產 第二廠明年初動工。工商時報。https://www.ctee.com.tw/news/20231226701378-430501
蘇怡瑄、吳鳴峯、黃欣栩(2022)。水中微量尿素檢測方法與去除技術介紹。中興工程,第156期,45-54。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93706-
dc.description.abstract臺灣有著顯著的豐枯水期,加上陡峭地形及短而湍急的河川,造成水資源不足的問題,當中以南部缺水問題更為嚴重。近年,再生水廠在各政府部門的推動下陸續落成,受限於法規的規範,再生水主要以非食品業、藥品業的工業用途為主。而半導體產業為耗水且需要高品質水源的產業,缺水危機會對其帶來一定風險,從而影響臺灣經濟。隨著水處理技術的成熟,以再生水作為半導體產業水源的做法漸趨普及,產業耗水性的特質有望能提高工業部門的再生水應用。透過工業用水減量,則可調動更多水源供其他用水部門使用,有助於緩解水資源短缺。

本研究目的是通過水足跡分析,瞭解運用民生污水產製之再生水供應半導體用水對於緩解水資源短缺的效率,並分析水回收中的各個處理過程對環境的衝擊。研究以高雄的一個再生水廠作為實際案例,根據 ISO 14046 標準方法進行水足跡分析,並聚焦於半導體產業使用再生水及自來水的水足跡差異,分析符合半導體產業水質標準的 1 立方米水的水足跡。水足跡分為三個部分呈現,包括間接用水、直接用水及用水減量。為反映再生水廠對區域性水壓力的影響,本研究套用了針對臺灣水域建立的水資源耗用特徵因數,以瞭解各情境取水量的變化對特定集水區的不同用水部門帶來的潛在的最大衝擊或效益。

研究結果顯示,以再生水為水源情境下的間接用水比自來水更高,再生水供水的水足跡主要貢獻來源為用藥(54.23%)及用電(45.33%)。然而再生水供水在運用民生污水的情況下,彌補了再生水與自來水供水因水回收率所致的直接用水差異,因此再生水供水的直接用水稍微比自來水供水低。另外,再生水供水情境緩解了作為自來水廠取水源高屏溪的用水壓力。綜合以上,因間接用水沒有特定取水來源,再生水廠的緩解效率主要參考直接用水的衝擊及用水減量的效率。以集水區水源出發,再生水廠水源,即阿公店溪,取水量會增加;而自來水廠水源,即高屏溪,取水量則會減少。與不同集水區的特徵因數相乘後可見,無論從哪一個部門調配水源,再生水廠所改變的取水量對生態用水造成的剝削或緩解都是最顯著的。除生態部門,阿公店溪的唯一用水標的是家庭公共用水,若需從阿公店溪調配水作再生水廠之水源,勢必要影響家庭公共用水,因此再生水廠所需用水主要對家庭公共用水造成潛在競爭壓力。若需從高屏溪調配水作淨水廠之水源,比較分別從各部門調動水源,各用水標的潛在競爭壓力從大至小順序為:工業、農業、公共。

本研究使用水足跡分析評估運用民生用水產製之再生水供應半導體用水對於區域水資源的效益,提供水壓力影響數據,以瞭解再生水廠在不同集水區造成的水資源競爭改變,可供集水區可用水管理參考。
zh_TW
dc.description.abstractTaiwan has distinct wet and dry seasons, with its steep relief and short, rapid river flow, which results in a water shortage crisis. More water reclamation plants are gradually constructed, however, under the restriction by law regulation, the application of reclaimed water is mainly limited to industrial uses other than food and pharmaceutical industries. Meanwhile, as a water-consuming industry with high water quality requirements, the semiconductor industry faces certain risks under water shortage, which may affect the economy of Taiwan. As water treatment technology gets more mature, the application of reclaimed water for semiconductor uses also becoming more common. The water-consuming characteristic of this industry is expected to increase reclaimed water usage in the industrial sector. By reducing water consumption in the industrial sector, more water can be freed up for other water-use sectors, alleviating water scarcity.

Through water footprint assessment, this study aims to understand the efficiency of utilizing reclaimed water produced with municipal wastewater to supply semiconductor uses in alleviating water shortage and to analyze the environmental impact of each treatment process in water reclamation. QT Water Reclamation Plant is chosen as a case study, a water footprint assessment is conducted based on the ISO14046 LCA approach, with a focus on the water consumption difference between reclaimed water and tap water as the water source for semiconductor water uses, to examine the water footprint of producing 1 m³ of water that meets the water quality demand of the semiconductor industry. The water footprint is classified into 3 parts, indirect water consumption, direct water consumption, and the water consumption reduction under the presence of a water reclamation plant. To reflect the impact of the water reclamation plant on regional water stress, a characterization factor for consumptive water use developed based on conditions in Taiwan is applied to understand the greatest potential water competition pressure brought to different water-use sectors in corresponding watersheds.

The results of this study show, that indirect water consumption in scenarios with reclaimed water as the source is higher than tap water. The major contribution of the water footprint of reclaimed water sourcing is from chemical addition (54.23%) and electricity consumption (45.33%). Under the effect of the introduction of municipal wastewater, the direct water consumption difference between supplying reclaimed water and tap water due to water recovery rates is narrowed. Therefore, the direct water consumption of reclaimed water is slightly lower than tap water. The water reclamation plant can also relieve the water stress of the Gaoping River, the source of tap water production.

As there is no specific source of water withdrawal for indirect water consumption, the mitigation efficiency of the water reclamation plant mainly refers to the impact of direct water consumption and water consumption reduction by the plant. In terms of watersheds, water withdrawal from the Agongdian River would increase, while from the Gaoping River would reduce. No matter from which sector the water is diverted, the changes in water demand impact the water stress of the ecosystem, which brings the most significant impact on this sector. Apart from the ecosystem sector, as the domestic sector is the only water user of the Agongdian River, the water reclamation plant mainly creates potential competitive pressure on this sector as water has to be diverted for the water demand of the plant. The potential competitive pressure on each sector in the Gaoping River is in the descending order of industry, agriculture, and domestic.

This study uses water footprint analysis to evaluate the benefits of utilizing reclaimed water from municipal wastewater to supply semiconductor-use water to regional water availability. The impact on water stress is quantified, to understand the changes in competitive pressure by the water reclamation plant on certain watersheds, which can be used as a reference for water management on the regional water availability.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-07T16:36:16Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-07T16:36:16Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsMaster’s Thesis Acceptance Certificate i
Acknowledgment ii
摘要 iv
ABSTRACT vi
Table of Contents ix
List of Figures xii
List of Tables xiv
Chapter 1 Introduction 1
1.1 Background 1
1.2 Research Motivation and Objectives 2
1.3 Research Framework 4
Chapter 2 Literature Review 7
2.1 Water Resource Distribution in Taiwan 7
2.1.1 Water Shortage in Taiwan 7
2.1.2 Water Shortage in Southern Taiwan 9
2.2 Current development of water reclamation in Taiwan 10
2.2.1 Progress of Reclaimed Water Resources Development 11
2.2.2 Water Quality of Reclaimed Water 13
2.3 Application of Reclaimed Water in the Semiconductor Industry 15
2.3.1 Urea removal process for ultrapure water production 19
2.4 Comparing Water Footprint Approach: ISO14046 and WFN 21
2.5 Water Scarcity Indicators 27
Chapter 3 Methodology 31
3.1 Case Water Reclamation Plant and Target Users 31
3.1.1 QT Water Reclamation Plant as Water Supplier 31
3.1.2 NZ Industrial Park as Water User 34
3.2 Research Framework 34
3.3 Water Footprint Assessment: Goal and Scope Definition 37
3.3.1 Functional Unit and System Boundary 37
3.3.2 Scenario Setup 38
3.4 Water Footprint Assessment: Life Cycle Inventory Analysis 40
3.4.1 Indirect Water Consumption 41
3.4.2 Direct Water Consumption 58
3.4.3 Water Consumption Reduction by Water Reclamation 61
3.5 Water Footprint Assessment: Life Cycle Impact Assessment 62
Chapter 4 Results and Discussion 65
4.1 Indirect Water Consumption of Water Production Process 65
4.1.1 Indirect Water Consumption of Water Reclamation Plant 66
4.1.2 Indirect Water Consumption of Water Treatment Plant 70
4.1.3 Indirect Water Consumption of Ultrapure Water Production 71
4.1.4 Indirect Water Consumption of Electricity Production 72
4.2 Characterization Factors for Consumptive Water Use 78
4.3 Direct Water Consumption of Water Production Process 79
4.3.1 Impacts of Direct Water Consumption on Regional Water Stress 83
4.4 Water Consumption Reduction by Water Reclamation 87
4.5 Chapter Summary 88
Chapter 5 Conclusion and Suggestions 91
5.1 Conclusion 91
5.2 Suggestions 92
References 95
-
dc.language.isoen-
dc.title半導體產業使用再生水之永續性評估:不同情境的水足跡比較分析zh_TW
dc.titleSustainability Assessment of Reclaimed Water for Semiconductor Use: A Comparative Water Footprint Analysis Under Different Scenariosen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee闕蓓德;潘述元zh_TW
dc.contributor.oralexamcommitteePei-Te Chiueh;Shu-Yuan Panen
dc.subject.keyword再生水,超純水生產,半導體產業,水足跡,水壓力指標,水資源耗用,zh_TW
dc.subject.keywordReclaimed Water,Ultrapure Water Production,Semiconductor Industry,Water Footprint,Water Stress Indicator,Water Consumption,en
dc.relation.page103-
dc.identifier.doi10.6342/NTU202401961-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-22-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
dc.date.embargo-lift2026-07-22-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2026-07-22
3.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved