請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93705完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃漢邦 | zh_TW |
| dc.contributor.advisor | Han-Pang Huang | en |
| dc.contributor.author | 曾建堯 | zh_TW |
| dc.contributor.author | Chien-Yao Tseng | en |
| dc.date.accessioned | 2024-08-07T16:35:56Z | - |
| dc.date.available | 2024-08-08 | - |
| dc.date.copyright | 2024-08-07 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-31 | - |
| dc.identifier.citation | [1]N. Adrian, V. T. Do, and Q. C. Pham, "Dfbvs: Deep Feature-Based Visual Servo," 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE), pp. 1783-1789, 2022.
[2]C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. M. Montiel, and J. D. Tardós, "Orb-Slam3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap Slam," IEEE Transactions on Robotics, vol. 37, no. 6, pp. 1874-1890, 2021. [3]F. Chaumette, "Potential Problems of Stability and Convergence in Image-Based and Position-Based Visual Servoing," The confluence of vision and control, London, D. J. Kriegman, G. D. Hager, and A. S. Morse, Eds.: Springer London, pp. 66-78, 1998. [4]F. Chaumette, S. Hutchinson, and P. Corke, "Visual Servoing," Springer Handbook of Robotics, B. Siciliano and O. Khatib Eds. Cham: Springer International Publishing, pp. 841-866, 2016. [5]D. De Gregorio, F. Tombari, and L. Di Stefano, "Robotfusion: Grasping with a Robotic Manipulator Via Multi-View Reconstruction," Computer Vision – ECCV 2016 Workshops, Cham, G. Hua and H. Jégou, Eds.: Springer International Publishing, pp. 634-647, 2016. [6]E. W. Dijkstra, "A Note on Two Problems in Connexion with Graphs," Numerische Mathematik, vol. 1, no. 1, pp. 269-271, 1959. [7]L. Eldén, "A Weighted Pseudoinverse, Generalized Singular Values, and Constrained Least Squares Problems," BIT Numerical Mathematics, vol. 22, no. 4, pp. 487-502, 1982. [8]J. Engel, T. Schöps, and D. Cremers, "Lsd-Slam: Large-Scale Direct Monocular Slam," Computer Vision – ECCV 2014, Cham, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds.: Springer International Publishing, pp. 834-849, 2014. [9]X. Fan, Y. Guo, H. Liu, B. Wei, and W. Lyu, "Improved Artificial Potential Field Method Applied for Auv Path Planning," Mathematical Problems in Engineering, vol. 2020, no. 1, p. 6523158, 2020. [10]C. Fantacci, G. Vezzani, U. Pattacini, V. Tikhanoff, and L. Natale, "Markerless Visual Servoing on Unknown Objects for Humanoid Robot Platforms," 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 3099-3106, 2018. [11]M. Fourmy, V. Priban, J. K. Behrens, N. Mansard, J. Sivic, and V. Petrik, "Visually Guided Model Predictive Robot Control Via 6d Object Pose Localization and Tracking," arXiv preprint arXiv:2311.05344, 2023. [12]D. Fox, W. Burgard, and S. Thrun, "The Dynamic Window Approach to Collision Avoidance," IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33, 1997. [13]J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, "Batch Informed Trees (Bit*): Sampling-Based Optimal Planning Via the Heuristically Guided Search of Implicit Random Geometric Graphs," 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 3067-3074, 2015. [14]Q. Gongye, P. Cheng, and J. Dong, "Image-Based Visual Servoing with Depth Estimation," Transactions of the Institute of Measurement and Control, vol. 44, no. 9, pp. 1811-1823, 2021. [15]Y. Han Ul and L. and Dong-Wook, "Subplanner Algorithm to Escape from Local Minima for Artificial Potential Function Based Robotic Path Planning," IJFIS, vol. 18, no. 4, pp. 263-275, 2018. [16]P. E. Hart, N. J. Nilsson, and B. Raphael, "A Formal Basis for the Heuristic Determination of Minimum Cost Paths," IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100-107, 1968. [17]E. Iovene, A. Casella, A. V. Iordache, J. Fu, F. Pessina, M. Riva, G. Ferrigno, and E. D. Momi, "Towards Exoscope Automation in Neurosurgery: A Markerless Visual-Servoing Approach," IEEE Transactions on Medical Robotics and Bionics, vol. 5, no. 2, pp. 411-420, 2023. [18]G. Jocher, A. Chaurasia, and J. Qiu, "Ultralytics Yolo," 2023. [19]S. Karaman and E. Frazzoli, "Sampling-Based Algorithms for Optimal Motion Planning," The International Journal of Robotics Research, vol. 30, no. 7, pp. 846-894, 2011. [20]G. Klein and D. Murray, "Parallel Tracking and Mapping for Small Ar Workspaces," 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 225-234, 2007. [21]M. Klingensmith, S. S. Sirinivasa, and M. Kaess, "Articulated Robot Motion for Simultaneous Localization and Mapping (Arm-Slam)," IEEE Robotics and Automation Letters, vol. 1, no. 2, pp. 1156-1163, 2016. [22]J. J. Kuffner and S. M. LaValle, "Rrt-Connect: An Efficient Approach to Single-Query Path Planning," Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), vol. 2, pp. 995-1001 vol.2, 2000. [23]C.-Y. Kuo, C.-C. Huang, C.-H. Tsai, Y.-S. Shi, and S. Smith, "Development of an Immersive Slam-Based Vr System for Teleoperation of a Mobile Manipulator in an Unknown Environment," Computers in Industry, vol. 132, p. 103502, 2021. [24]T. La Anh and J.-B. Song, "Robotic Grasping Based on Efficient Tracking and Visual Servoing Using Local Feature Descriptors," International Journal of Precision Engineering and Manufacturing, vol. 13, no. 3, pp. 387-393, 2012. [25]Y. Labbé, L. Manuelli, A. Mousavian, S. Tyree, S. Birchfield, J. Tremblay, J. Carpentier, M. Aubry, D. Fox, and J. Sivic, "Megapose: 6d Pose Estimation of Novel Objects Via Render & Compare," arXiv preprint arXiv:2212.06870, 2022. [26]D. Lee and H. Myung, "Solution to the Slam Problem in Low Dynamic Environments Using a Pose Graph and an Rgb-D Sensor," Sensors, vol. 14, no. 7, pp. 12467-12496, 2014. [27]H. Li, X. Wang, X. Huang, Y. Ma, and Z. Jiang, "Multi-Joint Active Collision Avoidance for Robot Based on Depth Visual Perception," IEEE/CAA Journal of Automatica Sinica, vol. 9, no. 12, pp. 2186-2189, 2022. [28]S.-Y. Lo, C.-A. Cheng, and H.-P. Huang, "Virtual Impedance Control for Safe Human-Robot Interaction," Journal of Intelligent & Robotic Systems, vol. 82, no. 1, pp. 3-19, 2016. [29]B. Luo, H. Chen, F. Quan, S. Zhang, and Y. Liu, "Natural Feature-Based Visual Servoing for Grasping Target with an Aerial Manipulator," Journal of Bionic Engineering, vol. 17, no. 2, pp. 215-228, 2020. [30]R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, "Orb-Slam: A Versatile and Accurate Monocular Slam System," IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1147-1163, 2015. [31]R. Mur-Artal and J. D. Tardós, "Orb-Slam2: An Open-Source Slam System for Monocular, Stereo, and Rgb-D Cameras," IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1255-1262, 2017. [32]H. Nascimento, M. Mujica, and M. Benoussaad, "Collision Avoidance Interaction between Human and a Hidden Robot Based on Kinect and Robot Data Fusion," IEEE Robotics and Automation Letters, vol. 6, no. 1, pp. 88-94, 2021. [33]M. Nascimento, P. Vicente, and A. Bernardino, "2d Visual Servoing Meets Rapidly-Exploring Random Trees for Collision Avoidance," 2020 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), pp. 227-232, 2020. [34]A. Nasuha, A. S. Priambodo, and G. N. P. Pratama, "Vortex Artificial Potential Field for Mobile Robot Path Planning," Journal of Physics: Conference Series, vol. 2406, no. 1, p. 012001, 2022. [35]R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon, "Kinectfusion: Real-Time Dense Surface Mapping and Tracking," 2011 10th IEEE International Symposium on Mixed and Augmented Reality, pp. 127-136, 2011. [36]J. Pan, S. Chitta, and D. Manocha, "Fcl: A General Purpose Library for Collision and Proximity Queries," 2012 IEEE International Conference on Robotics and Automation, pp. 3859-3866, 2012. [37]S.-O. Park, M. C. Lee, and J. Kim, "Trajectory Planning with Collision Avoidance for Redundant Robots Using Jacobian and Artificial Potential Field-Based Real-Time Inverse Kinematics," International Journal of Control, Automation and Systems, vol. 18, no. 8, pp. 2095-2107, 2020. [38]C. Roesmann, W. Feiten, T. Woesch, F. Hoffmann, and T. Bertram, "Trajectory Modification Considering Dynamic Constraints of Autonomous Robots," ROBOTIK 2012; 7th German Conference on Robotics, pp. 1-6, 2012. [39]R. B. Rusu and S. Cousins, "3d Is Here: Point Cloud Library (Pcl)," 2011 IEEE International Conference on Robotics and Automation, pp. 1-4, 2011. [40]H. Shi, J. Chen, W. Pan, K. S. Hwang, and Y. Y. Cho, "Collision Avoidance for Redundant Robots in Position-Based Visual Servoing," IEEE Systems Journal, vol. 13, no. 3, pp. 3479-3489, 2019. [41]I. A. Sucan, M. Moll, and L. E. Kavraki, "The Open Motion Planning Library," IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp. 72-82, 2012. [42]E. Sucar, K. Wada, and A. Davison, "Nodeslam: Neural Object Descriptors for Multi-View Shape Reconstruction," 2020 International Conference on 3D Vision (3DV), pp. 949-958, 2020. [43]R. Szczepanski, T. Tarczewski, and K. Erwinski, "Energy Efficient Local Path Planning Algorithm Based on Predictive Artificial Potential Field," IEEE Access, vol. 10, pp. 39729-39742, 2022. [44]R. Szczepanski, "Safe Artificial Potential Field - Novel Local Path Planning Algorithm Maintaining Safe Distance from Obstacles," IEEE Robotics and Automation Letters, vol. 8, no. 8, pp. 4823-4830, 2023. [45]F. Tokuda, S. Arai, and K. Kosuge, "Convolutional Neural Network-Based Visual Servoing for Eye-to-Hand Manipulator," IEEE Access, vol. 9, pp. 91820-91835, 2021. [46]C.-Y. Tzou, "Safely Cooperative Planning and Control of Multi-Robot Manipulators," Master Thesis, Department of Mechanical Engineering, National Taiwan University, 2017. [47]H. Wang, Y. H. Liu, and D. Zhou, "Adaptive Visual Servoing Using Point and Line Features with an Uncalibrated Eye-in-Hand Camera," IEEE Transactions on Robotics, vol. 24, no. 4, pp. 843-857, 2008. [48]C. Warren, "Global Path Planning Using Artificial Potential Fields," 1989 IEEE International Conference on Robotics and Automation, pp. 316,317,318,319,320,321, 1989. [49]B. Wen, C. Mitash, B. Ren, and K. E. Bekris, "Se(3)-Tracknet: Data-Driven 6d Pose Tracking by Calibrating Image Residuals in Synthetic Domains," 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10367-10373, 2020. [50]B. Wen, W. Yang, J. Kautz, and S. Birchfield, "Foundationpose: Unified 6d Pose Estimation and Tracking of Novel Objects," Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17868-17879, 2024. [51]Y. Wu, Y. Zhang, D. Zhu, X. Chen, S. Coleman, W. Sun, X. Hu, and Z. Deng, "Object Slam-Based Active Mapping and Robotic Grasping," 2021 International Conference on 3D Vision (3DV), pp. 1372-1381, 2021. [52]Z. Wu, J. Dai, B. Jiang, and H. R. Karimi, "Robot Path Planning Based on Artificial Potential Field with Deterministic Annealing," ISA Transactions, vol. 138, pp. 74-87, 2023. [53]L. Xiao, J. Wang, X. Qiu, Z. Rong, and X. Zou, "Dynamic-Slam: Semantic Monocular Visual Localization and Mapping Based on Deep Learning in Dynamic Environment," Robotics and Autonomous Systems, vol. 117, pp. 1-16, 2019. [54]L. Yi-Hsiu, "Safe Cooperative Control and Dynamic Path Planning of Dual Manipulators," Master Thesis, Department of Mechanical Engineering, National Taiwan University, 2021. [55]Z. Zivkovic, "Improved Adaptive Gaussian Mixture Model for Background Subtraction," Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., vol. 2, pp. 28-31 Vol.2, 2004. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93705 | - |
| dc.description.abstract | 本論文提出了Arm-SLAM 框架,它將同步定位與建圖 (SLAM)與機器手臂整合在一起。Arm-SLAM 框架使用 SLAM 創建為機器手臂提供的環境地圖。此外,Arm-SLAM框架包括改進的虛擬阻抗控制方法,並設計了無標記視覺伺服方法,以確保機械手臂的安全性和準確性。Arm-SLAM框架及其組件,包括改進的虛擬阻抗控制和無標記視覺伺服,透過三個實驗結果進行了演示。在第一個實驗中,改進的虛擬阻抗控制證明它可以成功地避開靜態和動態障礙物。在第二個實驗中,與使用ArUco標記的視覺伺服方法相比,無標記視覺伺服方法具有類似的重複性,但誤差為1.5公分,比基線方法低1.5公分。此外,無標記視覺伺服方法具有足夠的穩健性,可以應對手眼校準方法帶來的誤差。在最後的實驗中,ArmSLAM框架證明了它可以在複雜的環境下成功運作。 | zh_TW |
| dc.description.abstract | This thesis proposes the Arm-SLAM framework, which integrates Simultaneous Localization and Mapping (SLAM) with a robot manipulator. The Arm-SLAM framework uses the SLAM to create the map of the environment provided for the robot manipulator. Moreover, the Arm-SLAM framework includes a modified virtual impedance control method and designed a markerless visual servoing method to ensure the safety and accuracy of the robot manipulator. The Arm-SLAM framework and its components, including the modified virtual impedance control and markerless visual servoing, are demonstrated through three experimental results. In the first experiment, the modified virtual impedance control proved that it could successfully avoid both static and dynamic obstacles. In the second experiment, compared with the visual servoing method using the ArUco marker, the markerless visual servoing method has similar repeatability, but the error is 1.5 cm, which is 1.5 cm lower than the baseline method. Moreover, the markerless visual servoing method is robust enough to face the error caused by the hand-eye calibration method. In the final experiment, the ArmSLAM framework proved that it can successfully work under a complex environment. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-07T16:35:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-07T16:35:56Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文口試委員審定書 i
英文口試委員審定書 iii 誌謝 v 摘要 vii Abstract ix List of Tables xiii List of Figures xv Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Contributions 3 1.3 Organization of Thesis 4 Chapter 2 Background and Related Work 7 2.1 Kinematics 7 2.1.1 Forward Kinematics 9 2.1.2 Jacobian Matrix 9 2.1.3 Inverse Kinematics 10 2.2 Visual SLAM with Robot Manipulator 13 2.3 Markerless Visual Servoing 18 2.4 Collision Avoidance 20 Chapter 3 Arm-SLAM 25 3.1 Mapping 26 3.1.1 ORBSLAM3-YOLO 26 3.1.2 Point Cloud Mapping 30 3.2 Localization 34 3.2.1 Planning 35 3.2.2 First-Stage control 37 3.2.3 Second-Stage control 50 3.3 Summary 51 Chapter 4 Experiments 53 4.1 Experiment Platform 53 4.1.1 Karm 53 4.1.2 Intel RealSense D435 55 4.1.3 System Setup 56 4.2 Experiment 1: Collision Avoidance 58 4.2.1 Result and Discussion 59 4.3 Experiment 2: Visual Servoing 66 4.3.1 Experiment 2-1: Repeatability Test 68 4.3.2 Experiment 2-2: Robustness test 70 4.3.3 Result and Discussion 71 4.4 Experiment 3: Arm-SLAM 78 4.4.1 Result and Discussion 81 4.5 Summary 96 Chapter 5 Conclusions and Future Work 99 5.1 Conclusions 99 5.2 Future Work 100 References 103 | - |
| dc.language.iso | en | - |
| dc.subject | Arm-SLAM | zh_TW |
| dc.subject | 虛擬阻抗控制 | zh_TW |
| dc.subject | 碰撞避免 | zh_TW |
| dc.subject | 無標記視覺伺服 | zh_TW |
| dc.subject | Virtual Impedance Control | en |
| dc.subject | Collision Avoidance | en |
| dc.subject | Arm-SLAM | en |
| dc.subject | Markerless Visual Servoing | en |
| dc.title | Arm-SLAM:機器手臂與SLAM結合之應用 | zh_TW |
| dc.title | Arm-SLAM: an Application Combining Robot Arm and SLAM | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡清池;郭重顯;傅楸善 | zh_TW |
| dc.contributor.oralexamcommittee | Ching-Chih Tsai;Chung-Hsien Kuo;Chiou-Shann Fuh | en |
| dc.subject.keyword | Arm-SLAM,虛擬阻抗控制,碰撞避免,無標記視覺伺服, | zh_TW |
| dc.subject.keyword | Arm-SLAM,Virtual Impedance Control,Collision Avoidance,Markerless Visual Servoing, | en |
| dc.relation.page | 107 | - |
| dc.identifier.doi | 10.6342/NTU202402377 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-02 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 7.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
