請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93686完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林寶秀 | zh_TW |
| dc.contributor.advisor | Bau-Show Lin | en |
| dc.contributor.author | 張幼穎 | zh_TW |
| dc.contributor.author | Yu-Yin Chang | en |
| dc.date.accessioned | 2024-08-07T16:24:55Z | - |
| dc.date.available | 2024-08-08 | - |
| dc.date.copyright | 2024-08-07 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-01 | - |
| dc.identifier.citation | 王安強、黃國倉 (2018)。綠建築對都市熱島緩和及舒適度提升之量化效益評估研究。臺北市:內政部建築研究所。
內政部地政司 (2022)。一般徵收、區段徵收及市地重劃之區別。下載日期:2022年6月19,取自:https://www.land.moi.gov.tw/chhtml/landQA/55?qphclass=&pagenum=7。 內政部國土管理署 (2019)。建築基地綠化設計技術規範。臺北市:內政部國土管理署。 交通部 (2020)。公路景觀設計規範。臺北市:交通部。 行政院主計總處 (2023)。縣市重要統計指標查詢系統。下載日期:2024年5月1日,取自:https://winstacity.dgbas.gov.tw/DgbasWeb/ZWeb/StateFile_ZWeb.aspx# 吳宜郡 (2020)。都市公園綠地微氣候調節服務之能力與流動。碩士論文。臺灣大學園藝暨景觀學系,臺北市。 邱英浩 (2011)。建築配置形式對戶外空間環境風場之影響。都市與計劃,38(3),303-325。https://doi.org/10.6128/CP.38.3.303 林炯明 (2010)。都市熱島效應之影響及其環境意涵。環境與生態學報,3(1),1-15。 林憲德 (1994)。現代人類的居住環境。臺北市。胡氏圖書出版社。 韋彰武、李介中 (2019)。臺北市整體開發的過去、現在與未來。下載日期:2022年6月19,取自:https://epaper.land.gov.taipei/Item/Detail/%E8%87%BA%E5%8C%97%E5%B8%82%E6%95%B4%E9%AB%94%E9%96%8B%E7%99%BC%E7%9A%84%E9%81%8E%E5%8E%BB%E3%80%81%E7%8F%BE%E5%9C%A8%E8%88%87%E6%9C%AA%E4%BE%86。 桃園市地政局 (2019)。市地重劃意義。下載日期:2022年6月19,取自:https://land.tycg.gov.tw/home.jsp?id=84&parentpath=0,4,75 國家教育研究院 (2002)。熱島效應。下載日期:2022年6月19,取自: https://terms.naer.edu.tw/detail/1320219/。 郭瓊瑩、葉佳宗 (2011)。自然生態取向之綠色基盤系統建設探討氣候變遷回應之城市治理。城市學學刊,2(1),31-63。 陳明燦 (1999)。市地重劃實施過程中法律救濟問題之研究。政大法學評論,62,129-165。 許銘峰 (2008)。台灣地區都市型態特徵之比較研究。碩士論文。成功大學都市計畫學系,臺南市。 辜貽暄 (2021)。市地重劃對都市景觀格局與房價之影響。碩士論文。臺灣大學園藝暨景觀學系,臺北市。 張樞 (2012)。當前台灣都市環境塑造的困境與危機。臺灣建築學會會刊,(66),4-10。 黃武達 (1997)。日治時代(1895-1945)臺北市之近代都市計畫,第 2 卷。臺北市。臺灣都市史硏究室。 黃武達 (1999),都市計畫及建築法制研究論文集。臺北市。文笙書局股份有限公司。 褚漢威 (2020)。都市公園的空間配置與溫度表現關係之研究。碩士論文。臺灣大學園藝暨景觀學系,臺北市。 新北市政府地政局 (2023)。土地開發。下載日期:2023年5月1日,取自:https://www.land.ntpc.gov.tw/cl.aspx?n=10641。 新北市政府城鄉發展局 (2021)。翻轉更美,築夢新北,安居樂業正在實現。下載日期:2023年5月1日,取自:https://www.planning.ntpc.gov.tw/home.jsp?id=21&act=be4f48068b2b0031&dataserno=4f8d72ea62aa067e23f53c1f4ba34d0f。 新北市政府城鄉發展局 (2023)。新北綠家園。下載日期:2023年5月1日,取自:https://www.planning.ntpc.gov.tw/home.jsp?id=e43e529de81cd965。 臺北市工務局公園路燈工程管理處 (2019)。行道樹種建議表。臺北市:臺北市政府工務局。 臺北市政府主計處 (2024)。臺北市綠資源。下載日期:2024年5月1日,取自:https://data.taipei/dataset/detail?id=c9038665-c084-4bd9-a395-15c99bf59cdf。 臺北市政府地政局 (2023)。臺北市政府地政局土地開發總隊。下載日期:2023年5月1日,取自:https://lda.land.gov.taipei/Default.aspx。 臺北市政府地政局土地開發總隊 (2023)。臺北市開發區分布圖。下載日期:2023年5月1日,取自:https://lda.land.gov.taipei/News_Content.aspx?n=AF81A1B92BBB31EF&sms=A4EABC47EE97A6D7&s=6D4CAB1F676D5771。 臺灣好植地 (2020)。地貌架構下的綠覆率評比。下載日期:2024年5月1日,取自:https://sites.google.com/view/tree-taiwan/ndvi。 蔡佳樺 (2015)。戰後台灣都市型態演化現象之研究–以永和為例。碩士論文。成功大學都市計畫學系,臺南市。 蔡旻珈 (2022)。街道綠化與透水鋪面對行人熱舒適度影響之研究。碩士論文。臺灣大學園藝暨景觀學系,臺北市。 劉瑞煌 (2003)。臺灣之市地重劃。土地問題研究季刊,2(1),41-49。 歐陽嶠暉 (2001)。都市環境學。臺北市。詹氏書局。 鄭師中 (1988)。都市氣候學。臺北市。徐氏基金會。 Agrawal, P. (1999). Urban land consolidation: a review of policy and procedures in Indonesia and other Asian countries. GeoJournal, 49(3), 311-322. Ali-Toudert, F., & Mayer, H. (2006). Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Building and Environment, 41(2), 94-108. Anderson, W. P., Kanaroglou, P. S., & Miller, E. J. (1996). Urban form, energy and the environment: a review of issues, evidence and policy. Urban Studies, 33(1), 7-35. ASHRAE. (2004). ASHRAE Standard 55: Thermal Environmental Conditions for Human Occupency. Atlanta: American Society of Heating, Refrigerating and Air Conditioning Engineers, Inc. Barnett, J. (1982). An introduction to urban design. New York: Harper & Row. Bartesaghi-Koc, C., Osmond, P., & Peters, A. (2017). Towards a comprehensive green infrastructure typology: a systematic review of approaches, methods and typologies. Urban Ecosystems, 20, 15-35. Bencsik, G., & Háber, I. E. (2018, October 5-6). Designing measuring instrument for validation of city simulations. 3D Conference Engineering Section Pécs, Hungary. Benedict, M. A., & McMahon, E. T. (2002). Green infrastructure: Smart conservation for the 21st century. Renewable Resources Journal, 20(3), 12-17. Benedict, M. A., & McMahon, E. T. (2012). Green infrastructure: Linking landscapes and communities. Island press. Bolund, P., & Hunhammar, S. (1999). Ecosystem services in urban areas. Ecological Economics, 29(2), 293-301. Bowler, D. E., Buyung-Ali, L., Knight, T. M., & Pullin, A. S. (2010). Urban greening to cool towns and cities: A systematic review of the empirical evidence. Landscape and Urban Planning, 97(3), 147-155. Brinkhoff, T. (2024). Major agglomerations of the world. Retrieved May 5, 2024, from http://www.citypopulation.de Bruse, M. Environmental Modelling Group., 2015: ENVI-met. Retrieved May 10, 2023, from http://envi-met. info. Bruse, M., & Fleer, H. (1998). Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Environmental Modelling & Software, 13(3-4), 373-384. Catalano, C., & Baumann, N. (2017). Biosolar roofs: a symbiosis between biodiverse green roofs and renewable energy. CityGreen, 2017(15), 42-49. Commission of the European Communities. (2009). Adapting to Climate Change: Towards a European Framework for Action. Brussels: CEC. Cervero, R., & Kockelman, K. (1997). Travel demand and the 3Ds: Density, diversity, and design. Transportation Research Part D: Transport and Environment, 2(3), 199-219. Chow, W. T., & Roth, M. (2006). Temporal dynamics of the urban heat island of Singapore. International Journal of Climatology: A Journal of the Royal Meteorological Society, 26(15), 2243-2260. Chow, W. T., & Brazel, A. J. (2012). Assessing xeriscaping as a sustainable heat island mitigation approach for a desert city. Building and Environment, 47, 170-181. Chang, C. R., Li, M. H., & Chang, S. D. (2007). A preliminary study on the local cool-island intensity of Taipei city parks. Landscape and Urban Planning, 80(4), 386-395. Costanza, R., d'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., ... & Van Den Belt, M. (1997). The value of the world's ecosystem services and natural capital. Nature, 387(6630), 253-260. De Vries, S., Buijs, A. E., & Snep, R. P. (2020). Environmental justice in The Netherlands: Presence and quality of greenspace differ by socioeconomic status of neighbourhoods. Sustainability, 12(15), 5889. Du, H., Cai, W., Xu, Y., Wang, Z., Wang, Y., & Cai, Y. (2017). Quantifying the cool island effects of urban green spaces using remote sensing data. Urban Forestry & Urban Greening, 27, 24-31. Emmanuel, R., & Fernando, H. J. (2007). Urban heat islands in humid and arid climates: Role of urban form and thermal properties in Colombo, Sri Lanka and Phoenix, USA. Climate Research, 34(3), 241-251. European Commission (2011). Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions youth opportunities initiative. Brussels, Belgium: European Commission. European Environment Agency. (2022). Who benefits from nature in cities? Social inequalities in access to urban green and blue spaces across Europe. Retrieved April 8, 2024, from https://www.eea.europa.eu/publications/who-benefits-from-nature-in. Ewing, R., & Handy, S. (2009). Measuring the unmeasurable: Urban design qualities related to walkability. Journal of Urban Design, 14(1), 65-84. Farhadi, H., Faizi, M., & Sanaieian, H. (2019). Mitigating the urban heat island in a residential area in Tehran: Investigating the role of vegetation, materials, and orientation of buildings. Sustainable Cities and Society, 46, 101448. Fanger, P. O. (1970). Thermal comfort. Danish Technical Press, Copenhagen. Gaffin, S. R., Rosenzweig, C., & Kong, A. Y. (2012). Adapting to climate change through urban green infrastructure. Nature Climate Change, 2(10), 704-704. Gagge, A. P., Fobelets, A. P., & Berglund, L. (1986). A standard predictive index of human response to the thermal environment. ASHRAE trans, 92(2), 709-731. Giridharan, R., Ganesan, S., & Lau, S. S. Y. (2004). Daytime urban heat island effect in high-rise and high-density residential developments in Hong Kong. Energy and Buildings, 36(6), 525-534. Herath, H. M. P. I. K, Halwatura, R. U., & Jayasinghe, G. Y. (2018). Evaluation of green infrastructure effects on tropical Sri Lankan urban context as an urban heat island adaptation strategy. Urban Forestry & Urban Greening, 29, 212–222. Hong, B., & Lin, B. (2015). Numerical studies of the outdoor wind environment and thermal comfort at pedestrian level in housing blocks with different building layout patterns and trees arrangement. Renewable Energy, 73, 18-27. Höppe, P. (1999). The physiological equivalent temperature – A universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43, 71-75. Huttner, S. (2012). Further development and application of the 3D microclimate simulation ENVI-met. PhD thesis. Johannes Gutenberg-University, Mainz. International Organization for Standardization. (2004). Ergonomics of the thermal environment — Risk assessment strategy for the prevention of stress or discomfort in thermal working conditions (ISO/DIS Standard No. 15265). Retrieved April 20, 2023, from https://www.iso.org/standard/26129.html Jamei, E., & Rajagopalan, P. (2017). Urban development and pedestrian thermal comfort in Melbourne. Solar Energy, 144, 681-698. Jin, C., Bai, X., Luo, T., & Zou, M. (2018). Effects of green roofs’ variations on the regional thermal environment using measurements and simulations in Chongqing, China. Landscape and Urban Planning, 29, 223–237. Johansson, E. (2006). Influence of urban geometry on outdoor thermal comfort in a hot dry climate: A study in Fez, Morocco. Building and Environment, 41(10), 1326-1338. Kántor, N., Kovács, A., & Takács, Á. (2016). Small-scale human-biometeorological impacts of shading by a large tree. Open Geosciences, 8(1), 231-245. Kántor, N., & Unger, J. (2011). The most problematic variable in the course of human-biometeorological comfort assessment—The mean radiant temperature. Central European Journal of Geosciences, 3, 90-100. Konijnendijk, C. C. (2023). Evidence-based guidelines for greener, healthier, more resilient neighbourhoods: Introducing the 3–30–300 rule. Journal of Forestry Research, 34(3), 821-830. Kropf, K. (2009). Aspects of urban form. Urban Morphology, 13(2), 105-120. Kuttler, W., & Weber, S. (2023). Characteristics and phenomena of the urban climate. Meteorologische Zeitschrift, 15-47. Lee, H., Mayer, H., & Chen, L. (2016). Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, southwest Germany. Landscape and Urban Planning, 148, 37–50. Lin, B. S., & Lin, C. T. (2016). Preliminary study of the influence of the spatial arrangement of urban parks on local temperature reduction. Urban Forestry & Urban Greening, 20(1), 348–357. Lin, B. S., Cho, Y. H., & Hsieh, C. I. (2021). Study of the thermal environment of sidewalks within varied urban road structures. Urban Forestry & Urban Greening, 62, 127137. Lin, T. P., & Matzarakis, A. (2008). Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. International Journal of Biometeorology, 52(4), 281-290. Lu, J., Li, Q., Zeng, L., Chen, J., Liu, G., Li, Y., ... & Huang, K. (2017). A micro-climatic study on cooling effect of an urban park in a hot and humid climate. Sustainable Cities and Society, 32, 513-522. Marshall, S. (2004). Streets and patterns. Routledge. Mayer, H., & Höppe, P. (1987). Thermal comfort of man in different urban environments. Theoretical and applied climatology, 38, 43-49. Middel, A., Häb, K., Brazel, A. J., Martin, C. A., & Guhathakurta, S. (2014). Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landscape and Urban Planning, 122, 16-28. Milizia, F. (1972). Principi di architetturacivile. Milano: Gabriele Marzotta. Morakinyo, T. E., Lai, A., Lau, K. K., & Ng, E. (2019). Thermal benefits of vertical greening in a high-density city: Case study of Hong Kong. Urban Forestry & Urban Greening, 37, 42–55. Morakinyo, T. E., & Lam, Y. F. (2016). Simulation study on the impact of tree-configuration, planting pattern and wind condition on street-canyon's micro-climate and thermal comfort. Building and Environment, 103, 262-275. Morakinyo, T. E., Lau, K. K., Ren, C., & Ng, E. (2018). Performance of Hong Kong’s common trees species for outdoor temperature regulation, thermal comfort, and energy saving. Building and Environment, 137, 157–170. Mushangwe, S., Astell-Burt, T., Steel, D., & Feng, X. (2021). Ethnic inequalities in green space availability: Evidence from Australia. Urban Forestry & Urban Greening, 64, 127235. Natural England. (2010). Nature nearby: Accessible natural greenspace guidance. Retrieved April 2, 2023, from http://www.ukmaburbanforum.co.uk/docunents/other/nature_nearby.pdf. Ng, E., Chen, L., Wang, Y. & Yuan, C. (2012). A study on the cooling effects of greening in a high-density city: An experience from Hong Kong. Building and Environment, 47, 256-271. Nieuwenhuijsen, M. J. (2020). Urban and transport planning pathways to carbon neutral, liveable and healthy cities: A review of the current evidence. Environment International, 140, 105661. Nieuwenhuijsen, M. J. (2021). Green infrastructure and health. Annual Review of Public Health, 42, 317-328. Nieuwenhuijsen, M. J., Dadvand, P., Márquez, S., Bartoll, X., Barboza, E. P., Cirach, M., ... & Zijlema, W. L. (2022). The evaluation of the 3-30-300 green space rule and mental health. Environmental Research, 215, 114387. Norton, B. A., Coutts, A. M., Livesley, S. J., Harris, R. J., Hunter, A. M., & Williams, N. S. (2015). Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape and Urban Planning, 134, 127-138. Nutsford, D., Pearson, A. L., & Kingham, S. (2013). An ecological study investigating the association between access to urban green space and mental health. Public Health, 127(11), 1005-1011. Oke, T. R. (1988). Street design and urban canopy layer climate. Energy and Buildings, 11(1-3), 103-113. Oke, T. R., Mills, G., Christen, A., & Voogt, J. A. (2017). Urban climates. Cambridge University Press. Oliveira, V. (2016). Urban morphology: An introduction to the study of the physical form of cities. Springer. Pauleit, S., Liu, L., Ahern, J., & Kazmierczak, A. (2011). Multifunctional green infrastructure planning to promote ecological services in the city. Oxford University Press. Peng, L. L. H. & Jim, C. Y. (2013). Green-roof effects on neighborhood microclimate and human thermal sensation. Energies, 6(2), 598-618. Perini, K., Magliocco, A. (2014). Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort. Urban Forestry & Urban Greening, 13(3), 495-506. Peron, F., De Maria, M. M., Spinazzè, F., & Mazzali, U. (2015). An analysis of the urban heat island of Venice mainland. Sustainable Cities and Society, 19, 300-309. Rojas-Rueda, D., Nieuwenhuijsen, M. J., Gascon, M., Perez-Leon, D., & Mudu, P. (2019). Green spaces and mortality: A systematic review and meta-analysis of cohort studies. The Lancet Planetary Health, 3(11), 469-477. Sandström, U. G. (2002). Green infrastructure planning in urban Sweden. Planning Practice and Research, 17(4), 373-385. Shiraishi, K (2022) The inequity of distribution of urban forest and ecosystem services in Cali, Colombia. Urban Forest & Urban Green, 67, 127446. Song, Y., & Knaap, G. J. (2004). Measuring urban form: Is Portland winning the war on sprawl? Journal of the American Planning Association, 70(2), 210-225. Srivanit, M., & Hokao, K. (2013). Evaluating the cooling effects of greening for improving the outdoor thermal environment at an institutional campus in the summer. Building and Environment, 66, 158-172. Stewart, I. D., & Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879-1900. Suárez, M., Barton, D. N., Cimburova, Z., Rusch, G. M., Gómez-Baggethun, E., & Onaindia, M. (2020). Environmental justice and outdoor recreation opportunities: A spatially explicit assessment in Oslo metropolitan area, Norway. Environmental Science & Policy, 108, 133-143. Tan, Z., Lau, K. K. L., & Ng, E. (2017). Planning strategies for roadside tree planting and outdoor comfort enhancement in subtropical high-density urban areas. Building and Environment, 120, 93-109. Tiwari, A., Kumar, P., Kalaiarasan, G., & Ottosen, T. B. (2021). The impacts of existing and hypothetical green infrastructure scenarios on urban heat island formation. Environmental Pollution, 274, 115898. Torrens, P. M., & Alberti, M. (2000). Measuring sprawl. CASA, UCL. Tsoka, S., Tsikaloudaki, A., & Theodosiou, T. (2018). Analyzing the ENVI-met microclimate model’s performance and assessing cool materials and urban vegetation applications–A review. Sustainable Cities and Society, 43, 55–76. UNECE (2022). Advancing sustainable urban and peri-urban forestry - A green approach to resilience, health, and green recovery. United Nations Economic Commission for Europe, Forests program, Geneva. Retrieved April 26, 2024, from https://unece.org/forests/policy-briefs-forestry-and-timber-section. Unger, J. (2004). Intra-urban relationship between surface geometry and urban heat island: Review and new approach. Climate Research, 27(3), 253-264. United Nations (2024) Sustainable Development Goal 11. Retrieved April 26, 2024, from https://sdgs.un.org/goals/goal11 Wang, Q., Peng, L. L., Jiang, W., Yin, S., Feng, N., & Yao, L. (2024). Urban form affects the cool island effect of urban greenery via building shadows. Building and Environment, 254, 111398. Willmott, C. J. (1981). On the validation of models. Physical Geography, 2(2), 184-194. World Health Organization (2012). Health indicators of sustainable cities in the context of the Rio+20 UN conference on sustainable development. Rio+ 20: The United Nations Conference on Sustainable Development, Geneva, Switzerland. World Health Organization (2017a). Urban green space interventions and health: A review of impacts and effectiveness. World Health Organization Regional Office for Europe, Copenhagen. World Health Organization (2017b). Urban green spaces: A brief for action. World Health Organization Regional Office for Europe, Copenhagen. Wolf, D., & Lundholm, J. T. (2008). Water uptake in green roof microcosms: Effects of plant species and water availability. Ecological Engineering, 33(2), 179-186. Wu, Z., & Chen, L. (2017). Optimizing the spatial arrangement of trees in residential neighborhoods for better cooling effects: Integrating modeling with in-situ measurements. Landscape and Urban Planning, 167, 463-472. Zhou, W., Huang, G., Pickett, S. T., Wang, J., Cadenasso, M. L., McPhearson, T., ... & Wang, J. (2021). Urban tree canopy has greater cooling effects in socially vulnerable communities in the US. One Earth, 4(12), 1764-1775. Zölch, T., Maderspacher, J., Weksler, C., & Pauleit, S. (2016). Using green infrastructure for urban climate-proofing: An evaluation of heat mitigation measures at the micro-scale. Urban Forestry & Urban Greening, 20(1), 305-316. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93686 | - |
| dc.description.abstract | 全球正面臨都市化造成熱島效應、夏日極端高溫等環境惡化現象,影響人們在戶外活動的熱舒適性。都市重劃區具有建築錯落分佈且高樓層的特性,提供通風與調節氣溫的潛力。而許多研究指出綠色基礎設施(green infrastructure, GI)如:公園綠地、街道綠帶等,能改善都市熱環境。故本研究目的為探討重劃區內的都市型態與綠色基礎設施配置形成的空間組合方案,將如何影響行人戶外熱舒適度。
本研究歸納臺灣雙北地區五處焦點重劃區的都市街廓大小、平均樓高及道路寬度等空間資訊,作為建置模擬方案的基礎配置參考。以重劃區的都市型態與綠色基礎設施組成為自變項,環境氣溫與生理等效溫度為應變項。應用ENVI-met作為研究工具,提出共14個模擬方案,分階段探討都市型態和綠色基礎設施對重劃區降溫的影響。在都市型態方面,將重劃區內的建築樓高、建築配置方式作為探討變項,形成4種都市型態方案,篩選出具最佳熱舒適表現的都市型態作為下階段模擬的基礎方案;在GI組成方面,比較不同GI類型(住宅街廓綠化、公園綠化、街道綠化及聯合三種綠化)和4種不同喬木覆蓋率方案,在重劃區都市型態下的熱環境情形;最後,綜合比較第一階段4種都市型態方案在相同綠化程度下的熱環境表現與降溫效益,提出具較佳熱舒適表現的都市型態與GI配置方案。 研究結果顯示不同方案在不同時段的氣溫與熱舒適度表現各異。在都市型態方面,高樓方案之熱舒適優於低樓方案;建築分散配置方案優於集中配置方案。在綠色基礎設施組成方面,相同喬木覆蓋率下,以平均配置的聯合綠化方案最優,其次為住宅街廓綠化和公園綠化;中午時段的喬木覆蓋率降溫效益最佳,越高的喬木覆蓋率方案,環境較為涼爽舒適,每增加10%喬木覆蓋率,可以降低氣溫0.17℃、PET 0.86℃。研究結果可提供都市規劃人員作為優化戶外熱環境的建築及綠色基礎設施空間配置參考。 | zh_TW |
| dc.description.abstract | The world is currently facing environmental deterioration such as urban heat islands and extreme summer temperatures caused by urbanization, which impact the thermal comfort of outdoor activities for people. Urban redevelopment zones feature scattered high-rise buildings, offering the potential for ventilation and temperature regulation. Many studies indicate that green infrastructure (GI) such as parks and green belts can improve the urban heat environment. Therefore, this study aims to explore how the spatial configuration formed by urban morphology and GI in redevelopment zones affects pedestrians' outdoor thermal comfort.
This study synthesized spatial information on urban street sizes, average building heights, and road widths from five focal redevelopment zones in the Taipei Metro Area as the basis for configuring simulation scenarios. Taking the urban morphology and green infrastructure configuration of redevelopment zones as independent variables, with air temperature and physiological equivalent temperature (PET) as dependent variables. Using ENVI-met as the research tool, a total of 14 simulation scenarios were proposed to investigate the impact of urban morphology and green infrastructure on cooling in redevelopment zones. Regarding urban morphology, building heights and configurations within the redevelopment zones were varied to form four urban morphology scenarios. The urban morphology scenario demonstrating the best thermal comfort performance was selected as the basis for subsequent simulations. In terms of GI composition, different types of GI (greenery around the building, park greening, street greening, and a combination of these) and four different tree canopy coverage rates were compared under the urban morphology scenarios to assess their impact on the thermal environment. Finally, the study comprehensively compared the thermal performance and cooling benefits of the four urban morphology scenarios in the first phase under the same level of greening, proposing urban morphology and GI configuration scenarios that offer superior thermal comfort. The research results indicate that different strategies exhibit varying temperature and thermal comfort performances at different times of the day. In terms of urban morphology, the high-rise scenario shows better thermal comfort compared to the low-rise scenario, and dispersed building configurations outperformed concentrated ones. Regarding GI composition, under similar tree canopy coverage rates, the combined greening with average distribution showed optimal results, followed by greenery around the building and park greening. The cooling benefits of tree canopy coverage are most effective at noon, with higher canopy coverage leading to a cooler and more comfortable environment. For every 10% increase in tree canopy coverage, the temperature can be reduced by 0.17°C and PET by 0.86°C. The research findings can serve as a reference for urban planners to optimize the spatial configuration of buildings and green infrastructure to enhance outdoor thermal environments. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-07T16:24:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-07T16:24:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 III 摘要 V Abstract VII 第一章 緒論 1 第一節 研究動機 1 第二節 研究目的 3 第三節 研究步驟與流程 4 第二章 文獻回顧 7 第一節 都市氣候與熱島效應 7 一、 都市氣候 7 二、 都市熱島效應 8 第二節 都市型態與都市重劃區 10 一、 都市型態 10 二、 都市型態與微氣候 11 三、 都市重劃區 13 四、 雙北地區的重劃區 16 五、 重劃區之都市型態 19 第三節 綠色基礎設施與效益 27 一、 生態系統服務 27 二、 綠色基礎設施定義 28 三、 綠色基礎設施分類 28 四、 都市綠色基礎設施佈局 31 五、 環境與人體熱舒適 35 第四節 ENVI-met相關研究與應用 38 一、 ENVI-met軟體介紹 38 二、 ENVI-met模型之環境物理計算 39 三、 ENVI-met軟體應用 40 第五節 小結 44 第三章 研究方法 45 第一節 研究架構與內容 45 一、 研究流程 45 二、 研究變項定義 45 三、 研究假設 47 第二節 ENVI-met模型設定及驗證 49 一、 現地測量 49 二、 驗證模型的建置 52 三、 模擬數據的驗證 56 第三節 都市型態與綠色基礎設施模擬方案 61 一、 方案發展邏輯 61 二、 方案基本設定 61 三、 各方案內容 68 第四節 資料處理與分析計畫 77 一、 資料處理 77 二、 研究假設檢定 77 第四章 研究結果 79 第一節 各方案的Ta表現 79 一、 方案的平均Ta比較 79 二、 方案在不同時刻的Ta變化 81 三、 方案間Ta溫差值比較 82 第二節 各方案的PET表現 88 一、 方案的平均PET比較 88 二、 方案在不同時刻的PET變化 90 三、 方案間PET降溫值比較 91 第三節 焦點時段的熱舒適度分布情況 97 一、 各時段的熱舒適面積變化 97 二、 全天的熱舒適度面積比例 100 三、 上午8時熱舒適分佈情形 102 四、 中午12時熱舒適分佈情形 104 五、 下午17時熱舒適分佈情形 106 六、 中午12時氣溫分佈情形 108 七、 晚間21時氣溫分佈情形 109 第四節 不同方案對行人熱舒適度關係及影響分析 110 一、 不同都市型態對行人熱舒適影響之分析 110 二、 不同綠色基礎設施組成對行人熱舒適影響之分析 112 三、 重劃區空間組成對行人熱舒適影響之分析 114 第五節 驗證研究假設 115 第五章 結論與建議 117 第一節 結論 117 第二節 綜合討論 119 第三節 建議 120 一、 重劃區空間規劃建議 120 二、 研究限制與後續研究建議 121 參考文獻 123 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | ENVI-met | zh_TW |
| dc.subject | 喬木覆蓋率 | zh_TW |
| dc.subject | 生理等效溫度 | zh_TW |
| dc.subject | 都市型態 | zh_TW |
| dc.subject | 重劃區 | zh_TW |
| dc.subject | 綠色基礎設施 | zh_TW |
| dc.subject | ENVI-met | en |
| dc.subject | Redevelopment zone | en |
| dc.subject | Urban morphology | en |
| dc.subject | Green infrastructure | en |
| dc.subject | Tree canopy coverage rate | en |
| dc.subject | Physiological Equivalent Temperature (PET) | en |
| dc.title | 都市型態及綠色基礎設施對重劃區戶外熱環境之影響 | zh_TW |
| dc.title | The Influence of Urban Morphology and Green Infrastructure on Outdoor Thermal Environment in Redevelopment Zone | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林晏州;謝正義;張俊彥;李素馨 | zh_TW |
| dc.contributor.oralexamcommittee | Yann-Jou Lin;Cheng-I Hsieh;Chun-Yen Chang;Su-Hsin Lee | en |
| dc.subject.keyword | 重劃區,都市型態,綠色基礎設施,喬木覆蓋率,生理等效溫度,ENVI-met, | zh_TW |
| dc.subject.keyword | Redevelopment zone,Urban morphology,Green infrastructure,Tree canopy coverage rate,Physiological Equivalent Temperature (PET),ENVI-met, | en |
| dc.relation.page | 132 | - |
| dc.identifier.doi | 10.6342/NTU202401789 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-05 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 園藝暨景觀學系 | - |
| dc.date.embargo-lift | 2026-07-15 | - |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 12.37 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
