請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93697完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林翰佑 | zh_TW |
| dc.contributor.advisor | Han-You Lin | en |
| dc.contributor.author | 江昀儒 | zh_TW |
| dc.contributor.author | Yun-Ru Chiang | en |
| dc.date.accessioned | 2024-08-07T16:32:01Z | - |
| dc.date.available | 2024-08-08 | - |
| dc.date.copyright | 2024-08-07 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-01 | - |
| dc.identifier.citation | 行政院農業委員會漁業署 (2022)。漁業統計年報。行政院農業委員會漁業署。
林士傑 (2010)。利用抑制性扣減雜合技術,篩選點帶石斑魚 (Epinepheluscoioides) 巨噬細胞受酯多醣誘導之免疫基因。國立成功大學碩士論文,台南市。 蔡侑翰 (2012)。Cathepsin L在點帶石斑魚上的功能性分析。國立成功大學碩士論文,台南市。 Aguirre-Guzman, G., Sanchez-Martinez, J. G., Campa-Cordova, A. I., Luna-Gonzalez, A., & Ascencio, F. (2009). Penaeid shrimp immune system. The Thai Journal of Veterinary Medicine, 39(3), 205-215. Amparyup, P., Charoensapsri, W., & Tassanakajon, A. (2013). Prophenoloxidase system and its role in shrimp immune responses against major pathogens. Fish and Shellfish Immunology, 34(4), 990-1001. Aranishi, F. (1999). Lysis of pathogenic bacteria by epidermal cathepsins L and B in the Japanese eel. Fish Physiology and Biochemistry, 20, 37-41. Aranishi, F., Ogata, H., Hara, K., Osatomi, K., & Ishihara, T. (1997). Purification and characterization of cathepsin L from hepatopancreas of carp Cyprinus carpio. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 118(3), 531-537. Arockiaraj, J., Kumaresan, V., Chaurasia, M. K., Bhatt, P., Palanisamy, R., Pasupuleti, M., . . . Kasi, M. (2014). Molecular characterization of a novel cathepsin B from striped murrel Channa striatus: bioinformatics analysis, gene expression, synthesis of peptide and antimicrobial property. Turkish Journal of Fisheries and Aquatic Sciences, 14(2), 379-389. Ashfaq, H., Soliman, H., Saleh, M., & El-Matbouli, M. (2019). CD4: a vital player in the teleost fish immune system. Veterinary research, 50, 1-11. Bachère, E. (2000). Shrimp immunity and disease control. Aquaculture, 191(1-3), 3-11. Bachère, E., Mialhe, E., & Rodriguez, J. (1995). Identification of defence effectors in the haemolymph of crustaceans with particular reference to the shrimp Penaeus japonicus (Bate): prospects and applications. Fish and shellfish immunology, 5(8), 597-612. Baggiolini, M. (2000). Reflections on chemokines. Immunological reviews, 177(1). Barros, L. M., Gutjahr, A. L. N., Ferreira‐Keppler, R. L., & Martins, R. T. (2019). Morphological description of the immature stages of Hermetia illucens (Linnaeus, 1758) (Diptera: Stratiomyidae). Microscopy Research and Technique, 82(3), 178-189. Bell, K. L., & Smith, V. J. (1993). In vitro superoxide production by hyaline cells of the shore crab Carcinus maenas (L.). Developmental and Comparative Immunology, 17(3), 211-219. Berdowska, I., & Matusiewicz, M. (2021). Cathepsin L, transmembrane peptidase/serine subfamily member 2/4, and other host proteases in COVID-19 pathogenesis-with impact on gastrointestinal tract. World Journal of Gastroenterology, 27(39), 6590. Bevec, T., Stoka, V., Pungercic, G., Dolenc, I., & Turk, V. (1996). Major histocompatibility complex class II-associated p41 invariant chain fragment is a strong inhibitor of lysosomal cathepsin L. The Journal of Experimental Medicine, 183(4), 1331-1338. Biju, N., Sathiyaraj, G., Raj, M., Shanmugam, V., Baskaran, B., Govindan, U., . . . Chellamma, T. S. R. Y. (2016). High prevalence of Enterocytozoon hepatopenaei in shrimps Penaeus monodon and Litopenaeus vannamei sampled from slow growth ponds in India. Diseases of Aquatic Organisms, 120(3), 225-230. Bilal, S., Etayo, A., & Hordvik, I. (2021). Immunoglobulins in teleosts. Immunogenetics, 73(1), 65-77. Blair, J. B., Ostrander, G. K., Miller, M. R., & Hinton, D. E. (1995). Isolation and characterization of biliary epithelial cells from rainbow trout liver. In Vitro Cellular and Developmental Biology, 31, 780-789. Bonelli, M., Bruno, D., Caccia, S., Sgambetterra, G., Cappellozza, S., Jucker, C., . . . Casartelli, M. (2019). Structural and functional characterization of Hermetia illucens larval midgut. Frontiers in Physiology, 10, 427234. Bowden, T., Cook, P., & Rombout, J. (2005). Development and function of the thymus in teleosts. Fish and Shellfish Immunology, 19(5), 413-427. Brix, K., Dunkhorst, A., Mayer, K., & Jordans, S. (2008). Cysteine cathepsins: cellular roadmap to different functions. Biochimie, 90(2), 194-207. Bruno, D., Montali, A., Mastore, M., Brivio, M. F., Mohamed, A., Tian, L., . . . Tettamanti, G. (2021). Insights into the immune response of the black soldier fly larvae to bacteria. Frontiers in Immunology, 12, 745160. Bulet, P., Stöcklin, R., & Menin, L. (2004). Anti‐microbial peptides: from invertebrates to vertebrates. Immunological Reviews, 198(1), 169-184. Byeon, J. H., Seo, E. S., Lee, J. B., Lee, M. J., Kim, J. K., Yoo, J. W., . . . Lee, B. L. (2015). A specific cathepsin L-like protease purified from an insect midgut shows antibacterial activity against gut symbiotic bacteria. Developmental and Comparative Immunology, 53(1), 79-84. Caro, L. F. A., Mai, H. N., Pichardo, O., Cruz-Flores, R., Hanggono, B., & Dhar, A. K. (2020). Evidences supporting Enterocytozoon hepatopenaei association with white feces syndrome in farmed Penaeus vannamei in Venezuela and Indonesia. Diseases of Aquatic Organisms, 141, 71-78. Cerenius, L., & Söderhäll, K. (2004). The prophenoloxidase‐activating system in invertebrates. Immunological Reviews, 198(1), 116-126. Chaijarasphong, T., Munkongwongsiri, N., Stentiford, G. D., Aldama-Cano, D. J., Thansa, K., Flegel, T. W., . . . Itsathitphaisarn, O. (2021). The shrimp microsporidian Enterocytozoon hepatopenaei (EHP): Biology, pathology, diagnostics and control. Journal of Invertebrate Pathology, 186, 107458. Chaikeeratisak, V., Tassanakajon, A., & Armstrong, P. B. (2014). Interaction of pathogenic vibrio bacteria with the blood clot of the pacific white shrimp, Litopenaeus vannamei. The Biological Bulletin, 226(2), 102-110. Chapman, H. A., Riese, R. J., & Shi, G. P. (1997). Emerging roles for cysteine proteases in human biology. Annual review of physiology, 59(1), 63-88. Che, R., Wang, R., & Xu, T. (2014). Comparative genomic of the teleost cathepsin B and H and involvement in bacterial induced immunity of miiuy croaker. Fish and Shellfish Immunology, 41(2), 163-171. Chen, L. C. (1990). Aquaculture in Taiwan. Blackwell Scientific Publications. Chen, X., Zeng, D., Chen, X., Xie, D., Zhao, Y., Yang, C., . . . Yang, Q. (2013). Transcriptome analysis of Litopenaeus vannamei in response to white spot syndrome virus infection. PLoS One, 8(8), e73218. Cheng, D., Morsch, M., Shami, G. J., Chung, R. S., & Braet, F. (2020). Observation and characterisation of macrophages in zebrafish liver. Micron, 132, 102851. Chiang, Y. R., Wang, L. C., Lin, H. T., & Lin, J. H. Y. (2022). Bioactivity of orange-spotted grouper (Epinephelus coioides) cathepsin L: Proteolysis of bacteria and regulation of the innate immune response. Fish and Shellfish Immunology, 122, 399-408. Cho, J. H., Park, I. Y., Kim, H. S., Lee, W. T., Kim, M. S., & Kim, S. C. (2002). Cathepsin D produces antimicrobial peptide parasin I from histone H2A in the skin mucosa of fish. The Federation of American Societies for Experimental Biology Journal, 16(3), 429-431. Colbert, J. D., Matthews, S. P., Miller, G., & Watts, C. (2009). Diverse regulatory roles for lysosomal proteases in the immune response. European Journal of Immunology, 39(11), 2955-2965. Cornejo-Granados, F., Lopez-Zavala, A. A., Gallardo-Becerra, L., Mendoza-Vargas, A., Sánchez, F., Vichido, R., . . . Ochoa-Leyva, A. (2017). Microbiome of pacific whiteleg shrimp reveals differential bacterial community composition between wild, aquacultured and AHPND/EMS outbreak conditions. Scientific Reports, 7(1), 1-15. Cristofoletti, P. T., Ribeiro, A. F., Deraison, C., Rahbé, Y., & Terra, W. R. (2003). Midgut adaptation and digestive enzyme distribution in a phloem feeding insect, the pea aphid Acyrthosiphon pisum. Journal of Insect Physiology, 49(1), 11-24. Dai, L. S., Chu, S. H., Yu, X. M., & Li, Y. Y. (2017). A role of cathepsin L gene in innate immune response of crayfish (Procambarus clarkii). Fish and Shellfish Immunology, 71, 246-254. Danilova, N., Bussmann, J., Jekosch, K., & Steiner, L. A. (2005). The immunoglobulin heavy-chain locus in zebrafish: identification and expression of a previously unknown isotype, immunoglobulin Z. Nature Immunology, 6(3), 295-302. Dean, R. T. (1978). Lysosomal mechanisms of protein degradation. In Protein turnover and lysosome function. Academic Press, 29-41. Destoumieux, D., Muñoz, M., Cosseau, C., Rodriguez, J., Bulet, P., Comps, M., & Bachère, E. (2000). Penaeidins, antimicrobial peptides with chitin-binding activity, are produced and stored in shrimp granulocytes and released after microbial challenge. Journal of Cell Science, 113(3), 461-469. Deussing, J., Roth, W., Saftig, P., Peters, C., Ploegh, H. L., & Villadangos, J. A. (1998). Cathepsins B and D are dispensable for major histocompatibility complex class II-mediated antigen presentation. Proceedings of the National Academy of Sciences, 95(8), 4516-4521. Di, Y. Q., Han, X. L., Kang, X. L., Wang, D., Chen, C. H., Wang, J. X., & Zhao, X. F. (2021). Autophagy triggers CTSD (cathepsin D) maturation and localization inside cells to promote apoptosis. Autophagy, 17(5), 1170-1192. Driessen, C., Bryant, R. A., Lennon-Duménil, A.-M., Villadangos, J. A., Bryant, P. W., Shi, G.-P., . . . Ploegh, H. L. (1999). Cathepsin S controls the trafficking and maturation of MHC class II molecules in dendritic cells. Journal of Cell Biology, 147(4), 775-790. Fänge, R., & Nilsson, S. (1985). The fish spleen: structure and function. Experientia, 41, 152-158. FAO. (2022). The State of World Fisheries and Aquaculture 2022, Food and Agriculture Organization of the United Nations. Fiebiger, E., Maehr, R., Villadangos, J., Weber, E., Erickson, A., Bikoff, E., . . . Lennon-Dumenil, A.M. (2002). Invariant chain controls the activity of extracellular cathepsin L. Journal of Experimental Medicine 196(9), 1263-1269. Flynn, C. M., Garbers, Y., Düsterhöft, S., Wichert, R., Lokau, J., Lehmann, C. H. K., . . . Rose-John, S. (2020). Cathepsin S provokes interleukin-6 (IL-6) trans-signaling through cleavage of the IL-6 receptor in vitro. Scientific Reports, 10(1), 21612. Fonović, M., & Turk, B. (2014). Cysteine cathepsins and extracellular matrix degradation. Biochimica et Biophysica Acta, 1840(8), 2560-2570. Gan, Z., Chen, S. N., Huang, B., Zou, J., & Nie, P. (2020). Fish type I and type II interferons: composition, receptor usage, production and function. Reviews in Aquaculture, 12(2), 773-804. Garcia-Carreño, F., del Toro, M. N., & Muhlia-Almazan, A. (2014). The role of lysosomal cysteine proteases in crustacean immune response. Invertebrate Survival Journal, 11(1), 109-118. Gocheva, V., & Joyce, J. A. (2007). Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle, 6(1), 60-64. Goldenberg, P. Z., Huebner, E., & Greenberg, A. H. (1984). Activation of lobster hemocytes for phagocytosis. Journal of Invertebrate Pathology, 43(1), 77-88. Gomes, C. P., Fernandes, D. E., Casimiro, F., Da Mata, G. F., Passos, M. T., Varela, P., . . . Pesquero, J. B. (2020). Cathepsin L in COVID-19: from pharmacological evidences to genetics. Frontiers in Cellular and Infection Microbiology, 10, 589505. Götz, P. (1986). Encapsulation in arthropods. Immunity in Invertebrate, 153-170. Guha, S., & Padh, H. (2008). Cathepsins: fundamental effectors of endolysosomal proteolysis. International Journal of Biomolecules and Biomedicine, 45(2), 75-90. Gunčar, G., Pungerčič, G., Klemenčič, I., Turk, V., & Turk, D. (1999). Crystal structure of MHC class II‐associated p41 Ii fragment bound to cathepsin L reveals the structural basis for differentiation between cathepsins L and S. European Molecular Biology Organization Journal, 18, 793-803. Gupta, A. P. (1991). Immunology of insects and other arthropods. Chemical Rubber Company Press. Hall, M., Vanheusden, M. C., & Soderhall, K. (1995). Identification of the major lipoproteins in crayfish hemolymph as proteins involved in immune recognition and clotting. Biochemical and Biophysical Research Communications, 216(3), 939-946. Hansen, J. D., Landis, E. D., & Phillips, R. B. (2005). Discovery of a unique Ig heavy-chain isotype (IgT) in rainbow trout: Implications for a distinctive B cell developmental pathway in teleost fish. Proceedings of the National Academy of Sciences, 102(19), 6919-6924. Harper, S., & Speicher, D. W. (2011). Purification of proteins fused to glutathione S-transferase. Protein chromatography: Methods and Protocols, 259-280. Hoffmann, J. A. (1995). Innate immunity of insects. Current opinion in Immunology, 7(1), 4-10. Holland, M. C. H., & Lambris, J. D. (2002). The complement system in teleosts. Fish and Shellfish Immunology, 12(5), 399-420. Honey, K., & Rudensky, A. Y. (2003). Lysosomal cysteine proteases regulate antigen presentation. Nature Reviews Immunology, 3(6), 472-482. Hu, K. J., & Leung, P. C. (2007). Food digestion by cathepsin L and digestion-related rapid cell differentiation in shrimp hepatopancreas. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 146(1), 69-80. Hui, S. P., Sheng, D. Z., Sugimoto, K., Gonzalez-Rajal, A., Nakagawa, S., Hesselson, D., & Kikuchi, K. (2017). Zebrafish regulatory T cells mediate organ-specific regenerative programs. Developmental Cell, 43(6), 659-672. Hung, Y. H., Chen, L. M. W., Yang, J. Y., & Yang, W. Y. (2013). Spatiotemporally controlled induction of autophagy-mediated lysosome turnover. Nature Communications, 4(1), 2111. Im, E., & Kazlauskas, A. (2007). The role of cathepsins in ocular physiology and pathology. Experimental Eye Research, 84(3), 383-388. Jensen, A. B., & Lecocq, A. (2023). Diseases of black soldier flies Hermetia illucens L. a future challenge for production? Journal of Insects as Food and Feed, 1-4. Ji, P. F., Yao, C. L., & Wang, Z. Y. (2011). Reactive oxygen system plays an important role in shrimp Litopenaeus vannamei defense against Vibrio parahaemolyticus and WSSV infection. Diseases of aquatic organisms, 96(1), 9-20. Johansson, M. W., & Söderhäll, K. (1989). A peptide containing the cell adhesion sequence RGD can mediate degranulation and cell adhesion of crayfish granular haemocytes in vitro. Insect biochemistry, 19(6), 573-579. Joosten, L., Lecocq, A., Jensen, A. B., Haenen, O., Schmitt, E., & Eilenberg, J. (2020). Review of insect pathogen risks for the black soldier fly (Hermetia illucens) and guidelines for reliable production. Entomologia Experimentalis et Applicata, 168(6-7), 432-447. Kaizu, A., Fagutao, F. F., Kondo, H., Aoki, T., & Hirono, I. (2011). Functional analysis of C-type lysozyme in penaeid shrimp. Journal of Biological Chemistry, 286(52), 44344-44349. Kikuchi, K. (2020). New function of zebrafish regulatory T cells in organ regeneration. Current Opinion in Immunology, 63, 7-13. Kobayashi, M., Johansson, M. W., & Söderhäll, K. (1990). The 76 kD cell-adhesion factor from crayfish haemocytes promotes encapsulation in vitro. Cell and Tissue Research, 260(1), 13-18. Krasko, A., Gamulin, V., Seack, J., Steffen, R., Schröder, H., & Müller, W. (1997). Cathepsin, a major protease of the marine sponge Geodia cydonium: purification of the enzyme and molecular cloning of cDNA. Molecular Marine Biology and Biotechnology, 6(4), 296-307. Kuester, D., Lippert, H., Roessner, A., & Krueger, S. (2008). The cathepsin family and their role in colorectal cancer. Pathology Research and Practice, 204(7), 491-500. Kumar, R., Ng, T. H., & Wang, H. C. (2020). Acute hepatopancreatic necrosis disease in penaeid shrimp. Reviews in Aquaculture, 12(3), 1867-1880. Kumaresan, V., Bhatt, P., Palanisamy, R., Gnanam, A., Pasupuleti, M., & Arockiaraj, J. (2014). A murrel cysteine protease, cathepsin L: bioinformatics characterization, gene expression and proteolytic activity. Biologia, 69(3), 395-406. Lai, H. C., Ng, T. H., Ando, M., Lee, C. T., Chen, I. T., Chuang, J. C., . . . Chiang, Y. A. (2015). Pathogenesis of acute hepatopancreatic necrosis disease (AHPND) in shrimp. Fish and Shellfish Immunology, 47(2), 1006-1014. Lalander, C., Diener, S., Magri, M. E., Zurbrügg, C., Lindström, A., & Vinnerås, B. (2013). Faecal sludge management with the larvae of the black soldier fly (Hermetia illucens) from a hygiene aspect. Science of the Total Environment, 458, 312-318. Lazear, H. M., Nice, T. J., & Diamond, M. S. (2015). Interferon-λ: immune functions at barrier surfaces and beyond. Immunity, 43(1), 15-28. Lennon‐Duménil, A. M., Roberts, R. A., Valentijn, K., Driessen, C., Overkleeft, H. S., Erickson, A., . . . Bryant, P. W. (2001). The p41 isoform of invariant chain is a chaperone for cathepsin L. European Molecular Biology Organization Journal, 20, 4055-4064. Li, C., Song, L., Tan, F., Su, B., Zhang, D., Zhao, H., & Peatman, E. (2015). Identification and mucosal expression analysis of cathepsin B in channel catfish (Ictalurus punctatus) following bacterial challenge. Fish and Shellfish Immunology, 47(2), 751-757. Li, M., Ma, C., Zhu, P., Yang, Y., Lei, A., Chen, X., . . . Li, C. (2019). A new crustin is involved in the innate immune response of shrimp Litopenaeus vannamei. Fish and shellfish immunology, 94, 398-406. Li, M. F., & Zhang, H. Q. (2022). An overview of complement systems in teleosts. Developmental and Comparative Immunology, 137, 104520. Li, Q., Ao, J., Mu, Y., Yang, Z., Li, T., Zhang, X., & Chen, X. (2015). Cathepsin S, but not cathepsin L, participates in the MHC class II-associated invariant chain processing in large yellow croaker (Larimichthys crocea). Fish and Shellfish Immunology, 47(2), 743-750. Liang, F. R., Hong, Y. H., Ye, C. C., Deng, H., Yuan, J. P., Hao, Y. F., & Wang, J. H. (2017). Molecular characterization and gene expression of cathepsin L in Nile tilapia (Oreochromis niloticus). Fish and Shellfish Immunology, 67, 280-292. Liang, J. Z., Rao, Y. Z., Lun, Z. R., & Yang, T. B. (2012). Cathepsin L in the orange-spotted grouper, Epinephelus coioides: molecular cloning and gene expression after a Vibrio anguillarum challenge. Fish Physiology and Biochemistry, 38, 1795-1806. Liang, Z., Liu, R., Zhao, D., Wang, L., Sun, M., Wang, M., & Song, L. (2016). Ammonia exposure induces oxidative stress, endoplasmic reticulum stress and apoptosis in hepatopancreas of pacific white shrimp (Litopenaeus vannamei). Fish and Shellfish Immunology, 54, 523-528. Lightner, D. V., & Redman, R. M. (1985). A parvo-like virus disease of penaeid shrimp. Journal of Invertebrate Pathology, 45(1), 47-53. Liu, H., Yin, L., Zhang, N., Li, S., & Ma, C. (2006). Purification and characterization of cathepsin L from the muscle of silver carp (Hypophthalmichthys molitrix). Journal of Agricultural and Food Chemistry, 54(25), 9584-9591. Liu, J., Shi, G. P., Zhang, W. Q., Zhang, G. R., & Xu, W. H. (2006). Cathepsin L function in insect moulting: molecular cloning and functional analysis in cotton bollworm, Helicoverpa armigera. Insect Molecular Biology, 15(6), 823-834. Liu, S., Zheng, S. C., Li, Y. L., Li, J., & Liu, H. P. (2020). Hemocyte-mediated phagocytosis in crustaceans. Frontiers in Immunology, 11, 268. Liu, T., Klammsteiner, T., Dregulo, A. M., Kumar, V., Zhou, Y., Zhang, Z., & Awasthi, M. K. (2022). Black soldier fly larvae for organic manure recycling and its potential for a circular bioeconomy: a review. Science of the Total Environment, 833, 155122. Lo, C. F., Chang, Y. S., Peng, S. E., & Kou, G. H. (2003). Major viral diseases of Penaeus monodon in Taiwan. Journal Fisheries Society of Taiwan, 30(1), 1-14. Lo, C. F., & Kou, G. H. (1998). Virus-associated white spot syndrome of shrimp in Taiwan: a review. Fish Pathology, 33(4), 365-371. Magnadóttir, B. (2006). Innate immunity of fish. Fish and Shellfish Immunology, 20(2), 137-151. Mamipour, M., Yousefi, M., & Hasanzadeh, M. (2017). An overview on molecular chaperones enhancing solubility of expressed recombinant proteins with correct folding. International Journal of Biological Macromolecules, 102, 367-375. Martínez-Alarcón, D., Saborowski, R., Rojo-Arreola, L., & García-Carreño, F. (2018). Is digestive cathepsin D the rule in decapod crustaceans? Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 215, 31-38. Ménard, R., Carmona, E., Takebe, S., Dufour, E., Plouffe, C., Mason, P., & Mort, J. S. (1998). Autocatalytic processing of recombinant human procathepsin L: Contribution of both intermolecular and unimolecular events in the processing of procathepsin L in vitro. Journal of Biological Chemistry, 273(8), 4478-4484. Miao, M., Li, S., Yu, Y., Liu, Y., & Li, F. (2024). Comparative transcriptome analysis of hepatopancreas reveals the potential mechanism of shrimp resistant to Vibrio parahaemolyticus infection. Fish and Shellfish Immunology, 144, 109282. Mix, M. C., & Sparks, A. K. (1980). Hemocyte classification and differential counts in the Dungeness crab, Cancer magister. Journal of Invertebrate Pathology, 35(2), 134-143. Moon, T. W., Walsh, P. J., & Mommsen, T. P. (1985). Fish hepatocytes: a model metabolic system. Canadian Journal of Fisheries and Aquatic Sciences, 42(11), 1772-1782. Mrschtik, M., & Ryan, K. M. (2015). Lysosomal proteins in cell death and autophagy. European Molecular Biology Organization Journal, 282(10), 1858-1870. Nakanishi, T., Fischer, U., Dijkstra, J. M., Hasegawa, S., Somamoto, T., Okamoto, N., & Ototake, M. (2002). Cytotoxic T cell function in fish. Developmental and Comparative Immunology, 26(2), 131-139. Nakanishi, T., Toda, H., Shibasaki, Y., & Somamoto, T. (2011). Cytotoxic T cells in teleost fish. Developmental and Comparative Immunology, 35(12), 1317-1323. Newton, L., Sheppard, C., Watson, D. W., Burtle, G., & Dove, R. (2005). Using the black soldier fly, Hermetia illucens, as a value-added tool for the management of swine manure. North Carolina State University. Nguyen, D. V., Christiaens, O., Bossier, P., & Smagghe, G. (2018). RNA interference in shrimp and potential applications in aquaculture. Reviews in Aquaculture, 10(3), 573-584. Ohashi, K., Naruto, M., Nakaki, T., & Sano, E. (2003). Identification of interleukin-8 converting enzyme as cathepsin L. Biochimica et Biophysica Acta, 1649(1), 30-39. Pan, T., Jin, Z., Yu, Z., Wu, X., Chang, X., Fan, Z., . . . Zhou, Q. (2020). Cathepsin L promotes angiogenesis by regulating the CDP/Cux/VEGF-D pathway in human gastric cancer. Gastric Cancer, 23, 974-987. Parra, D., Korytář, T., Takizawa, F., & Sunyer, J. O. (2016). B cells and their role in the teleost gut. Developmental and Comparative Immunology, 64, 150-166. Patel, S., Homaei, A., El-Seedi, H. R., & Akhtar, N. (2018). Cathepsins: Proteases that are vital for survival but can also be fatal. Biomedicine and Pharmacotherapy, 105, 526-532. Perdomo-Morales, R., Montero-Alejo, V., & Perera, E. (2019). The clotting system in decapod crustaceans: History, current knowledge and what we need to know beyond the models. Fish and shellfish immunology, 84, 204-212. Pestka, S., Krause, C. D., & Walter, M. R. (2004). Interferons, interferon‐like cytokines, and their receptors. Immunological Reviews, 202(1), 8-32. Pogorzelska, A., Żołnowska, B., & Bartoszewski, R. (2018). Cysteine cathepsins as a prospective target for anticancer therapies-current progress and prospects. Biochimie, 151, 85-106. Qiu, L., Chen, M. M., Wan, X. Y., Li, C., Zhang, Q. L., Wang, R. Y., . . . Wang, X. H. (2017). Characterization of a new member of Iridoviridae, Shrimp hemocyte iridescent virus (SHIV), found in white leg shrimp (Litopenaeus vannamei). Scientific Reports, 7(1), 11834. Racoma, I. O., Meisen, W. H., Wang, Q. E., Kaur, B., & Wani, A. A. (2013). Thymoquinone inhibits autophagy and induces cathepsin-mediated, caspase-independent cell death in glioblastoma cells. PLoS One, 8(9), e72882. Rahbar Saadat, Y., Hosseiniyan Khatibi, S. M., Zununi Vahed, S., & Ardalan, M. (2021). Host serine proteases: a potential targeted therapy for COVID-19 and influenza. Frontiers in Molecular Biosciences, 8, 725528. Rajendran, K. V., Makesh, M., & Karunasagar, I. (2012). Monodon baculovirus of shrimp. Indian Journal of Virology, 23, 149-160. Raksasat, R., Abdelfattah, E. A., Liew, C. S., Rawindran, H., Kiatkittipong, K., Mohamad, M., . . . Lim, J. W. (2022). Enriched sewage sludge from anaerobic pre-treatment in spurring valorization potential of black soldier fly larvae. Environmental Research, 212, 113447. Ratner, S., & Vinson, S. B. (1983). Phagocytosis and encapsulation: cellular immune responses in arthropoda. American Zoologist, 23(1), 185-194. Reantaso, M. B., Tran, L., & Hue, D. T. T. (2013). What happens when hepatopancreas–shrimp’s main organ for food absorption, digestion and storage-becomes infected by a pathogen. FAO Aquaculture Newsletter, 51, 37-39. Rehman, K. U., Hollah, C., Wiesotzki, K., Rehman, R. U., Rehman, A. U., Zhang, J., . . . Aganovic, K. (2023). Black soldier fly, Hermetia illucens as a potential innovative and environmentally friendly tool for organic waste management: A mini-review. Waste Management and Research, 41(1), 81-97. Ren, Q., Zhang, X. W., Sun, Y. D., Sun, S. S., Zhou, J., Wang, Z. H., . . . Wang, J. X. (2010). Two cysteine proteinases respond to bacterial and WSSV challenge in Chinese white shrimp Fenneropenaeus chinensis. Fish and Shellfish Immunology, 29(4), 551-556. Repnik, U., Stoka, V., Turk, V., & Turk, B. (2012). Lysosomes and lysosomal cathepsins in cell death. Biochimica et Biophysica Acta, 1824(1), 22-33. Riese, R. J., & Chapman, H. A. (2000). Cathepsins and compartmentalization in antigen presentation. Current opinion in immunology, 12(1), 107-113. Rimmer, M. (1998). Grouper and snapper aquaculture in Taiwan. Austasia Aquaculture, 12(1), 3-7. Roco, J. A., Mesin, L., Binder, S. C., Nefzger, C., Gonzalez-Figueroa, P., Canete, P. F., . . . Cappello, J. (2019). Class-switch recombination occurs infrequently in germinal centers. Immunity, 51(2), 337-350. Rombout, J. H. W. M., Abelli, L., Picchietti, S., Scapigliati, G., & Kiron, V. (2011). Teleost intestinal immunology. Fish and Shellfish Immunology, 31(5), 616-626. Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: advances and challenges. Frontiers in Microbiology, 5, 172. Rőszer, T. (2014). The invertebrate midintestinal gland (“hepatopancreas”) is an evolutionary forerunner in the integration of immunity and metabolism. Cell and Tissue Research, 358, 685-695. Safeena, M. P., Rai, P., & Karunasagar, I. (2012). Molecular biology and epidemiology of hepatopancreatic parvovirus of penaeid shrimp. Indian Journal of Virology, 23, 191-202. Saikhedkar, N., Summanwar, A., Joshi, R., & Giri, A. (2015). Cathepsins of lepidopteran insects: Aspects and prospects. Insect Biochemistry and Molecular Biology, 64, 51-59. Sanguanrut, P., Munkongwongsiri, N., Kongkumnerd, J., Thawonsuwan, J., Thitamadee, S., Boonyawiwat, V., . . . Sritunyalucksana, K. (2018). A cohort study of 196 Thai shrimp ponds reveals a complex etiology for early mortality syndrome (EMS). Aquaculture, 493, 26-36. Scarcella, M., d’Angelo, D., Ciampa, M., Tafuri, S., Avallone, L., Pavone, L. M., & De Pasquale, V. (2022). The key role of lysosomal protease cathepsins in viral infections. International Journal of Molecular Sciences, 23(16), 9089. Schoenborn, J. R., & Wilson, C. B. (2007). Regulation of interferon‐γ during innate and adaptive immune responses. Advances in Immunology, 96, 41-101. Seng, L. T. (1998). Grouper culture. Tropical mariculture, 423-448. Shapawi, R., Abdullah, F. C., Senoo, S., & Mustafa, S. (2019). Nutrition, growth and resilience of tiger grouper (Epinephelus fuscoguttatus) X giant Grouper (Epinephelus lanceolatus) hybrid‐a review. Reviews in Aquaculture, 11(4), 1285-1296. Shen, Y., Zhang, H., Zhou, Y., Sun, Y., Yang, H., Cao, Z., . . . Guo, W. (2021). Functional characterization of cathepsin B and its role in the antimicrobial immune responses in golden pompano (Trachinotus ovatus). Developmental and Comparative Immunology, 123, 104128. Sheppard, D. C., Tomberlin, J. K., Joyce, J. A., Kiser, B. C., & Sumner, S. M. (2002). Rearing methods for the black soldier fly (Diptera: Stratiomyidae). Journal of Medical Entomology, 39(4), 695-698. Snieszko, S. F. (1974). The effects of environmental stress on outbreaks of infectious diseases of fishes. Journal of Fish Biology, 6(2), 197-208. Söderhäll, K. (1982). Prophenoloxidase activating system and melanization-a recognition mechanism of arthropods? Developmental and Comparative Immunology, 6(4), 601-611. Söderhäll, K., & Cerenius, L. (1992). Crustacean immunity. Annual Review of Fish Diseases, 2, 3-23. Söderhäll, K., & Smith, V. J. (1983). Separation of the haemocyte populations of Carcinusmaenas and other marine decapods, and prophenoloxidase distribution. Developmental and Comparative Immunology, 7(2), 229-239. Soliman, A. M., & Barreda, D. R. (2023). The acute inflammatory response of teleost fish. Developmental and Comparative Immunology, 146, 104731. Sritunyalucksana, K., & Söderhäll, K. (2000). The proPO and clotting system in crustaceans. Aquaculture, 191(1-3), 53-69. Stoka, V., Turk, V., & Turk, B. (2016). Lysosomal cathepsins and their regulation in aging and neurodegeneration. Ageing Research Reviews, 32, 22-37. Sudhan, D. R., Rabaglino, M. B., Wood, C. E., & Siemann, D. W. (2016). Cathepsin L in tumor angiogenesis and its therapeutic intervention by the small molecule inhibitor KGP94. Clinical and Experimental Metastasis, 33, 461-473. Sun, B. g., & Hu, Y. h. (2015). Identification, mRNA expression profiling and activity characterization of cathepsin L from red drum (Sciaenops ocellatus). Fish Physiology and Biochemistry, 41, 1463-1473. Sun, Y. X., Chen, C., Xu, W. J., Abbas, M. N., Mu, F. F., Ding, W. J., . . . Li, J. (2021). Functions of Bombyx mori cathepsin L-like in innate immune response and anti-microbial autophagy. Developmental and Comparative Immunology, 116, 103927. Sun, Y. X., Tang, L., Wang, P., Abbas, M. N., Tian, J. W., Zhu, B. J., & Liu, C. L. (2018). Cathepsin L-like protease can regulate the process of metamorphosis and fat body dissociation in Antheraea pernyi. Developmental and Comparative Immunology, 78, 114-123. Sun, Z., Tan, X., Xu, M., Liu, Q., Ye, H., Zou, C., & Ye, C. (2019). Liver transcriptome analysis and de novo annotation of the orange-spotted groupers (Epinephelus coioides) under cold stress. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics, 29, 264-273. Tähtinen, V., Weber, E., Günther, D., Ylönen, A., Kalkkinen, N., Olsen, R., . . . Björklund, H. (2002). Immunolocalization of cysteine proteinases (cathepsins) and cysteine proteinase inhibitors (salarin and salmon kininogen) in Atlantic salmon, Salmo salar. Cell and Tissue Research, 310, 213-222. Tang, H., Jiang, X., Zhang, J., Pei, C., Zhao, X., Li, L., & Kong, X. (2021). Teleost CD4+ helper T cells: Molecular characteristics and functions and comparison with mammalian counterparts. Veterinary Immunology and Immunopathology, 240, 110316. Tao, Y., Yue, Y., Qiu, G., Ji, Z., Spillman, M., Gai, Z., . . . Trkola, A. (2022). Comparison of analytical sensitivity and efficiency for SARS-CoV-2 primer sets by TaqMan-based and SYBR Green-based RT-qPCR. Applied Microbiology and Biotechnology, 106(5), 2207-2218. Tassanakajon, A., Amparyup, P., Somboonwiwat, K., & Supungul, P. (2011). Cationic antimicrobial peptides in penaeid shrimp. Marine Biotechnology, 13, 639-657. Teijaro, J. R. (2016). Type I interferons in viral control and immune regulation. Current Opinion in Virology, 16, 31-40. Theopold, U., Schmidt, O., Söderhäll, K., & Dushay, M. S. (2004). Coagulation in arthropods: defence, wound closure and healing. Trends in Immunology, 25(6), 289-294. Tort, L., Balasch, J. C., & Mackenzie, S. (2003). Fish immune system. A crossroads between innate and adaptive responses. Inmunología, 22(3), 277-286. Tourtois, J., Ali, J. G., & Grieshop, M. J. (2017). Susceptibility of wounded and intact black soldier fly Hermetia illucens (L.) (Diptera: Stratiomyidae) to entomopathogenic nematodes. Journal of Invertebrate Pathology, 150, 121-129. Tran, L., Nunan, L., Redman, R. M., Mohney, L. L., Pantoja, C. R., Fitzsimmons, K., & Lightner, D. V. (2013). Determination of the infectious nature of the agent of acute hepatopancreatic necrosis syndrome affecting penaeid shrimp. Diseases of Aquatic Organisms, 105(1), 45-55. Tsing, A., Arcier, J.-M., & Brehélin, M. (1989). Hemocytes of penaeid and palaemonid shrimps: morphology, cytochemistry, and hemograms. Journal of Invertebrate Pathology, 53(1), 64-77. Tu, Z., Zhong, J., Li, H., Sun, L., Huang, Y., Yang, S., . . . Cai, S. (2024). Characterization and function analysis of cathepsin C in Marsupenaeus japonicus. Fish and Shellfish Immunology, 146, 109379. Uchiyama, Y. (2001). Autophagic cell death and its execution by lysosomal cathepsins. Archives of Histology and Cytology, 64(3), 233-246. Uinuk‐Ool, T., Takezaki, N., Kuroda, N., Figueroa, F., Sato, A., Samonte, I., . . . Klein, J. (2003). Phylogeny of antigen‐processing enzymes: cathepsins of a cephalochordate, an agnathan and a bony fish. Scandinavian Journal of Immunology, 58(4), 436-448. Uribe, C., Folch, H., Enríquez, R., & Moran, G. (2011). Innate and adaptive immunity in teleost fish: a review. Veterinarni Medicina, 56(10), 486-503. Van Herreweghe, J. M., & Michiels, C. W. (2012). Invertebrate lysozymes: diversity and distribution, molecular mechanism and in vivo function. Journal of Biosciences, 37, 327-348. Velázquez-Lizárraga, A. E., Juárez-Morales, J. L., Racotta, I. S., Villarreal-Colmenares, H., Valdes-Lopez, O., Luna-González, A., . . . Ascencio, F. (2019). Transcriptomic analysis of Pacific white shrimp (Litopenaeus vannamei, Boone 1931) in response to acute hepatopancreatic necrosis disease caused by Vibrio parahaemolyticus. PLoS One, 14(8), e0220993. Vidak, E., Javoršek, U., Vizovišek, M., & Turk, B. (2019). Cysteine cathepsins and their extracellular roles: shaping the microenvironment. Cells, 8(3), 264. Vignali, D. A. A., Collison, L. W., & Workman, C. J. (2008). How regulatory T cells work. Nature Reviews Immunology, 8(7), 523-532. Wang, H., Wan, X., Xie, G., Dong, X., Wang, X., & Huang, J. (2020). Insights into the histopathology and microbiome of Pacific white shrimp, Penaeus vannamei, suffering from white feces syndrome. Aquaculture, 527, 735447. Wang, L. F., Chai, L. Q., He, H. J., Wang, Q., Wang, J. X., & Zhao, X. F. (2010). A cathepsin L‐like proteinase is involved in moulting and metamorphosis in Helicoverpa armigera. Insect Molecular Biology, 19(1), 99-111. Wang, T., & Secombes, C. J. (2013). The cytokine networks of adaptive immunity in fish. Fish and Shellfish Immunology, 35(6), 1703-1718. Wang, Y. S., & Shelomi, M. (2017). Review of black soldier fly (Hermetia illucens) as animal feed and human food. Foods, 6(10). Willstätter, R., & Bamann, E. (1929). Über die proteasen der magenschleimhaut. Erste abhandlung über die enzyme der leukocyten. Biological Chemistry. Wilson, A. B. (2017). MHC and adaptive immunity in teleost fishes. Immunogenetics, 69(8), 521-528. Wilson, T. J., Nannuru, K. C., Futakuchi, M., & Singh, R. K. (2010). Cathepsin G-mediated enhanced TGF-β signaling promotes angiogenesis via upregulation of VEGF and MCP-1. Cancer letters, 288(2), 162-169. Wyban, J. (2009). World shrimp farming revolution: industry impact of domestication, breeding and widespread use of specific pathogen free Penaeus vannamei. World Aquaculture, 12-21. Yadati, T., Houben, T., Bitorina, A., & Shiri-Sverdlov, R. (2020). The ins and outs of cathepsins: physiological function and role in disease management. Cells, 9(7), 1679. Yamaguchi, T., Naruishi, K., Arai, H., Nishimura, F., & Takashiba, S. (2008). IL‐6/sIL‐6R enhances cathepsin B and L production via caveolin‐1‐mediated JNK‐AP‐1 pathway in human gingival fibroblasts. Journal of Cellular Physiology, 217(2), 423-432. Yamamoto, Y., & Takahashi, S. Y. (1993). Cysteine proteinase from Bombyx eggs: role in programmed degradation of yolk proteins during embryogenesis. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 106(1), 35-45. Yang, H., Zhang, R., Zhang, Y., Liu, Q., Li, Y., Gong, J., & Hou, Y. (2020). Cathepsin L is involved in degradation of fat body and programmed cell death in Bombyx mori. Gene, 760, 144998. Yeh, M. S., Huang, C. J., Cheng, J. H., & Tsai, I. H. (2007). Tissue-specific expression and regulation of the haemolymph clottable protein of tiger shrimp (Penaeus monodon). Fish and Shellfish Immunology, 23(2), 272-279. Yu, H. Z., Huang, Y. L., Li, N. Y., Xie, Y. X., Zhou, C. H., & Lu, Z. J. (2019). Potential roles of two cathepsin genes, DcCath-L and DcCath-O in the innate immune response of Diaphorina citri. Journal of Asia-Pacific Entomology, 22(4), 1060-1069. Zapata, A. G. (2024). The fish spleen. Fish and Shellfish Immunology, 144, 109280. Zhang, Q., Liu, Q., Liu, S., Yang, H., Liu, S., Zhu, L., . . . Wang, X. (2014). A new nodavirus is associated with covert mortality disease of shrimp. Journal of General Virology, 95(12), 2700-2709. Zhao, C. F., & Herrington, D. M. (2016). The function of cathepsins B, D, and X in atherosclerosis. American Journal of Cardiovascular Disease, 6(4), 163-170. Zhou, J., Li, L., & Cai, Z. H. (2012). Identification of putative cathepsin S in mangrove red snapper Lutjanus argentimaculatus and its role in antigen presentation. Developmental and Comparative Immunology, 37(1), 28-38. Zhou, J., Zhang, Y. Y., Li, Q. Y., & Cai, Z. H. (2015). Evolutionary history of cathepsin L (L-like) family genes in vertebrates. International Journal of Biological Sciences, 11(9), 1016. Zou, J., Tafalla, C., Truckle, J., & Secombes, C. J. (2007). Identification of a second group of type I IFNs in fish sheds light on IFN evolution in vertebrates. The Journal of Immunology, 179(6), 3859-3871. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93697 | - |
| dc.description.abstract | 細胞自溶酵素 L (cathepsin L) 是一種存在於溶小體中的蛋白水解酶,參與真核生物中多種重要的生理與病理功能,並在免疫反應中扮演重要角色。同時 cathepsin L 也是一個廣泛存在於動物體內的酵素,從原始的海綿動物到高等哺乳動物皆有。在動物演化中,免疫系統經歷由簡單到複雜的進化過程,cathepsin L 在 這些不同演化程度免疫系統上所扮演的角色。本研究擬探討在不同免疫演化層級 的物種中,cathepsin L 所扮演角色。研究中挑選演化上具有完整先天性與後天性性 免疫反應的的硬骨魚 (點帶石斑魚),以及兩種僅具先天性免疫反應的節肢動物 (昆蟲綱的黑水虻和軟甲綱的白蝦) 作為模式動物進行研究,闡明不同物種中 cathepsin L 在免疫反應中可能扮演的角色。在點帶石斑魚為研究對象的研究中,透 過免疫組織染色中 (IHC staining) 觀察到 cathepsin L 存在於石斑魚免疫器官中的免疫相關細胞,特別是肝臟中的 Kupffer’s cells 與頭腎中的 leukocyte-like cells。同 時,首次以活體 (in vivo) 實驗證實,當石斑魚體內具有酵素活性之 cathepsin L 增加時,免疫相關的基因受到調控。在黑水虻研究中發現 cathepsin L 基因表現量在 不同蟲齡之間差異,特別在第五齡時,cathepsin L 基因表現最為顯著。IHC staining 證實 cathepsin L 在黑水虻幼蟲體內,存在於擔負消化與免疫功能的中腸中,尤其中中腸最甚。此外,黑水虻幼蟲在受到免疫刺激後,體內的 cathepsin L 無論是在基因表現,還是酵素活性上,皆有顯著上升的趨勢。在白蝦的研究中發現白蝦受到微孢子蟲感染和副溶血弧菌感染,白蝦肝胰腺中的 cathepsin L 基因表現量與肝胰腺組織損傷程度密切相關。綜合以上的研究成果,我們發現 cathepsin L 在此三種 物種中,基因表現量與酵素活性在受到免疫刺激時,皆有上升趨勢,顯示 cathepsin L 在免疫反應中受到調控。此外,在不同演化層級不同的物種,cathepsin L 表現位置有所差異,在演化較為初級的黑水虻與白蝦中,cathepsin L 存在於負責消化與免疫的器官中,暗示其兼具消化與防禦的功能。隨著演化的推進,在較為高等的石斑魚中發現,cathepsin L 存在於免疫器官中,除了降解入侵的病原以外,並透過修飾免疫分子進行免疫調節。 | zh_TW |
| dc.description.abstract | Cathepsin L is a lysosomal protease in eukaryotes, involved in various physiological and pathological functions, and plays a crucial role in immune responses. This hydrolytic protein can be found in both intracellular and extracellular matrices, and its evolution can be traced from sponges to mammals. During animal evolution, the immune system evolved from simple to complex, raising curiosity about the role of cathepsin L in these different evolutionary stages of the immune system. This study aims to investigate the role of cathepsin L in species at different levels of immune evolution. We selected the orange-spotted grouper (the teleost fish Epinephelus coioides), which has a complete innate and adaptive immune response, and two arthropods, including black soldier fly (the insect Hermetia illucens) and the white shrimp (the crustacean Litopenaeus vannamei), which relying solely on innate immunity. We analyzed cathepsin L gene expression, tissue distribution, and enzymatic activity to elucidate the possible roles of cathepsin L in immune responses across different species. In the study of the grouper, IHC staining showed the presence of cathepsin L in immune-related cells in immune organs, particularly in Kupffer’s cells in the liver and leukocyte-like cells in the head kidney. Furthermore, in vivo experiments demonstrated that increased of cathepsin L with enzymatic activity would regulate immune-related gene expression. In the second study of black soldier fly, cathepsin L mRNA levels were highest at the fifth larval stage, compared to those at the second through sixth larval stages. Cathepsin L was localized in the midgut, especially in the middle midgut, responsible for digestion and immune functions. Additionally, the expression level of mRNA and enzymatic activity of cathepsin L significantly increased upon immune stimulation. In the third study of shrimp, cathepsin L gene expression in the hepatopancreas correlated with tissue damage caused by Enterocytozoon hepatopenaei and Vibrio parahaemolyticus infections. Summarizing the findings, we observed that cathepsin L gene expression and enzyme activity increased upon immune stimulation in all three species, suggesting that cathepsin L did regulate immune responses. However, the localization of cathepsin L differed among species. In the more primitive black soldier fly and shrimp, cathepsin L was present in organs responsible for both digestion and immunity, suggesting dual functions. In the more advanced species such as grouper, cathepsin L was found in immune organs, participating in pathogen degradation and the regulation of immune-related genes. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-07T16:32:00Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-07T16:32:01Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii Abstract v 目次 vii 圖次 ix 表次 xi 縮寫表 xii 第一章 導論 1 1.1 細胞自溶酵素的介紹 1 1.2 Cathepsins生合成的介紹 2 1.3 Cathepsins在哺乳動物中扮演的生理功能 3 1.4 Cathepsins在哺乳動物中異常表現所涉及的疾病 6 第二章 Cathepsin L在點帶石斑魚中扮演的免疫角色 9 2.1 硬骨魚的介紹 9 2.2 材料方法 20 2.3 結果 35 2.4 討論 39 2.5 結論 44 第三章 Cathepsins在節肢動物中免疫反應中的角色研究 57 3.1. 節肢動物的介紹 57 3.2. 節肢動物的免疫反應 57 3.3. Cathepsin L在節肢動物中扮演的免疫角色 58 第四章 Cathepsin L在黑水虻中扮演的免疫角色 59 4.1 黑水虻的介紹 59 4.2 材料與方法 64 4.3 結果 69 4.4 討論 74 4.5 結論 77 第五章 Cathepsin L在白蝦中扮演的免疫角色 89 5.1 白蝦的介紹 89 5.2 材料與方法 101 5.3 結果 104 5.4 討論 109 5.5 結論與未來展望 112 第六章 總結 129 6.1 不同物種演化上cathepsin L功能的差異 129 6.2 不同物種間實驗採用的手段 130 6.3 Cathepsin L未來可能的應用層面 132 參考文獻 134 附錄 160 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 免疫功能 | zh_TW |
| dc.subject | 微孢子蟲 | zh_TW |
| dc.subject | 副溶血弧菌 | zh_TW |
| dc.subject | 黑水虻 | zh_TW |
| dc.subject | 石斑魚 | zh_TW |
| dc.subject | 細胞自溶酵素 L | zh_TW |
| dc.subject | 白蝦 | zh_TW |
| dc.subject | Enterocytozoon hepatopenaei | en |
| dc.subject | cathepsin L | en |
| dc.subject | orange-spotted grouper (Epinephelus coioides) | en |
| dc.subject | black soldier fly (Hermetia illucens) | en |
| dc.subject | shrimp (Litopenaeus vannamei) | en |
| dc.subject | Vibrio parahaemolyticus | en |
| dc.subject | immune responses | en |
| dc.title | 細胞自溶酵素 L (cathepsin L) 在免疫上的角色: 從魚類以及節肢動物的角度進行探討 | zh_TW |
| dc.title | The Role of Cathepsin L in Immune Responses: Observation in Fish and Arthropods | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 葉光勝;林辰栖;林翰佳;龔紘毅;邱品文;陳逸民 | zh_TW |
| dc.contributor.oralexamcommittee | Kuang-Sheng Yeh;Chen-Si Lin;Han-Jia Lin;Hong-Yi Gong;Pin-Wen Chiou;Yih-Min Chen | en |
| dc.subject.keyword | 細胞自溶酵素 L,石斑魚,黑水虻,白蝦,微孢子蟲,副溶血弧菌,免疫功能, | zh_TW |
| dc.subject.keyword | cathepsin L,orange-spotted grouper (Epinephelus coioides),black soldier fly (Hermetia illucens),shrimp (Litopenaeus vannamei),Enterocytozoon hepatopenaei,Vibrio parahaemolyticus,immune responses, | en |
| dc.relation.page | 174 | - |
| dc.identifier.doi | 10.6342/NTU202402054 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-05 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 獸醫學系 | - |
| dc.date.embargo-lift | 2029-07-01 | - |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2029-07-01 | 32.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
