請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93672完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林甫容 | zh_TW |
| dc.contributor.advisor | Fu-Jung Lin | en |
| dc.contributor.author | 江忠霖 | zh_TW |
| dc.contributor.author | Chung-Lin Jiang | en |
| dc.date.accessioned | 2024-08-07T16:19:26Z | - |
| dc.date.available | 2024-08-08 | - |
| dc.date.copyright | 2024-08-07 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-26 | - |
| dc.identifier.citation | 1. B Cannon and J Nedergaard. (2004). Brown adipose tissue: function and physiological significance. Physiol Rev. 84:277-359.
2. S Kajimura, BM Spiegelman, and P Seale. (2015). Brown and Beige Fat: Physiological Roles beyond Heat Generation. Cell Metab. 22:546-59. 3. P Cohen, et al. (2014). Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell. 156:304-16. 4. D Merrick, et al. (2019). Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science. 26:364. 5. B Xue, et al. (2007). Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fat. J Lipid Res. 48:41-51. 6. MD Lynes, et al. (2017). The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue. Nat Med. 23:631-637. 7. H Yu, et al. (2019). Breast milk alkylglycerols sustain beige adipocytes through adipose tissue macrophages. J Clin Invest. 129:2485-2499. 8. AC Hoang, et al. (2022). Mitochondrial RNA stimulates beige adipocyte development in young mice. Nat Metab. 4:1684-1696. 9. PG Farup, H Rootwelt, and K Hestad. (2020). APOE - a genetic marker of comorbidity in subjects with morbid obesity. BMC Med Genet. 21:146. 10. AL Lumsden, et al. (2020). Apolipoprotein E (APOE) genotype-associated disease risks: a phenome-wide, registry-based, case-control study utilising the UK Biobank. EBioMedicine. 59:102954. 11. RJF Loos and GSH Yeo. (2022). The genetics of obesity: from discovery to biology. Nat Rev Genet. 23:120-133. 12. R Valve, et al. (1999). Two polymorphisms in the peroxisome proliferator-activated receptor-gamma gene are associated with severe overweight among obese women. J Clin Endocrinol Metab. 84:3708-12. 13. B Koletzko, et al. (2009). Can infant feeding choices modulate later obesity risk? Am J Clin Nutr. 89:1502S-1508S. 14. MW Gillman, et al. (2001). Risk of overweight among adolescents who were breastfed as infants. JAMA. 285:2461-7. 15. SE King and MK Skinner. (2020). Epigenetic Transgenerational Inheritance of Obesity Susceptibility. Trends Endocrinol Metab. 31:478-494. 16. MT Flores-Dorantes, YE Diaz-Lopez, and R Gutierrez-Aguilar. (2020). Environment and Gene Association With Obesity and Their Impact on Neurodegenerative and Neurodevelopmental Diseases. Front Neurosci. 14:863. 17. P Matafome and R Seica. (2017). Function and Dysfunction of Adipose Tissue. Adv Neurobiol. 19:3-31. 18. MW Lee, M Lee, and KJ Oh. (2019). Adipose Tissue-Derived Signatures for Obesity and Type 2 Diabetes: Adipokines, Batokines and MicroRNAs. J Clin Med. 8. 19. E Nigro, et al. (2014). New insight into adiponectin role in obesity and obesity-related diseases. Biomed Res Int. 2014:658913. 20. CM Kusminski and PE Scherer. (2012). Mitochondrial dysfunction in white adipose tissue. Trends Endocrinol Metab. 23:435-43. 21. MM Ibrahim. (2010). Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev. 11:11-8. 22. R Vettor, et al. (2009). The origin of intermuscular adipose tissue and its pathophysiological implications. Am J Physiol Endocrinol Metab. 297:E987-98. 23. P Patel and N Abate. (2013). Role of subcutaneous adipose tissue in the pathogenesis of insulin resistance. J Obes. 2013:489187. 24. C Hepler, L Vishvanath, and RK Gupta. (2017). Sorting out adipocyte precursors and their role in physiology and disease. Genes Dev. 31:127-140. 25. BH Goodpaster, et al. (2023). Intermuscular adipose tissue in metabolic disease. Nat Rev Endocrinol. 19:285-298. 26. J Zinngrebe, KM Debatin, and P Fischer-Posovszky. (2020). Adipocytes in hematopoiesis and acute leukemia: friends, enemies, or innocent bystanders? Leukemia. 34:2305-2316. 27. A Giordano, et al. (2014). White, brown and pink adipocytes: the extraordinary plasticity of the adipose organ. Eur J Endocrinol. 170:R159-71. 28. S Cinti. (2018). Pink Adipocytes. Trends Endocrinol Metab. 29:651-666. 29. C Attane, et al. (2020). Human Bone Marrow Is Comprised of Adipocytes with Specific Lipid Metabolism. Cell Rep. 30:949-958 e6. 30. WP Cawthorn, et al. (2014). Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metab. 20:368-375. 31. A Fedorenko, PV Lishko, and Y Kirichok. (2012). Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell. 151:400-13. 32. D Ricquier. (2011). Uncoupling protein 1 of brown adipocytes, the only uncoupler: a historical perspective. Front Endocrinol (Lausanne). 2:85. 33. F Shamsi, CH Wang, and YH Tseng. (2021). The evolving view of thermogenic adipocytes - ontogeny, niche and function. Nat Rev Endocrinol. 17:726-744. 34. M Harms and P Seale. (2013). Brown and beige fat: development, function and therapeutic potential. Nat Med. 19:1252-63. 35. AM Cypess, et al. (2009). Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 360:1509-17. 36. V Ouellet, et al. (2011). Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in humans. J Clin Endocrinol Metab. 96:192-9. 37. WD van Marken Lichtenbelt, et al. (2009). Cold-activated brown adipose tissue in healthy men. N Engl J Med. 360:1500-8. 38. M Saito, et al. (2009). High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes. 58:1526-31. 39. T Inagaki, J Sakai, and S Kajimura. (2016). Transcriptional and epigenetic control of brown and beige adipose cell fate and function. Nat Rev Mol Cell Biol. 17:480-95. 40. ME Lidell, et al. (2013). Evidence for two types of brown adipose tissue in humans. Nat Med. 19:631-4. 41. J Wu, et al. (2012). Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 150:366-76. 42. W Wang and P Seale. (2016). Control of brown and beige fat development. Nat Rev Mol Cell Biol. 17:691-702. 43. SN Shapira and P Seale. (2019). Transcriptional Control of Brown and Beige Fat Development and Function. Obesity (Silver Spring). 27:13-21. 44. E Paulo and B Wang. (2019). Towards a Better Understanding of Beige Adipocyte Plasticity. Cells. 8. 45. A Bartelt and J Heeren. (2014). Adipose tissue browning and metabolic health. Nat Rev Endocrinol. 10:24-36. 46. J Nedergaard and B Cannon. (2014). The browning of white adipose tissue: some burning issues. Cell Metab. 20:396-407. 47. LZ Agudelo, et al. (2018). Kynurenic Acid and Gpr35 Regulate Adipose Tissue Energy Homeostasis and Inflammation. Cell Metab. 27:378-392 e5. 48. H Ohno, et al. (2012). PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab. 15:395-404. 49. W Wang, et al. (2019). A PRDM16-Driven Metabolic Signal from Adipocytes Regulates Precursor Cell Fate. Cell Metab. 30:174-189 e5. 50. Y Hasegawa, et al. (2018). Repression of Adipose Tissue Fibrosis through a PRDM16-GTF2IRD1 Complex Improves Systemic Glucose Homeostasis. Cell Metab. 27:180-194 e6. 51. M Shao, et al. (2016). Zfp423 Maintains White Adipocyte Identity through Suppression of the Beige Cell Thermogenic Gene Program. Cell Metab. 23:1167-1184. 52. X Liang, et al. (2016). Maternal high-fat diet during lactation impairs thermogenic function of brown adipose tissue in offspring mice. Sci Rep. 6:34345. 53. SY Min, et al. (2016). Human ''brite/beige'' adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice. Nat Med. 22:312-8. 54. Y Oguri, et al. (2020). CD81 Controls Beige Fat Progenitor Cell Growth and Energy Balance via FAK Signaling. Cell. 182:563-577 e20. 55. AM Benvie, et al. (2023). Age-dependent Pdgfrbeta signaling drives adipocyte progenitor dysfunction to alter the beige adipogenic niche in male mice. Nat Commun. 14:1806. 56. D Wolfs, et al. (2021). Brown Fat-Activating Lipokine 12,13-diHOME in Human Milk Is Associated With Infant Adiposity. J Clin Endocrinol Metab. 106:e943-e956. 57. CM Gliniak and PE Scherer. (2019). Critical lipids link breastfeeding to healthy adipose tissue in infancy and adulthood. J Clin Invest. 129:2198-2200. 58. ME Symonds, et al. (1996). Effect of rearing temperature on perirenal adipose tissue development and thermoregulation following methimazole treatment of postnatal lambs. Exp Physiol. 81:995-1006. 59. HC Roh, et al. (2018). Warming Induces Significant Reprogramming of Beige, but Not Brown, Adipocyte Cellular Identity. Cell Metab. 27:1121-1137 e5. 60. AD George, et al. (2022). The Role of Human Milk Lipids and Lipid Metabolites in Protecting the Infant against Non-Communicable Disease. Int J Mol Sci. 23. 61. K Birsoy, et al. (2011). Analysis of gene networks in white adipose tissue development reveals a role for ETS2 in adipogenesis. Development. 138:4709-19. 62. MR Greenwood and J Hirsch. (1974). Postnatal development of adipocyte cellularity in the normal rat. J Lipid Res. 15:474-83. 63. J Han, et al. (2011). The spatiotemporal development of adipose tissue. Development. 138:5027-37. 64. EJ Flynn, 3rd, CM Trent, and JF Rawls. (2009). Ontogeny and nutritional control of adipogenesis in zebrafish (Danio rerio). J Lipid Res. 50:1641-52. 65. CM Poissonnet, AR Burdi, and FL Bookstein. (1983). Growth and development of human adipose tissue during early gestation. Early Hum Dev. 8:1-11. 66. CM Poissonnet, AR Burdi, and SM Garn. (1984). The chronology of adipose tissue appearance and distribution in the human fetus. Early Hum Dev. 10:1-11. 67. KL Spalding, et al. (2008). Dynamics of fat cell turnover in humans. Nature. 453:783-7. 68. H Green and O Kehinde. (1975). An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell. 5:19-27. 69. ED Rosen, et al. (2002). C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes Dev. 16:22-6. 70. JM Gimble, et al. (2011). Concise review: Adipose-derived stromal vascular fraction cells and stem cells: let''s not get lost in translation. Stem Cells. 29:749-54. 71. VM Ramakrishnan and NL Boyd. (2018). The Adipose Stromal Vascular Fraction as a Complex Cellular Source for Tissue Engineering Applications. Tissue Eng Part B Rev. 24:289-299. 72. S Han, et al. (2015). Adipose-Derived Stromal Vascular Fraction Cells: Update on Clinical Utility and Efficacy. Crit Rev Eukaryot Gene Expr. 25:145-52. 73. EA Rondini, et al. (2021). Single cell functional genomics reveals plasticity of subcutaneous white adipose tissue (WAT) during early postnatal development. Mol Metab. 53:101307. 74. MS Rodeheffer, K Birsoy, and JM Friedman. (2008). Identification of white adipocyte progenitor cells in vivo. Cell. 135:240-9. 75. AG Cristancho and MA Lazar. (2011). Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol. 12:722-34. 76. ED Rosen and OA MacDougald. (2006). Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol. 7:885-96. 77. W Tang, et al. (2008). White fat progenitor cells reside in the adipose vasculature. Science. 322:583-6. 78. CS Hudak, et al. (2014). Pref-1 marks very early mesenchymal precursors required for adipose tissue development and expansion. Cell Rep. 8:678-87. 79. LP Kozak. (2011). The genetics of brown adipocyte induction in white fat depots. Front Endocrinol (Lausanne). 2:64. 80. QA Wang, et al. (2013). Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med. 19:1338-44. 81. A Rabiee. (2020). Beige Fat Maintenance; Toward a Sustained Metabolic Health. Front Endocrinol (Lausanne). 11:634. 82. P Cohen and BM Spiegelman. (2016). Cell biology of fat storage. Mol Biol Cell. 27:2523-7. 83. W Wang, et al. (2014). Ebf2 is a selective marker of brown and beige adipogenic precursor cells. Proc Natl Acad Sci U S A. 111:14466-71. 84. RR Stine, et al. (2016). EBF2 promotes the recruitment of beige adipocytes in white adipose tissue. Mol Metab. 5:57-65. 85. P Seale, et al. (2011). Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest. 121:96-105. 86. ME McDonald, et al. (2015). Myocardin-related transcription factor A regulates conversion of progenitors to beige adipocytes. Cell. 160:105-18. 87. JZ Long, et al. (2014). A smooth muscle-like origin for beige adipocytes. Cell Metab. 19:810-20. 88. H Yadav, et al. (2011). Protection from obesity and diabetes by blockade of TGF-beta/Smad3 signaling. Cell Metab. 14:67-79. 89. A Koncarevic, et al. (2012). A novel therapeutic approach to treating obesity through modulation of TGFbeta signaling. Endocrinology. 153:3133-46. 90. A Loft, et al. (2015). Browning of human adipocytes requires KLF11 and reprogramming of PPARgamma superenhancers. Genes Dev. 29:7-22. 91. P Bi, et al. (2014). Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity. Nat Med. 20:911-8. 92. S Cinti, et al. (1984). A morphological study of the adipocyte precursor. J Submicrosc Cytol. 16:243-51. 93. D Fukumura, et al. (2003). Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis. Circ Res. 93:e88-97. 94. Y Onogi, et al. (2017). PDGFRbeta Regulates Adipose Tissue Expansion and Glucose Metabolism via Vascular Remodeling in Diet-Induced Obesity. Diabetes. 66:1008-1021. 95. YH Lee, et al. (2012). In vivo identification of bipotential adipocyte progenitors recruited by beta3-adrenoceptor activation and high-fat feeding. Cell Metab. 15:480-91. 96. R Berry and MS Rodeheffer. (2013). Characterization of the adipocyte cellular lineage in vivo. Nat Cell Biol. 15:302-8. 97. YH Lee, et al. (2015). Cellular origins of cold-induced brown adipocytes in adult mice. FASEB J. 29:286-99. 98. M Audano, et al. (2022). Regulatory mechanisms of the early phase of white adipocyte differentiation: an overview. Cell Mol Life Sci. 79:139. 99. AC Daquinag, et al. (2015). Depletion of white adipocyte progenitors induces beige adipocyte differentiation and suppresses obesity development. Cell Death Differ. 22:351-63. 100. A Raajendiran, et al. (2019). Identification of Metabolically Distinct Adipocyte Progenitor Cells in Human Adipose Tissues. Cell Rep. 27:1528-1540 e7. 101. A Ladoux, et al. (2021). Distinct Shades of Adipocytes Control the Metabolic Roles of Adipose Tissues: From Their Origins to Their Relevance for Medical Applications. Biomedicines. 9. 102. RB Burl, et al. (2018). Deconstructing Adipogenesis Induced by beta3-Adrenergic Receptor Activation with Single-Cell Expression Profiling. Cell Metab. 28:300-309 e4. 103. C Hepler, et al. (2018). Identification of functionally distinct fibro-inflammatory and adipogenic stromal subpopulations in visceral adipose tissue of adult mice. Elife. 7. 104. PC Schwalie, et al. (2018). A stromal cell population that inhibits adipogenesis in mammalian fat depots. Nature. 559:103-108. 105. AK Sarvari, et al. (2021). Plasticity of Epididymal Adipose Tissue in Response to Diet-Induced Obesity at Single-Nucleus Resolution. Cell Metab. 33:437-453 e5. 106. DA Jaitin, et al. (2019). Lipid-Associated Macrophages Control Metabolic Homeostasis in a Trem2-Dependent Manner. Cell. 178:686-698 e14. 107. DA Hill, et al. (2018). Distinct macrophage populations direct inflammatory versus physiological changes in adipose tissue. Proc Natl Acad Sci U S A. 115:E5096-E5105. 108. P Rajbhandari, et al. (2019). Single cell analysis reveals immune cell-adipocyte crosstalk regulating the transcription of thermogenic adipocytes. Elife. 8. 109. DS Cho, B Lee, and JD Doles. (2019). Refining the adipose progenitor cell landscape in healthy and obese visceral adipose tissue using single-cell gene expression profiling. Life Sci Alliance. 2. 110. EA Rondini and JG Granneman. (2020). Single cell approaches to address adipose tissue stromal cell heterogeneity. Biochem J. 477:583-600. 111. R Ferrero, P Rainer, and B Deplancke. (2020). Toward a Consensus View of Mammalian Adipocyte Stem and Progenitor Cell Heterogeneity. Trends Cell Biol. 30:937-950. 112. GC Rivera-Gonzalez, et al. (2023). Single-cell lineage tracing reveals hierarchy and mechanism of adipocyte precursor maturation. bioRxiv. 113. CL Jiang, YF Chen, and FJ Lin. (2021). Apolipoprotein E deficiency activates thermogenesis of white adipose tissues in mice through enhancing beta-hydroxybutyrate production from precursor cells. FASEB J. 35:e21760. 114. D Chong, et al. (2022). Neonatal ketone body elevation regulates postnatal heart development by promoting cardiomyocyte mitochondrial maturation and metabolic reprogramming. Cell Discov. 8:106. 115. S Asif, et al. (2022). Hmgcs2-mediated ketogenesis modulates high-fat diet-induced hepatosteatosis. Mol Metab. 61:101494. 116. Y Arima, et al. (2021). Murine neonatal ketogenesis preserves mitochondrial energetics by preventing protein hyperacetylation. Nat Metab. 3:196-210. 117. OE Owen, et al. (1967). Brain metabolism during fasting. J Clin Invest. 46:1589-95. 118. VM Gershuni, SL Yan, and V Medici. (2018). Nutritional Ketosis for Weight Management and Reversal of Metabolic Syndrome. Curr Nutr Rep. 7:97-106. 119. GF Cahill, Jr., et al. (1966). Hormone-fuel interrelationships during fasting. J Clin Invest. 45:1751-69. 120. GF Cahill, Jr. (2006). Fuel metabolism in starvation. Annu Rev Nutr. 26:1-22. 121. AM Robinson and DH Williamson. (1980). Physiological roles of ketone bodies as substrates and signals in mammalian tissues. Physiol Rev. 60:143-87. 122. JH Koeslag, TD Noakes, and AW Sloan. (1980). Post-exercise ketosis. J Physiol. 301:79-90. 123. TR Wood, BJ Stubbs, and SE Juul. (2018). Exogenous Ketone Bodies as Promising Neuroprotective Agents for Developmental Brain Injury. Dev Neurosci. 40:451-462. 124. JM Hawdon, MP Ward Platt, and A Aynsley-Green. (1992). Patterns of metabolic adaptation for preterm and term infants in the first neonatal week. Arch Dis Child. 67:357-65. 125. PF Bougneres, et al. (1986). Ketone body transport in the human neonate and infant. J Clin Invest. 77:42-8. 126. R Bobinski and J Bobinska. (2022). Fatty acids of human milk - a review. Int J Vitam Nutr Res. 92:280-291. 127. B Delplanque, et al. (2015). Lipid Quality in Infant Nutrition: Current Knowledge and Future Opportunities. J Pediatr Gastroenterol Nutr. 61:8-17. 128. MC Neville and MF Picciano. (1997). Regulation of milk lipid secretion and composition. Annu Rev Nutr. 17:159-83. 129. W Wei, Q Jin, and X Wang. (2019). Human milk fat substitutes: Past achievements and current trends. Prog Lipid Res. 74:69-86. 130. T Yuan, et al. (2022). Role Medium-Chain Fatty Acids in the Lipid Metabolism of Infants. Front Nutr. 9:804880. 131. RG Jensen. (1996). The lipids in human milk. Prog Lipid Res. 35:53-92. 132. AC Bach and VK Babayan. (1982). Medium-chain triglycerides: an update. Am J Clin Nutr. 36:950-62. 133. RC Sprong, MF Hulstein, and R Van der Meer. (2001). Bactericidal activities of milk lipids. Antimicrob Agents Chemother. 45:1298-301. 134. RG Nejrup, TR Licht, and LI Hellgren. (2017). Fatty acid composition and phospholipid types used in infant formulas modifies the establishment of human gut bacteria in germ-free mice. Sci Rep. 7:3975. 135. EM Novak and SM Innis. (2011). Impact of maternal dietary n-3 and n-6 fatty acids on milk medium-chain fatty acids and the implications for neonatal liver metabolism. Am J Physiol Endocrinol Metab. 301:E807-17. 136. R Nasser, et al. (2010). The effect of a controlled manipulation of maternal dietary fat intake on medium and long chain fatty acids in human breast milk in Saskatoon, Canada. Int Breastfeed J. 5:3. 137. G Rocquelin, et al. (1998). Lipid content and essential fatty acid (EFA) composition of mature Congolese breast milk are influenced by mothers'' nutritional status: impact on infants'' EFA supply. Eur J Clin Nutr. 52:164-71. 138. MC Marin, et al. (2005). Long-chain polyunsaturated fatty acids in breast milk in La Plata, Argentina: relationship with maternal nutritional status. Prostaglandins Leukot Essent Fatty Acids. 73:355-60. 139. AS Gardner, et al. (2017). Changes in Fatty Acid Composition of Human Milk in Response to Cold-Like Symptoms in the Lactating Mother and Infant. Nutrients. 9. 140. J Abbasi. (2021). Ketone Body Supplementation-A Potential New Approach for Heart Disease. JAMA. 141. AM Sultan. (1988). D-3-hydroxybutyrate metabolism in the perfused rat heart. Mol Cell Biochem. 79:113-8. 142. MJ Chapman, LR Miller, and JA Ontko. (1973). Localization of the enzymes of ketogenesis in rat liver mitochondria. J Cell Biol. 58:284-306. 143. N Dashti and JA Ontko. (1979). Rate-limiting function of 3-hydroxy-3-methylglutaryl-coenzyme A synthase in ketogenesis. Biochem Med. 22:365-74. 144. FG Hegardt. (1999). Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase: a control enzyme in ketogenesis. Biochem J. 338 ( Pt 3):569-82. 145. P Puchalska and PA Crawford. (2017). Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metab. 25:262-284. 146. MK Brahma, et al. (2020). Increased Glucose Availability Attenuates Myocardial Ketone Body Utilization. J Am Heart Assoc. 9:e013039. 147. RC Schugar, et al. (2014). Cardiomyocyte-specific deficiency of ketone body metabolism promotes accelerated pathological remodeling. Mol Metab. 3:754-69. 148. S Takada, et al. (2022). Succinyl-CoA-based energy metabolism dysfunction in chronic heart failure. Proc Natl Acad Sci U S A. 119:e2203628119. 149. R Al Batran, et al. (2020). Pimozide Alleviates Hyperglycemia in Diet-Induced Obesity by Inhibiting Skeletal Muscle Ketone Oxidation. Cell Metab. 31:909-919 e8. 150. J Zeng, et al. (2019). Role of OXCT1 in ovine adipose and preadipocyte differentiation. Biochem Biophys Res Commun. 512:779-785. 151. EL Goldberg, et al. (2023). Innate immune cell-intrinsic ketogenesis is dispensable for organismal metabolism and age-related inflammation. J Biol Chem. 299:103005. 152. H Zhang, et al. (2020). Ketogenesis-generated beta-hydroxybutyrate is an epigenetic regulator of CD8(+) T-cell memory development. Nat Cell Biol. 22:18-25. 153. A Dabek, et al. (2020). Modulation of Cellular Biochemistry, Epigenetics and Metabolomics by Ketone Bodies. Implications of the Ketogenic Diet in the Physiology of the Organism and Pathological States. Nutrients. 12. 154. G Kong, et al. (2017). The Ketone Metabolite beta-Hydroxybutyrate Attenuates Oxidative Stress in Spinal Cord Injury by Suppression of Class I Histone Deacetylases. J Neurotrauma. 34:2645-2655. 155. T Shimazu, et al. (2013). Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science. 339:211-4. 156. Y He, et al. (2023). beta-Hydroxybutyrate as an epigenetic modifier: Underlying mechanisms and implications. Heliyon. 9:e21098. 157. K Karmodiya, et al. (2012). H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells. BMC Genomics. 13:424. 158. S Xu, et al. (2021). Ketogenic diets inhibit mitochondrial biogenesis and induce cardiac fibrosis. Signal Transduct Target Ther. 6:54. 159. B Li, et al. (2021). beta-Hydroxybutyrate inhibits histone deacetylase 3 to promote claudin-5 generation and attenuate cardiac microvascular hyperpermeability in diabetes. Diabetologia. 64:226-239. 160. Q Wang, et al. (2017). Ketogenesis contributes to intestinal cell differentiation. Cell Death Differ. 24:458-468. 161. CK Huang, et al. (2017). Adipocytes promote malignant growth of breast tumours with monocarboxylate transporter 2 expression via beta-hydroxybutyrate. Nat Commun. 8:14706. 162. Z Xie, et al. (2016). Metabolic Regulation of Gene Expression by Histone Lysine beta-Hydroxybutyrylation. Mol Cell. 62:194-206. 163. T Zhou, et al. (2022). Function and mechanism of histone beta-hydroxybutyrylation in health and disease. Front Immunol. 13:981285. 164. AJ Bannister and T Kouzarides. (2011). Regulation of chromatin by histone modifications. Cell Res. 21:381-95. 165. CJ Terranova, et al. (2021). Reprogramming of H3K9bhb at regulatory elements is a key feature of fasting in the small intestine. Cell Rep. 37:110044. 166. L Chen, Z Miao, and X Xu. (2017). beta-hydroxybutyrate alleviates depressive behaviors in mice possibly by increasing the histone3-lysine9-beta-hydroxybutyrylation. Biochem Biophys Res Commun. 490:117-122. 167. X Wu, et al. (2020). beta-hydroxybutyrate antagonizes aortic endothelial injury by promoting generation of VEGF in diabetic rats. Tissue Cell. 64:101345. 168. S Nishitani, et al. (2018). Metabolomic and microarray analyses of adipose tissue of dapagliflozin-treated mice, and effects of 3-hydroxybutyrate on induction of adiponectin in adipocytes. Sci Rep. 8:8805. 169. A Carriere, et al. (2014). browning of white adipose cells by intermediate metabolites: an adaptive mechanism to alleviate redox pressure. Diabetes. 63:3253-65. 170. S Lecoutre, et al. (2022). Beta-hydroxybutyrate dampens adipose progenitors'' profibrotic activation through canonical Tgfbeta signaling and non-canonical ZFP36-dependent mechanisms. Mol Metab. 61:101512. 171. RAH Davis, et al. (2019). Dietary R, S-1,3-butanediol diacetoacetate reduces body weight and adiposity in obese mice fed a high-fat diet. FASEB J. 33:2409-2421. 172. Y Zhang, et al. (2023). 3-Hydroxybutyrate ameliorates insulin resistance by inhibiting PPARgamma Ser273 phosphorylation in type 2 diabetic mice. Signal Transduct Target Ther. 8:190. 173. G Panico, et al. (2023). 1,3-Butanediol Administration Increases beta-Hydroxybutyrate Plasma Levels and Affects Redox Homeostasis, Endoplasmic Reticulum Stress, and Adipokine Production in Rat Gonadal Adipose Tissue. Antioxidants (Basel). 12. 174. S Nishitani, et al. (2022). Ketone body 3-hydroxybutyrate enhances adipocyte function. Sci Rep. 12:10080. 175. A Obri, et al. (2020). The role of epigenetics in the development of obesity. Biochem Pharmacol. 177:113973. 176. PS Patel, ED Buras, and A Balasubramanyam. (2013). The role of the immune system in obesity and insulin resistance. J Obes. 2013:616193. 177. J Wu, P Cohen, and BM Spiegelman. (2013). Adaptive thermogenesis in adipocytes: is beige the new brown? Genes Dev. 27:234-50. 178. YT Chen, et al. (2020). Excessive Glucocorticoids During Pregnancy Impair Fetal Brown Fat Development and Predispose Offspring to Metabolic Dysfunctions. Diabetes. 69:1662-1674. 179. Y Wang, et al. (2017). Adipocyte Liver Kinase b1 Suppresses Beige Adipocyte Renaissance Through Class IIa Histone Deacetylase 4. Diabetes. 66:2952-2963. 180. SA Machado, et al. (2022). Browning of the white adipose tissue regulation: new insights into nutritional and metabolic relevance in health and diseases. Nutr Metab (Lond). 19:61. 181. WJ Mu, et al. (2021). Exercise-Mediated Browning of White Adipose Tissue: Its Significance, Mechanism and Effectiveness. Int J Mol Sci. 22. 182. G Li, et al. (2017). Intermittent Fasting Promotes White Adipose Browning and Decreases Obesity by Shaping the Gut Microbiota. Cell Metab. 26:672-685 e4. 183. KH Kwok, KS Lam, and A Xu. (2016). Heterogeneity of white adipose tissue: molecular basis and clinical implications. Exp Mol Med. 48:e215. 184. TCL Bargut, et al. (2017). Browning of white adipose tissue: lessons from experimental models. Horm Mol Biol Clin Investig. 31. 185. V Pena-Leon, et al. (2022). Prolonged breastfeeding protects from obesity by hypothalamic action of hepatic FGF21. Nat Metab. 4:901-917. 186. S Ben Ali, et al. (2011). The G3057A LEPR polymorphism is associated with obesity in Tunisian women. Nutr Metab Cardiovasc Dis. 21:591-6. 187. EMM Ali, et al. (2021). Fat mass and obesity-associated (FTO) and leptin receptor (LEPR) gene polymorphisms in Egyptian obese subjects. Arch Physiol Biochem. 127:28-36. 188. CL Jiang, et al. (2020). Glucose transporter 10 modulates adipogenesis via an ascorbic acid-mediated pathway to protect mice against diet-induced metabolic dysregulation. PLoS Genet. 16:e1008823. 189. L Bordoni, et al. (2017). Obesity-related genetic polymorphisms and adiposity indices in a young Italian population. IUBMB Life. 69:98-105. 190. Shabana and S Hasnain. (2016). The p. N103K mutation of leptin (LEP) gene and severe early onset obesity in Pakistan. Biol Res. 49:23. 191. G ElSaeed, et al. (2020). Monogenic leptin deficiency in early childhood obesity. Pediatr Obes. 15:e12574. 192. A Loktionov. (2003). Common gene polymorphisms and nutrition: emerging links with pathogenesis of multifactorial chronic diseases (review). J Nutr Biochem. 14:426-51. 193. J Wang, et al. (2019). Leptin Promotes White Adipocyte Browning by Inhibiting the Hh Signaling Pathway. Cells. 8. 194. G Utermann, M Hees, and A Steinmetz. (1977). Polymorphism of apolipoprotein E and occurrence of dysbetalipoproteinaemia in man. Nature. 269:604-7. 195. VI Zannis, PW Just, and JL Breslow. (1981). Human apolipoprotein E isoprotein subclasses are genetically determined. Am J Hum Genet. 33:11-24. 196. PP Singh, M Singh, and SS Mastana. (2006). APOE distribution in world populations with new data from India and the UK. Ann Hum Biol. 33:279-308. 197. NS Jones and GW Rebeck. (2018). The Synergistic Effects of APOE Genotype and Obesity on Alzheimer''s Disease Risk. Int J Mol Sci. 20. 198. R Fallaize, et al. (2017). APOE genotype influences insulin resistance, apolipoprotein CII and CIII according to plasma fatty acid profile in the Metabolic Syndrome. Sci Rep. 7:6274. 199. QS Zhuang, et al. (2017). Detecting the genetic link between Alzheimer''s disease and obesity using bioinformatics analysis of GWAS data. Oncotarget. 8:55915-55919. 200. J Dose, et al. (2016). APOE genotype and stress response - a mini review. Lipids Health Dis. 15:121. 201. F Liao, et al. (2015). Murine versus human apolipoprotein E4: differential facilitation of and co-localization in cerebral amyloid angiopathy and amyloid plaques in APP transgenic mouse models. Acta Neuropathol Commun. 3:70. 202. GS Getz and CA Reardon. (2009). Apoprotein E as a lipid transport and signaling protein in the blood, liver, and artery wall. J Lipid Res. 50 Suppl:S156-61. 203. NA Elshourbagy, et al. (1985). Apolipoprotein E mRNA is abundant in the brain and adrenals, as well as in the liver, and is present in other peripheral tissues of rats and marmosets. Proc Natl Acad Sci U S A. 82:203-7. 204. MF Linton, et al. (1991). Phenotypes of apolipoprotein B and apolipoprotein E after liver transplantation. J Clin Invest. 88:270-81. 205. M Liu, et al. (2012). Apolipoprotein E does not cross the blood-cerebrospinal fluid barrier, as revealed by an improved technique for sampling CSF from mice. Am J Physiol Regul Integr Comp Physiol. 303:R903-8. 206. R Zechner, et al. (1991). Apolipoprotein E gene expression in mouse 3T3-L1 adipocytes and human adipose tissue and its regulation by differentiation and lipid content. J Biol Chem. 266:10583-8. 207. JE Donahue and CE Johanson. (2008). Apolipoprotein E, amyloid-beta, and blood-brain barrier permeability in Alzheimer disease. J Neuropathol Exp Neurol. 67:261-70. 208. G Qi, et al. (2021). ApoE4 Impairs Neuron-Astrocyte Coupling of Fatty Acid Metabolism. Cell Rep. 34:108572. 209. ZH Huang, CA Reardon, and T Mazzone. (2006). Endogenous ApoE expression modulates adipocyte triglyceride content and turnover. Diabetes. 55:3394-402. 210. ZH Huang, D Gu, and T Mazzone. (2009). Role of adipocyte-derived apoE in modulating adipocyte size, lipid metabolism, and gene expression in vivo. Am J Physiol Endocrinol Metab. 296:E1110-9. 211. YH Li and L Liu. (2014). Apolipoprotein E synthesized by adipocyte and apolipoprotein E carried on lipoproteins modulate adipocyte triglyceride content. Lipids Health Dis. 13:136. 212. N Petrovic, et al. (2010). Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem. 285:7153-64. 213. SM Hofmann, et al. (2008). Defective lipid delivery modulates glucose tolerance and metabolic response to diet in apolipoprotein E-deficient mice. Diabetes. 57:5-12. 214. A Bartelt, et al. (2011). Altered endocannabinoid signalling after a high-fat diet in Apoe(-/-) mice: relevance to adipose tissue inflammation, hepatic steatosis and insulin resistance. Diabetologia. 54:2900-10. 215. J Gao, et al. (2007). Involvement of apolipoprotein E in excess fat accumulation and insulin resistance. Diabetes. 56:24-33. 216. ZH Huang, et al. (2015). Selective suppression of adipose tissue apoE expression impacts systemic metabolic phenotype and adipose tissue inflammation. J Lipid Res. 56:215-26. 217. JM de Jong, et al. (2015). A stringent validation of mouse adipose tissue identity markers. Am J Physiol Endocrinol Metab. 308:E1085-105. 218. AS Garfield. (2010). Derivation of primary mouse embryonic fibroblast (PMEF) cultures. Methods Mol Biol. 633:19-27. 219. CC Lee, et al. (2019). Naa10p Inhibits Beige Adipocyte-Mediated Thermogenesis through N-alpha-acetylation of Pgc1alpha. Mol Cell. 76:500-515 e8. 220. SL Byers, et al. (2012). Mouse estrous cycle identification tool and images. PLoS One. 7:e35538. 221. JI Kim, et al. (2019). During Adipocyte Remodeling, Lipid Droplet Configurations Regulate Insulin Sensitivity through F-Actin and G-Actin Reorganization. Mol Cell Biol. 39. 222. F Ying, et al. (2017). Prostaglandin E receptor subtype 4 regulates lipid droplet size and mitochondrial activity in murine subcutaneous white adipose tissue. FASEB J. 31:4023-4036. 223. Y Haga, K Ishii, and T Suzuki. (2011). N-glycosylation is critical for the stability and intracellular trafficking of glucose transporter GLUT4. J Biol Chem. 286:31320-7. 224. SX Tan, et al. (2015). Selective insulin resistance in adipocytes. J Biol Chem. 290:11337-48. 225. JP Farriaux, JL Dhondt, and B Cartigny. (1980). [Screening for neonatal hypothyroidism by estimation of T4 (author''s transl)]. Arch Fr Pediatr. 37:227-31. 226. LJ Perez, et al. (2017). Validation of optimal reference genes for quantitative real time PCR in muscle and adipose tissue for obesity and diabetes research. Sci Rep. 7:3612. 227. L Wilson-Fritch, et al. (2004). Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J Clin Invest. 114:1281-9. 228. A Efremova, et al. (2020). Biomarkers of Browning in Cold Exposed Siberian Adults. Nutrients. 12. 229. SL Coort, et al. (2002). Sulfo-N-succinimidyl esters of long chain fatty acids specifically inhibit fatty acid translocase (FAT/CD36)-mediated cellular fatty acid uptake. Mol Cell Biochem. 239:213-9. 230. AA Pendse, et al. (2009). Apolipoprotein E knock-out and knock-in mice: atherosclerosis, metabolic syndrome, and beyond. J Lipid Res. 50 Suppl:S178-82. 231. ZH Huang, et al. (2013). ApoE derived from adipose tissue does not suppress atherosclerosis or correct hyperlipidemia in apoE knockout mice. J Lipid Res. 54:202-13. 232. SH Zhang, et al. (1992). Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science. 258:468-71. 233. S Merat, et al. (1999). Western-type diets induce insulin resistance and hyperinsulinemia in LDL receptor-deficient mice but do not increase aortic atherosclerosis compared with normoinsulinemic mice in which similar plasma cholesterol levels are achieved by a fructose-rich diet. Arterioscler Thromb Vasc Biol. 19:1223-30. 234. SA Schreyer, et al. (2002). LDL receptor but not apolipoprotein E deficiency increases diet-induced obesity and diabetes in mice. Am J Physiol Endocrinol Metab. 282:E207-14. 235. H Asano, et al. (2014). Induction of beige-like adipocytes in 3T3-L1 cells. J Vet Med Sci. 76:57-64. 236. JC Newman and E Verdin. (2017). beta-Hydroxybutyrate: A Signaling Metabolite. Annu Rev Nutr. 37:51-76. 237. P Rojas-Morales, E Tapia, and J Pedraza-Chaverri. (2016). beta-Hydroxybutyrate: A signaling metabolite in starvation response? Cell Signal. 28:917-23. 238. A Takagi, et al. (2016). Mammalian autophagy is essential for hepatic and renal ketogenesis during starvation. Sci Rep. 6:18944. 239. J Adijanto, et al. (2014). The retinal pigment epithelium utilizes fatty acids for ketogenesis. J Biol Chem. 289:20570-82. 240. Y Nonaka, et al. (2016). Lauric Acid Stimulates Ketone Body Production in the KT-5 Astrocyte Cell Line. J Oleo Sci. 65:693-9. 241. DW Russell. (1992). Cholesterol biosynthesis and metabolism. Cardiovasc Drugs Ther. 6:103-10. 242. P Puchalska and PA Crawford. (2021). Metabolic and Signaling Roles of Ketone Bodies in Health and Disease. Annu Rev Nutr. 41:49-77. 243. KD Clinkenbeard, et al. (1975). Intracellular localization of the 3-hydroxy-3-methylglutaryl coenzme A cycle enzymes in liver. Separate cytoplasmic and mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A generating systems for cholesterogenesis and ketogenesis. J Biol Chem. 250:3108-16. 244. U Galicia-Garcia, et al. (2020). Statin Treatment-Induced Development of Type 2 Diabetes: From Clinical Evidence to Mechanistic Insights. Int J Mol Sci. 21. 245. J Ferrieres, et al. (2018). Body mass index impacts the choice of lipid-lowering treatment with no correlation to blood cholesterol - Findings from 52 916 patients in the Dyslipidemia International Study (DYSIS). Diabetes Obes Metab. 20:2670-2674. 246. AF Macedo, et al. (2014). Statins and the risk of type 2 diabetes mellitus: cohort study using the UK clinical practice pesearch datalink. BMC Cardiovasc Disord. 14:85. 247. MY Pepino, et al. (2014). Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annu Rev Nutr. 34:281-303. 248. CM Anderson, et al. (2015). Dependence of brown adipose tissue function on CD36-mediated coenzyme Q uptake. Cell Rep. 10:505-15. 249. H Gao, et al. (2017). CD36 Is a Marker of Human Adipocyte Progenitors with Pronounced Adipogenic and Triglyceride Accumulation Potential. Stem Cells. 35:1799-1814. 250. V Christiaens, et al. (2012). CD36 promotes adipocyte differentiation and adipogenesis. Biochim Biophys Acta. 1820:949-56. 251. HK Das, et al. (1985). Isolation, characterization, and mapping to chromosome 19 of the human apolipoprotein E gene. J Biol Chem. 260:6240-7. 252. MT Tejedor, et al. (2014). The apolipoprotein E polymorphism rs7412 associates with body fatness independently of plasma lipids in middle aged men. PLoS One. 9:e108605. 253. R Elosua, et al. (2003). Obesity modulates the association among APOE genotype, insulin, and glucose in men. Obes Res. 11:1502-8. 254. NS Jones, KQ Watson, and GW Rebeck. (2019). Metabolic Disturbances of a High-Fat Diet Are Dependent on APOE Genotype and Sex. eNeuro. 6. 255. CR Kahn, G Wang, and KY Lee. (2019). Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Invest. 129:3990-4000. 256. U Smith and BB Kahn. (2016). Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids. J Intern Med. 280:465-475. 257. JM Arbones-Mainar, et al. (2008). Differential modulation of diet-induced obesity and adipocyte functionality by human apolipoprotein E3 and E4 in mice. Int J Obes (Lond). 32:1595-605. 258. QR Ong, et al. (2014). Expression of human apolipoprotein E4 reduces insulin-receptor substrate 1 expression and Akt phosphorylation in the ageing liver. FEBS Open Bio. 4:260-5. 259. L Chang, SH Chiang, and AR Saltiel. (2004). Insulin signaling and the regulation of glucose transport. Mol Med. 10:65-71. 260. A Leonardini, et al. (2009). Cross-Talk between PPARgamma and Insulin Signaling and Modulation of Insulin Sensitivity. PPAR Res. 2009:818945. 261. L Yue, et al. (2004). Divergent effects of peroxisome proliferator-activated receptor gamma agonists and tumor necrosis factor alpha on adipocyte ApoE expression. J Biol Chem. 279:47626-32. 262. L Wu, X Zhang, and L Zhao. (2018). Human ApoE Isoforms Differentially Modulate Brain Glucose and Ketone Body Metabolism: Implications for Alzheimer''s Disease Risk Reduction and Early Intervention. J Neurosci. 38:6665-6681. 263. R Iketani, et al. (2018). Apolipoprotein E Gene Polymorphisms Affect the Efficacy of Thiazolidinediones for Alzheimer''s Disease: A Systematic Review and Meta-Analysis. Biol Pharm Bull. 41:1017-1023. 264. ME Risner, et al. (2006). Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer''s disease. Pharmacogenomics J. 6:246-54. 265. A Hatziri, et al. (2018). Site-specific effects of apolipoprotein E expression on diet-induced obesity and white adipose tissue metabolic activation. Biochim Biophys Acta Mol Basis Dis. 1864:471-480. 266. E Xepapadaki, et al. (2021). Tissue-specific functional interaction between apolipoproteins A1 and E in cold-induced adipose organ mitochondrial energy metabolism. Biochim Biophys Acta Mol Cell Biol Lipids. 1866:158859. 267. V Theendakara, et al. (2016). Direct Transcriptional Effects of Apolipoprotein E. J Neurosci. 36:685-700. 268. V Theendakara, DE Bredesen, and RV Rao. (2017). Downregulation of protein phosphatase 2A by apolipoprotein E: Implications for Alzheimer''s disease. Mol Cell Neurosci. 83:83-91. 269. L Qiang, et al. (2012). Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma. Cell. 150:620-32. 270. E Torres-Perez, et al. (2016). Apolipoprotein E4 association with metabolic syndrome depends on body fatness. Atherosclerosis. 245:35-42. 271. AM Bennet, et al. (2007). Association of apolipoprotein E genotypes with lipid levels and coronary risk. JAMA. 298:1300-11. 272. EH Corder, et al. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer''s disease in late onset families. Science. 261:921-3. 273. D El-Lebedy, HM Raslan, and AM Mohammed. (2016). Apolipoprotein E gene polymorphism and risk of type 2 diabetes and cardiovascular disease. Cardiovasc Diabetol. 15:12. 274. S Singh, et al. (2018). Genome Wide Association Study Identifies the HMGCS2 Locus to be Associated With Chlorthalidone Induced Glucose Increase in Hypertensive Patients. J Am Heart Assoc. 7. 275. T Lee, et al. (2019). A Japanese case of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase deficiency who presented with severe metabolic acidosis and fatty liver without hypoglycemia. JIMD Rep. 48:19-25. 276. Y Ago, et al. (2020). Japanese patients with mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase deficiency: In vitro functional analysis of five novel HMGCS2 mutations. Exp Ther Med. 20:39. 277. Q Wang, et al. (2020). Clinical, biochemical, molecular and therapeutic characteristics of four new patients of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase deficiency. Clin Chim Acta. 509:83-90. 278. JA Fletcher, et al. (2019). Impaired ketogenesis and increased acetyl-CoA oxidation promote hyperglycemia in human fatty liver. JCI Insight. 5. 279. T Inokuchi, et al. (1992). Resistance to ketosis in moderately obese patients: influence of fatty liver. Intern Med. 31:978-83. 280. JF Decaux, et al. (1988). Intramitochondrial factors controlling hepatic fatty acid oxidation at weaning in the rat. FEBS Lett. 232:156-8. 281. M Ward Platt and S Deshpande. (2005). Metabolic adaptation at birth. Semin Fetal Neonatal Med. 10:341-50. 282. CW Cheng, et al. (2019). Ketone Body Signaling Mediates Intestinal Stem Cell Homeostasis and Adaptation to Diet. Cell. 178:1115-1131 e15. 283. J Lin, et al. (2004). Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell. 119:121-35. 284. HA Dymsza. (1975). Nutritional application and implication of 1,3-butanediol. Fed Proc. 34:2167-70. 285. CD Crabtree, et al. (2023). Bis Hexanoyl (R)-1,3-Butanediol, a Novel Ketogenic Ester, Acutely Increases Circulating r- and s-ss-Hydroxybutyrate Concentrations in Healthy Adults. J Am Nutr Assoc. 42:169-177. 286. SL Kesl, et al. (2016). Effects of exogenous ketone supplementation on blood ketone, glucose, triglyceride, and lipoprotein levels in Sprague-Dawley rats. Nutr Metab (Lond). 13:9. 287. CG McCarthy, et al. (2021). Physiologic, Metabolic, and Toxicologic Profile of 1,3-Butanediol. J Pharmacol Exp Ther. 379:245-252. 288. I Tomita, et al. (2020). SGLT2 Inhibition Mediates Protection from Diabetic Kidney Disease by Promoting Ketone Body-Induced mTORC1 Inhibition. Cell Metab. 289. S Heikkinen, et al. (2007). Evaluation of glucose homeostasis. Curr Protoc Mol Biol. Chapter 29:Unit 29B 3. 290. S Andrikopoulos, et al. (2008). Evaluating the glucose tolerance test in mice. Am J Physiol Endocrinol Metab. 295:E1323-32. 291. C Nagy and E Einwallner. (2018). Study of In Vivo Glucose Metabolism in High-fat Diet-fed Mice Using Oral Glucose Tolerance Test (OGTT) and Insulin Tolerance Test (ITT). J Vis Exp. 292. J Folch, M Lees, and GH Sloane Stanley. (1957). A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 226:497-509. 293. J Liu, et al. (2016). Coupling of mitochondrial function and skeletal muscle fiber type by a miR-499/Fnip1/AMPK circuit. EMBO Mol Med. 8:1212-1228. 294. RX Tsai, et al. (2022). TERRA regulates DNA G-quadruplex formation and ATRX recruitment to chromatin. Nucleic Acids Res. 50:12217-12234. 295. A Oosting, et al. (2015). Rapid and selective manipulation of milk fatty acid composition in mice through the maternal diet during lactation. J Nutr Sci. 4:e19. 296. P Ferre, et al. (1986). Changes in energy metabolism during the suckling and weaning period in the newborn. Reprod Nutr Dev (1980). 26:619-31. 297. JL Saben, et al. (2014). Maternal obesity reduces milk lipid production in lactating mice by inhibiting acetyl-CoA carboxylase and impairing fatty acid synthesis. PLoS One. 9:e98066. 298. PG Reeves, FH Nielsen, and GC Fahey, Jr. (1993). AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr. 123:1939-51. 299. PG Reeves. (1997). Components of the AIN-93 diets as improvements in the AIN-76A diet. J Nutr. 127:838S-841S. 300. M Liesa and OS Shirihai. (2013). Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure. Cell Metab. 17:491-506. 301. SH Chen and PM Chao. (2017). Prenatal PPARalpha activation by clofibrate increases subcutaneous fat browning in male C57BL/6J mice fed a high-fat diet during adulthood. PLoS One. 12:e0187507. 302. DC Berry, Y Jiang, and JM Graff. (2016). Mouse strains to study cold-inducible beige progenitors and beige adipocyte formation and function. Nat Commun. 7:10184. 303. E Tejera, et al. (2013). CD81 regulates cell migration through its association with Rac GTPase. Mol Biol Cell. 24:261-73. 304. H Pei, et al. (2011). Kruppel-like factor KLF9 regulates PPARgamma transactivation at the middle stage of adipogenesis. Cell Death Differ. 18:315-27. 305. H Fan, et al. (2020). Cold-Inducible Klf9 Regulates Thermogenesis of Brown and Beige Fat. Diabetes. 69:2603-2618. 306. PI Huang, et al. (2011). PGC-1alpha mediates differentiation of mesenchymal stem cells to brown adipose cells. J Atheroscler Thromb. 18:966-80. 307. I Bennour, et al. (2022). Recent insights into vitamin D, adipocyte, and adipose tissue biology. Obes Rev. 23:e13453. 308. KE Wong, et al. (2009). Involvement of the vitamin D receptor in energy metabolism: regulation of uncoupling proteins. Am J Physiol Endocrinol Metab. 296:E820-8. 309. CJ Narvaez, et al. (2009). Lean phenotype and resistance to diet-induced obesity in vitamin D receptor knockout mice correlates with induction of uncoupling protein-1 in white adipose tissue. Endocrinology. 150:651-61. 310. DG Matthews, et al. (2016). Adipose-specific Vdr deletion alters body fat and enhances mammary epithelial density. J Steroid Biochem Mol Biol. 164:299-308. 311. KE Wong, et al. (2011). Targeted expression of human vitamin D receptor in adipocytes decreases energy expenditure and induces obesity in mice. J Biol Chem. 286:33804-10. 312. PJ Malloy and BJ Feldman. (2013). Cell-autonomous regulation of brown fat identity gene UCP1 by unliganded vitamin D receptor. Mol Endocrinol. 27:1632-42. 313. T Mukai and T Kusudo. (2023). Bidirectional effect of vitamin D on brown adipogenesis of C3H10T1/2 fibroblast-like cells. PeerJ. 11:e14785. 314. H Kolb, et al. (2021). Ketone bodies: from enemy to friend and guardian angel. BMC Med. 19:313. 315. NG Norwitz, MT Hu, and K Clarke. (2019). The Mechanisms by Which the Ketone Body D-beta-Hydroxybutyrate May Improve the Multiple Cellular Pathologies of Parkinson''s Disease. Front Nutr. 6:63. 316. V Melichar, Z Drahota, and P Hahn. (1967). Ketone bodies in the blood of full term newborns, premature and dysmature infants and infants of diabetic mothers. Biol Neonat. 11:23-8. 317. MS Patel, et al. (1975). The metabolism of ketone bodies in developing human brain: development of ketone-body-utilizing enzymes and ketone bodies as precursors for lipid synthesis. J Neurochem. 25:905-8. 318. A Nehlig and A Pereira de Vasconcelos. (1993). Glucose and ketone body utilization by the brain of neonatal rats. Prog Neurobiol. 40:163-221. 319. AF Williams. (1997). Hypoglycaemia of the newborn: a review. Bull World Health Organ. 75:261-90. 320. J Edmond, et al. (1985). Ketone body metabolism in the neonate: development and the effect of diet. Fed Proc. 44:2359-64. 321. T Kikusui, Y Takeuchi, and Y Mori. (2004). Early weaning induces anxiety and aggression in adult mice. Physiol Behav. 81:37-42. 322. K Mogi, et al. (2016). Early weaning impairs fear extinction and decreases brain-derived neurotrophic factor expression in the prefrontal cortex of adult male C57BL/6 mice. Dev Psychobiol. 58:1034-1042. 323. S Gors, et al. (2009). Technical note: Milk composition in mice--methodological aspects and effects of mouse strain and lactation day. J Dairy Sci. 92:632-7. 324. C Molto-Puigmarti, et al. (2011). Differences in fat content and fatty acid proportions among colostrum, transitional, and mature milk from women delivering very preterm, preterm, and term infants. Clin Nutr. 30:116-23. 325. AA Morris. (2005). Cerebral ketone body metabolism. J Inherit Metab Dis. 28:109-21. 326. C Agostoni, et al. (2010). Enteral nutrient supply for preterm infants: commentary from the European Society of Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J Pediatr Gastroenterol Nutr. 50:85-91. 327. PY Wu, et al. (1986). Medium-chain triglycerides in infant formulas and their relation to plasma ketone body concentrations. Pediatr Res. 20:338-41. 328. K Clarke, et al. (2012). Oral 28-day and developmental toxicity studies of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate. Regul Toxicol Pharmacol. 63:196-208. 329. K Clarke, et al. (2012). Kinetics, safety and tolerability of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate in healthy adult subjects. Regul Toxicol Pharmacol. 63:401-8. 330. JS Benjamin, et al. (2017). A ketogenic diet rescues hippocampal memory defects in a mouse model of Kabuki syndrome. Proc Natl Acad Sci U S A. 114:125-130. 331. AM Poff, JM Rho, and DP D''Agostino. (2019). Ketone Administration for Seizure Disorders: History and Rationale for Ketone Esters and Metabolic Alternatives. Front Neurosci. 13:1041. 332. DP D''Agostino, et al. (2013). Therapeutic ketosis with ketone ester delays central nervous system oxygen toxicity seizures in rats. Am J Physiol Regul Integr Comp Physiol. 304:R829-36. 333. S Desrochers, et al. (1992). Metabolism of R- and S-1,3-butanediol in perfused livers from meal-fed and starved rats. Biochem J. 285 ( Pt 2):647-53. 334. RB Tobin, MA Mehlman, and M Parker. (1972). Effect of 1,3-butanediol and propionic acid on blood ketones, lipids and metal ions in rats. J Nutr. 102:1001-8. 335. LB Gano, M Patel, and JM Rho. (2014). Ketogenic diets, mitochondria, and neurological diseases. J Lipid Res. 55:2211-28. 336. DL Gilbert, PL Pyzik, and JM Freeman. (2000). The ketogenic diet: seizure control correlates better with serum beta-hydroxybutyrate than with urine ketones. J Child Neurol. 15:787-90. 337. PJ Cox, et al. (2016). Nutritional Ketosis Alters Fuel Preference and Thereby Endurance Performance in Athletes. Cell Metab. 24:256-68. 338. CL Thio, et al. (2022). The ketone body beta-hydroxybutyrate mitigates ILC2-driven airway inflammation by regulating mast cell function. Cell Rep. 40:111437. 339. A Ferrari, et al. (2017). HDAC3 is a molecular brake of the metabolic switch supporting white adipose tissue browning. Nat Commun. 8:93. 340. L Zhang, et al. (2018). Zinc binding groups for histone deacetylase inhibitors. J Enzyme Inhib Med Chem. 33:714-721. 341. P Puigserver, et al. (1998). A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 92:829-39. 342. C Tiraby, et al. (2003). Acquirement of brown fat cell features by human white adipocytes. J Biol Chem. 278:33370-6. 343. Z Wu, et al. (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 98:115-24. 344. AW Norman. (2008). From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr. 88:491S-499S. 345. A Pramono, JWE Jocken, and EE Blaak. (2019). Vitamin D deficiency in the aetiology of obesity-related insulin resistance. Diabetes Metab Res Rev. 35:e3146. 346. T Zitman-Gal, et al. (2014). Vitamin D manipulates miR-181c, miR-20b and miR-15a in human umbilical vein endothelial cells exposed to a diabetic-like environment. Cardiovasc Diabetol. 13:8. 347. MM Mostafa, et al. (2021). Genomic determinants implicated in the glucocorticoid-mediated induction of KLF9 in pulmonary epithelial cells. J Biol Chem. 296:100065. 348. CM Hales, et al. (2020). Prevalence of Obesity and Severe Obesity Among Adults: United States, 2017-2018. NCHS Data Brief.1-8. 349. TJ Wong and T Yu. (2022). Trends in the distribution of body mass index, waist circumference and prevalence of obesity among Taiwanese adults, 1993-2016. PLoS One. 17:e0274134. 350. ER Pulgaron and AM Delamater. (2014). Obesity and type 2 diabetes in children: epidemiology and treatment. Curr Diab Rep. 14:508. 351. MJ Heerwagen, et al. (2010). Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. Am J Physiol Regul Integr Comp Physiol. 299:R711-22. 352. AE Locke, et al. (2015). Genetic studies of body mass index yield new insights for obesity biology. Nature. 518:197-206. 353. V Turcot, et al. (2018). Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat Genet. 50:26-41. 354. Y Heianza and L Qi. (2019). Impact of Genes and Environment on Obesity and Cardiovascular Disease. Endocrinology. 160:81-100. 355. C Ling and T Ronn. (2019). Epigenetics in Human Obesity and Type 2 Diabetes. Cell Metab. 29:1028-1044. 356. ER Gibney and CM Nolan. (2010). Epigenetics and gene expression. Heredity (Edinb). 105:4-13. 357. AK Murashov, et al. (2016). Paternal long-term exercise programs offspring for low energy expenditure and increased risk for obesity in mice. FASEB J. 30:775-84. 358. SS Deshpande, et al. (2020). High-fat diet-induced and genetically inherited obesity differentially alters DNA methylation profile in the germline of adult male rats. Clin Epigenetics. 12:179. 359. T Fante, et al. (2016). Diet-Induced Maternal Obesity Alters Insulin Signalling in Male Mice Offspring Rechallenged with a High-Fat Diet in Adulthood. PLoS One. 11:e0160184. 360. L Xue, et al. (2022). Maternal secretin ameliorates obesity by promoting white adipose tissue browning in offspring. EMBO Rep. 23:e54132. 361. QY Yang, et al. (2013). Maternal obesity induces epigenetic modifications to facilitate Zfp423 expression and enhance adipogenic differentiation in fetal mice. Diabetes. 62:3727-35. 362. JK Zhang, et al. (2019). beta3-Adrenergic Activation Improves Maternal and Offspring Perinatal Outcomes in Diet-Induced Prepregnancy Obesity in Mice. Obesity (Silver Spring). 27:1482-1493. 363. B Wang, et al. (2017). Maternal Retinoids Increase PDGFRalpha(+) Progenitor Population and Beige Adipogenesis in Progeny by Stimulating Vascular Development. EBioMedicine. 18:288-299. 364. T Zou, et al. (2017). Resveratrol supplementation of high-fat diet-fed pregnant mice promotes brown and beige adipocyte development and prevents obesity in male offspring. J Physiol. 595:1547-1562. 365. CH Wang, et al. (2014). Cisd2 modulates the differentiation and functioning of adipocytes by regulating intracellular Ca2+ homeostasis. Hum Mol Genet. 23:4770-85. 366. GL Ding, et al. (2012). Transgenerational glucose intolerance with Igf2/H19 epigenetic alterations in mouse islet induced by intrauterine hyperglycemia. Diabetes. 61:1133-42. 367. H Zhu, et al. (2019). Insulin Therapy for Gestational Diabetes Mellitus Does Not Fully Protect Offspring From Diet-Induced Metabolic Disorders. Diabetes. 68:696-708. 368. M Derecka, et al. (2012). Tyk2 and Stat3 regulate brown adipose tissue differentiation and obesity. Cell Metab. 16:814-24. 369. H Li, et al. (2021). FGF2 disruption enhances thermogenesis in brown and beige fat to protect against adiposity and hepatic steatosis. Mol Metab. 54:101358. 370. FM Fisher, et al. (2012). FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 26:271-81. 371. X Yang, et al. (2019). Histone demethylase KDM7A reciprocally regulates adipogenic and osteogenic differentiation via regulation of C/EBPalpha and canonical Wnt signalling. J Cell Mol Med. 23:2149-2162. 372. F Buerger, et al. (2017). Depletion of Jmjd1c impairs adipogenesis in murine 3T3-L1 cells. Biochim Biophys Acta Mol Basis Dis. 1863:1709-1717. 373. Y Wu, et al. (2020). Distinct signaling and transcriptional pathways regulate peri-weaning development and cold-induced recruitment of beige adipocytes. Proc Natl Acad Sci U S A. 117:6883-6889. 374. M Lantero Rodriguez, et al. (2021). Testosterone reduces metabolic brown fat activity in male mice. J Endocrinol. 251:83-96. 375. N Harada, et al. (2022). Androgen receptor suppresses beta-adrenoceptor-mediated CREB activation and thermogenesis in brown adipose tissue of male mice. J Biol Chem. 298:102619. 376. MP Clemente-Olivo, et al. (2021). Four-and-a-half LIM domain protein 2 (FHL2) deficiency protects mice from diet-induced obesity and high FHL2 expression marks human obesity. Metabolism. 121:154815. 377. Y Duan, et al. (2020). Deletion of FHL2 in fibroblasts attenuates fibroblasts activation and kidney fibrosis via restraining TGF-beta1-induced Wnt/beta-catenin signaling. J Mol Med (Berl). 98:291-307. 378. V Wixler, et al. (2015). FHL2 regulates the resolution of tissue damage in chronic inflammatory arthritis. Ann Rheum Dis. 74:2216-23. 379. NP Fuste, et al. (2016). Cytoplasmic cyclin D1 regulates cell invasion and metastasis through the phosphorylation of paxillin. Nat Commun. 7:11581. 380. GM Scharf, et al. (2019). Inactivation of Sox9 in fibroblasts reduces cardiac fibrosis and inflammation. JCI Insight. 5. 381. R Ono, T Kaisho, and T Tanaka. (2015). PDLIM1 inhibits NF-kappaB-mediated inflammatory signaling by sequestering the p65 subunit of NF-kappaB in the cytoplasm. Sci Rep. 5:18327. 382. K Sun, X Li, and PE Scherer. (2023). Extracellular Matrix (ECM) and Fibrosis in Adipose Tissue: Overview and Perspectives. Compr Physiol. 13:4387-4407. 383. KB Boyle, et al. (2009). The transcription factors Egr1 and Egr2 have opposing influences on adipocyte differentiation. Cell Death Differ. 16:782-9. 384. F Li, et al. (2016). Histone Deacetylase 1 (HDAC1) Negatively Regulates Thermogenic Program in Brown Adipocytes via Coordinated Regulation of Histone H3 Lysine 27 (H3K27) Deacetylation and Methylation. J Biol Chem. 291:4523-36. 385. J Liao, et al. (2018). HDAC3-Selective Inhibition Activates Brown and Beige Fat Through PRDM16. Endocrinology. 159:2520-2527. 386. CM Tran, et al. (2016). Rapamycin Blocks Induction of the Thermogenic Program in White Adipose Tissue. Diabetes. 65:927-41. 387. DJ Barker, et al. (1989). Weight in infancy and death from ischaemic heart disease. Lancet. 2:577-80. 388. SSJ Hur, JE Cropley, and CM Suter. (2017). Paternal epigenetic programming: evolving metabolic disease risk. J Mol Endocrinol. 58:R159-R168. 389. A Ost, et al. (2014). Paternal diet defines offspring chromatin state and intergenerational obesity. Cell. 159:1352-64. 390. M Desai and MG Ross. (2020). Maternal-infant nutrition and development programming of offspring appetite and obesity. Nutr Rev. 78:25-31. 391. M Desai, et al. (2014). Maternal obesity and high-fat diet program offspring metabolic syndrome. Am J Obstet Gynecol. 211:237 e1-237 e13. 392. RA Miranda, et al. (2017). Cross-fostering reduces obesity induced by early exposure to monosodium glutamate in male rats. Endocrine. 55:101-112. 393. S Mozes, Z Sefcikova, and L Racek. (2014). Long-term effect of altered nutrition induced by litter size manipulation and cross-fostering in suckling male rats on development of obesity risk and health complications. Eur J Nutr. 53:1273-80. 394. BJ Thompson and S Smith. (1985). Biosynthesis of fatty acids by lactating human breast epithelial cells: an evaluation of the contribution to the overall composition of human milk fat. Pediatr Res. 19:139-43. 395. M Del Prado, et al. (1999). A high dietary lipid intake during pregnancy and lactation enhances mammary gland lipid uptake and lipoprotein lipase activity in rats. J Nutr. 129:1574-8. 396. MC Barber, et al. (1997). Lipid metabolism in the lactating mammary gland. Biochim Biophys Acta. 1347:101-26. 397. N Jannat Ali Pour, et al. (2020). Adipose tissue mRNA expression of HDAC1, HDAC3 and HDAC9 in obese women in relation to obesity indices and insulin resistance. Mol Biol Rep. 47:3459-3468. 398. JC Newman and E Verdin. (2014). Ketone bodies as signaling metabolites. Trends Endocrinol Metab. 25:42-52. 399. D Meng, AR Frank, and JL Jewell. (2018). mTOR signaling in stem and progenitor cells. Development. 145. 400. KL Sinagoga, et al. (2017). Distinct roles for the mTOR pathway in postnatal morphogenesis, maturation and function of pancreatic islets. Development. 144:2402-2414. 401. L Ding, et al. (2017). TSC1-mTOR signaling determines the differentiation of islet cells. J Endocrinol. 232:59-70. 402. M Blandino-Rosano, et al. (2017). Loss of mTORC1 signalling impairs beta-cell homeostasis and insulin processing. Nat Commun. 8:16014. 403. A Helman, et al. (2020). A Nutrient-Sensing Transition at Birth Triggers Glucose-Responsive Insulin Secretion. Cell Metab. 31:1004-1016 e5. 404. X Wang, et al. (2017). FTO is required for myogenesis by positively regulating mTOR-PGC-1alpha pathway-mediated mitochondria biogenesis. Cell Death Dis. 8:e2702. 405. T Vandoorne, et al. (2017). Intake of a Ketone Ester Drink during Recovery from Exercise Promotes mTORC1 Signaling but Not Glycogen Resynthesis in Human Muscle. Front Physiol. 8:310. 406. D Liu, et al. (2016). Activation of mTORC1 is essential for beta-adrenergic stimulation of adipose browning. J Clin Invest. 126:1704-16. 407. JT Cunningham, et al. (2007). mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature. 450:736-40. 408. L Wang, et al. (2020). mTORC1-PGC1 axis regulates mitochondrial remodeling during reprogramming. FEBS J. 287:108-121. 409. S Srivastava, et al. (2013). A ketogenic diet increases brown adipose tissue mitochondrial proteins and UCP1 levels in mice. IUBMB Life. 65:58-66. 410. R de Oliveira Caminhotto, et al. (2019). Physiological concentrations of beta-hydroxybutyrate do not promote adipocyte browning. Life Sci. 232:116683. 411. D Li, et al. (2005). Kruppel-like factor-6 promotes preadipocyte differentiation through histone deacetylase 3-dependent repression of DLK1. J Biol Chem. 280:26941-52. 412. Z Wu and S Wang. (2013). Role of kruppel-like transcription factors in adipogenesis. Dev Biol. 373:235-43. 413. M Mottamal, et al. (2015). Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules. 20:3898-941. 414. T van Deuren, EE Blaak, and EE Canfora. (2022). Butyrate to combat obesity and obesity-associated metabolic disorders: Current status and future implications for therapeutic use. Obes Rev. 23:e13498. 415. ZH Huang, RD Minshall, and T Mazzone. (2009). Mechanism for endogenously expressed ApoE modulation of adipocyte very low density lipoprotein metabolism: role in endocytic and lipase-mediated metabolic pathways. J Biol Chem. 284:31512-22. 416. DJ Espiritu, et al. (2010). Hyperglycemia and advanced glycosylation end products suppress adipocyte apoE expression: implications for adipocyte triglyceride metabolism. Am J Physiol Endocrinol Metab. 299:E615-23. 417. ZH Huang, et al. (2011). Adipose tissue depot-specific differences in adipocyte apolipoprotein E expression. Metabolism. 60:1692-701. 418. ZH Huang, N Maeda, and T Mazzone. (2011). Expression of the human apoE2 isoform in adipocytes: altered cellular processing and impaired adipocyte lipogenesis. J Lipid Res. 52:1733-41. 419. L Yue and T Mazzone. (2011). Endogenous adipocyte apolipoprotein E is colocalized with caveolin at the adipocyte plasma membrane. J Lipid Res. 52:489-98. 420. A Tsukada, et al. (2023). White adipose tissue undergoes browning during preweaning period in association with microbiota formation in mice. iScience. 26:107239. 421. S Patel, et al. (2023). Mammary duct luminal epithelium controls adipocyte thermogenic programme. Nature. 620:192-199. 422. AW Fischer, et al. (2021). Lysosomal lipoprotein processing in endothelial cells stimulates adipose tissue thermogenic adaptation. Cell Metab. 33:547-564 e7. 423. A Bartelt, et al. (2010). Apolipoprotein E-dependent inverse regulation of vertebral bone and adipose tissue mass in C57Bl/6 mice: modulation by diet-induced obesity. Bone. 47:736-45. 424. N Kataoka, et al. (2020). Lack of UCP1 stimulates fatty liver but mediates UCP1-independent action of beige fat to improve hyperlipidemia in Apoe knockout mice. Biochim Biophys Acta Mol Basis Dis. 1866:165762. 425. I Karagiannides, et al. (2008). Apolipoprotein E predisposes to obesity and related metabolic dysfunctions in mice. FEBS J. 275:4796-809. 426. D Lasrich, et al. (2015). Apolipoprotein E promotes lipid accumulation and differentiation in human adipocytes. Exp Cell Res. 337:94-102. 427. LA Johnson, et al. (2017). Apolipoprotein E4 and Insulin Resistance Interact to Impair Cognition and Alter the Epigenome and Metabolome. Sci Rep. 7:43701. 428. R Jemaa, et al. (2006). Apolipoprotein E polymorphism in the Tunisian population: frequency and effect on lipid parameters. Clin Biochem. 39:816-20. 429. KA Volcik, et al. (2006). Apolipoprotein E polymorphisms predict low density lipoprotein cholesterol levels and carotid artery wall thickness but not incident coronary heart disease in 12,491 ARIC study participants. Am J Epidemiol. 164:342-8. 430. KK Alharbi, et al. (2017). Association of Apolipoprotein E Polymorphism with Impact on Overweight University Pupils. Genet Test Mol Biomarkers. 21:53-57. 431. AA Galal, et al. (2021). Association of Apolipoprotein E gene polymorphism with the risk of T2DM and obesity among Egyptian subjects. Gene. 769:145223. 432. JY Oh, E Barrett-Connor, and G Rancho Bernardo Study. (2001). Apolipoprotein E polymorphism and lipid levels differ by gender and family history of diabetes: the Rancho Bernardo Study. Clin Genet. 60:132-7. 433. JA Ellis, et al. (2011). APOE genotype and cardio-respiratory fitness interact to determine adiposity in 8-year-old children from the Tasmanian Infant Health Survey. PLoS One. 6:e26679. 434. W Li, et al. (2021). APOE E4 is associated with hyperlipidemia and obesity in elderly schizophrenic patients. Sci Rep. 11:14818. 435. HM Zeljko, et al. (2011). E2 allele of the apolipoprotein E gene polymorphism is predictive for obesity status in Roma minority population of Croatia. Lipids Health Dis. 10:9. 436. PG Farup, et al. (2022). APOE Polymorphism and Endocrine Functions in Subjects with Morbid Obesity Undergoing Bariatric Surgery. Genes (Basel). 13. 437. MH Tao, et al. (2011). Different associations of apolipoprotein E polymorphism with metabolic syndrome by sex in an elderly Chinese population. Metabolism. 60:1488-96. 438. Y Sun, et al. (2016). Association between APOE polymorphism and metabolic syndrome in Uyghur ethnic men. BMJ Open. 6:e010049. 439. DE Barre, et al. (2024). Relationships of apolipoprotein E genotypes with a cluster of seven in persons with type 2 diabetes. Endocr Regul. 58:40-46. 440. P Stiefel, et al. (2001). Apolipoprotein E gene polymorphism is related to metabolic abnormalities, but does not influence erythrocyte membrane lipid composition or sodium-lithium countertransport activity in essential hypertension. Metabolism. 50:157-60. 441. B Sapkota, et al. (2015). Association of APOE polymorphisms with diabetes and cardiometabolic risk factors and the role of APOE genotypes in response to anti-diabetic therapy: results from the AIDHS/SDS on a South Asian population. J Diabetes Complications. 29:1191-7. 442. A Pitchika, et al. (2022). Longitudinal association of Apolipoprotein E polymorphism with lipid profile, type 2 diabetes and metabolic syndrome: Results from a 15 year follow-up study. Diabetes Res Clin Pract. 185:109778. 443. K Gonzalez-Aldaco, et al. (2020). Association of Apolipoprotein e2 Allele with Insulin Resistance and Risk of Type 2 Diabetes Mellitus Among an Admixed Population of Mexico. Diabetes Metab Syndr Obes. 13:3527-3534. 444. AX Medina-Urrutia, et al. (2004). Apolipoprotein E polymorphism is related to plasma lipids and apolipoproteins in Mexican adolescents. Hum Biol. 76:605-14. 445. JJ Martinez-Magana, et al. (2019). Association between APOE polymorphisms and lipid profile in Mexican Amerindian population. Mol Genet Genomic Med. 7:e958. 446. J Zhang, et al. (2012). Distribution and effect of apo E genotype on plasma lipid and apolipoprotein profiles in overweight/obese and nonobese Chinese subjects. J Clin Lab Anal. 26:200-5. 447. E Ozen, et al. (2022). Association between APOE Genotype with Body Composition and Cardiovascular Disease Risk Markers Is Modulated by BMI in Healthy Adults: Findings from the BODYCON Study. Int J Mol Sci. 23. 448. I Espinosa-Salinas, et al. (2022). Potential protective effect against SARS-CoV-2 infection by APOE rs7412 polymorphism. Sci Rep. 12:7247. 449. T Pentinat, et al. (2010). Transgenerational inheritance of glucose intolerance in a mouse model of neonatal overnutrition. Endocrinology. 151:5617-23. 450. GA Dunn and TL Bale. (2011). Maternal high-fat diet effects on third-generation female body size via the paternal lineage. Endocrinology. 152:2228-36. 451. T Fullston, et al. (2013). Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 27:4226-43. 452. Y Wei, et al. (2014). Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc Natl Acad Sci U S A. 111:1873-8. 453. T de Castro Barbosa, et al. (2016). High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Mol Metab. 5:184-197. 454. TJG Chambers, et al. (2016). High-fat diet disrupts metabolism in two generations of rats in a parent-of-origin specific manner. Sci Rep. 6:31857. 455. MM Glavas, et al. (2021). Developmental Timing of High-Fat Diet Exposure Impacts Glucose Homeostasis in Mice in a Sex-Specific Manner. Diabetes. 70:2771-2784 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93672 | - |
| dc.description.abstract | 如何減緩肥胖一直是公共健康的重要課題。隨著肥胖程度的加劇,第二型糖尿病和心血管疾病的風險也大幅提高。近年來,學者開始關注米色脂肪細胞對代謝調節的正面影響,並透過研究遺傳基因、環境、生活方式、飲食和藥物等因素,探索如何增強米色脂肪以抵抗代謝疾病。然而,米色脂肪的起源仍有很多未知。了解米色脂肪的發育起源將有助於發展治療代謝疾病的策略。本論文利用小鼠為實驗模式,從三個方面探討米色脂肪細胞的發育。第一個研究發現 ApoE 基因負向調節米色脂肪生成。ApoE 基因剔除小鼠具有低度的內源性生酮現象,生酮作用所生成的酮體(β-hydroxybutyrate,βHB)促進脂肪前驅細胞分化成米色脂肪細胞。這項發現連結 APOE 基因引發的肥胖易感性和米色脂肪發育之間的關聯性。第二個研究發現哺乳期仔鼠有別於成年鼠,具有自發性的營養性酮症,此生理現象我們定義為「哺乳期酮症(preweaning ketosis)」。生酮基因 Hmgcs2 缺陷或提早斷奶造成的生酮缺失則會損害米色脂肪細胞的分化,觸發肥胖易感性,並於成年後,對代謝表現的調節產生不利影響。此外,哺乳期增強生酮作用(enhanced ketogenesis during lactation)具有促進米色脂肪分化和米色脂肪的產熱功能。這些發現,確認提升哺乳期的血清 βHB 濃度能夠調節小鼠在哺乳期間的米色脂肪發育。第三個研究發現哺乳期以外源性方式增加血清 βHB 濃度,具有促進米色脂肪分化之作用,減緩 PO 子代的肥胖易感性,部分改善 PO 子代在代謝調節方面的表現。綜上所述,本論文發現哺乳階段的 βHB 具有調節米色脂肪發育的新功能。因此,βHB 可能可以作為一種有效的調節劑,有助於肥胖易感性族群抵抗肥胖的發展。 | zh_TW |
| dc.description.abstract | Obesity and metabolic diseases represent significant public health concerns. Recently, beige adipocytes have attracted much attention for their potential positive impact on metabolism. However, the developmental origin of beige adipocytes remains unclear. This study aimed to answer this question through three distinct aspects using mouse models. The first study examined the role of the ApoE gene in obesity. We found that ApoE deficiency induces beiging of white adipose tissue in mice by enhancing the production of the ketone body β-hydroxybutyrate (βHB) from adipose precursor cells. This discovery reinforces the link between APOE gene inheritance, obesity susceptibility, and beige fat development. The second study revealed a novel role of preweaning ketosis in regulating beige fat biogenesis and highlighted its significance in promoting healthy growth in newborns. Deficiency in preweaning ketosis impairs beige fat development and increases susceptibility to obesity, with adverse metabolic consequences in adulthood. The third study demonstrated that enhancing ketogenesis during lactation through exogenous ketone body supplementation can mitigate offspring susceptibility to obesity induced by parental obesity. These results indicate that elevated serum βHB concentration positively regulates beige fat development and improves metabolic outcomes. Overall, this study suggests that augmenting the development of beige adipocytes may offer a novel therapeutic approach for addressing obesity and its associated metabolic diseases. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-07T16:19:25Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-07T16:19:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
謝 辭 ii 中文摘要 iii 英文摘要 iv 目 次 v 圖 次 xiii 表 次 xvii 縮寫表 xviiii 緒 論 1 第一節 前言 1 第二節 文獻回顧 3 一、脂肪組織的發育、功能與涉及的代謝調節之回顧 3 二、酮體在哺乳動物扮演的功能之回顧 14 三、酮體在脂肪組織的代謝功能調節之回顧 21 第三節 研究假說及實驗架構 22 一、研究動機 22 二、研究假說 23 三、研究架構 24 第一章 E 型載脂蛋白缺陷小鼠透過脂肪前驅細胞的酮體產生途徑促進脂肪米色化 Apolipoprotein E deficiency in mice enhance adipose beiging by promoting adipose progenitor-mediated β-hydroxybutyrate production 30 第一節 摘要 30 第二節 前言 31 一、E 型載脂蛋白的基因型影響肥胖風險 31 二、小鼠脂肪組織 ApoE 影響代謝功能並參與肥胖與胰島素阻抗的病程發展 31 第三節 研究假說與實驗設計 33 第四節 材料與方法 33 一、試劑與耗材 33 二、小鼠飼養 33 三、小鼠基因型鑑定(genotyping) 34 四、產熱效率及能量代謝分析 35 五、各項代謝指標在血液與細胞培養基的濃度分析 35 六、初代細胞 35 七、組織化學及免疫染色 37 八、脂肪組織切片的脂肪細胞大小尺寸量化 37 九、脂肪組織切片的脂肪細胞型態之量化 38 十、脂肪組織切片的脂肪細胞標定的螢光蛋白之量化 38 十一、細胞存活率或毒性試驗分析 39 十二、油紅 O(Oil red O)染色 39 十三、葡萄糖攝取試驗 39 十四、脂肪酸利用試驗 40 十五、脂肪酸分解試驗 40 十六、粒線體耗氧、糖解作用與脂肪酸氧化功能 40 十七、粒線體數量之定量 42 十八、RNA 萃取、反轉錄 cDNA 和即時定量聚合酶連鎖反應(qPCR) 42 十九、蛋白質萃取和西方墨點法 43 二十、統計分析與數據整理 45 第五節 實驗結果 45 一、連續每天以腹腔注射 PPARγ 活化劑 WT 小鼠在 7 天後促進皮下脂肪米色化並不影響血酮濃度 45 二、Chow 飼養的 ApoE-/- 小鼠在 PPARγ 活化劑處理下並不影響體重與體組成的改變 46 三、PPARγ 活化劑處理的 ApoE-/- 小鼠具有較高的產熱效率及代謝率 46 四、ApoE-/- 小鼠具有脂肪米色化特徵並在 PPARγ 活化劑處理下增強其米色化效果 46 五、ApoE-/- 小鼠在低溫條件下飼養具有較強脂米色化效果 48 六、ApoE-/- 小鼠的皮下脂肪具有較小尺寸的脂肪細胞並增強其米色化效果 48 七、ApoE-/- 小鼠在 PPARγ 活化劑或冷暴露處理下促進棕色脂肪的脂肪細胞尺寸變大 49 八、ApoE-/- 小鼠的棕色脂肪組織不改變產熱基因表現 49 九、PPARγ 活化劑處理的 ApoE-/- 小鼠會促進脂肪分解 49 十、缺乏 ApoE 促進米色脂肪分化及功能 50 十一、缺乏 ApoE 促進脂肪前驅細胞以酮體 βHB 產生途徑誘導米色脂肪分化 50 十二、PPARγ 活化劑處理的 ApoE-/- 小鼠不影響血糖、血乳酸及血酮濃度的改變 52 十三、生酮抑制劑對 MEFs 的細胞毒性之影響 52 十四、ApoE-/- 脂肪前驅細胞部分依賴 Hmgcs2/βHB 途徑來調節米色脂肪分化的基因指標 52 十五、ApoE-/- 脂肪前驅細胞經由脂肪酸轉運蛋白 CD36 途徑的脂肪酸氧化作用來產生酮體 βHB 53 十六、脂肪細胞缺乏 ApoE 增強脂肪酸氧化作用、脂質分解及胰島素敏感性 54 十七、小鼠缺乏 ApoE 不改變皮下脂肪前驅細胞的數量 54 十八、ApoE-/- 前驅細胞增強的 Pparγ2 訊號可以被生酮抑制劑所破壞 55 十九、ApoE-/- 小鼠經由脂肪前驅細胞之酮體產生途徑增強米色脂肪分化來活化白色脂肪組織的產熱作用 55 第六節 討論 80 一、脂肪組織條件性剔除 ApoE 小鼠增強代謝作用 80 二、ApoE-/- 小鼠經由生成酮體來增強脂肪米色化 80 三、ApoE-/- 小鼠的脂肪前驅細胞活化脂肪酸轉運蛋白 CD36之脂肪酸氧化途徑來產生酮體 82 四、ApoE-/- 小鼠誘發的脂肪米色化作用連結人類 APOE4 基因型可能之應用 83 第七節 結論 86 第二章 生命早期的酮體訊號通過 H3K9/14Ac 和 H3K9Bhb 修飾的表觀遺傳變化調節米色脂肪分化 Early life ketone body signaling in promoting beige adipogenesis via H3K9/14Ac and H3K9Bhb epigenetic modifications 87 第一節 摘要 87 第二節 前言 88 一、母奶 MCFAs 成份與調節米色脂肪發育的關聯性 88 二、新生階段的內源性酮症現象可能參與米色脂肪發育之過程 88 第三節 研究假說與實驗設計 89 第四節 材料與方法 89 一、小鼠飼養 89 二、口服葡萄糖耐受性與胰島素耐受性試驗 90 三、量化肝臟脂肪堆積程度 91 四、低溫暴露下的體溫測量 91 五、細胞分離、培養與分化 91 六、流式細胞儀和細胞收選實驗 92 七、細胞免疫螢光染色 93 八、誘發胰島素阻抗下的葡萄糖攝取試驗 93 九、慢病毒感染 93 十、粒線體 DNA 之定量 94 十一、RNA-Seq 分析 94 十二、染色質免疫沉澱(ChIP)和 qPCR 95 十三、ChIP-Seq 分析 96 十四、統計分析與數據整理 97 十五、其他試驗方法 97 第五節 實驗結果 97 一、離乳前的中鏈脂肪酸缺乏促進成年肥胖 97 二、離乳前的中鏈脂肪酸缺乏加劇成年期的胰島素阻抗及下調脂肪功能指標 99 三、生酮酵素 Hmgcs2 缺陷小鼠具有高致死率 100 四、內源性酮症缺失抑制冷暴露誘發的脂肪米色化 100 五、內源性酮症缺失所抑制的產熱作用不依賴於棕色脂肪 102 六、內源性酮症缺失的皮下脂肪上調發炎途徑與下調脂肪代謝的基因群表現 103 七、增強哺乳期生酮(EKDL)促進成年小鼠增強冷暴露下的脂肪米色化 105 八、中年小鼠誘導營養性酮症會輕微促進冷暴露下的脂肪米色化 106 九、哺乳期為米色脂肪分化的關鍵時期 107 十、酮體 βHB 在米色脂肪分化途徑中的關鍵作用 109 十一、EKDL 於脂肪前驅細胞上調米色脂肪前驅細胞指標的基因和蛋白質表現 109 十二、哺乳期血酮變化影響脂肪前驅細胞分化後的脂肪細胞代謝功能 110 十三、哺乳期血酮變化調節米色脂肪前驅細胞的數量 111 十四、高表現 CD81 的米色脂肪前驅細胞調節米色脂肪分化 112 十五、EKDL 上調脂肪前驅細胞在米色脂肪分化途徑的發生 113 十六、EKDL 抑制脂肪前驅細胞的平滑肌相關訊號之途徑 115 十七、EKDL 對脂肪前驅細胞在 Hdac 家族表現之調節影響 116 十八、ChIP-seq 實驗的剪切 DNA 片段之結果 116 十九、EKDL 脂肪前驅細胞中 H3K9/14Ac 和 H3K9Bhb 的修飾標記高比例重疊於全基因組的啟動子區域 117 二十、EKDL 脂肪前驅細胞的 H3K9/14Ac 和 H3K9Bhb 依賴的轉錄基因 118 二十一、EKDL 脂肪前驅細胞的 H3K9/14Ac 和 H3K9Bhb 依賴的轉錄基因涉及的生物途徑 119 二十二、使用 MAnorm 方法分析 EKDL 脂肪前驅細胞中 H3K9/14Ac 和H3K9Bhb依賴的轉錄基因以及相關的生物途徑 119 二十三、EKDL 脂肪前驅細胞在特定途徑中的基因組之啟動子區域被表觀遺傳標記 H3K9Ac、H3K14Ac 和 H3K9Bhb 所修飾 120 二十五、EKDL 脂肪前驅細胞在特定細胞基因指標的表觀遺傳修飾與基因表現之影響 122 二十六、EKDL 脂肪前驅細胞的 Ppargc1a、Klf9 和 Vdr 啟動子區域被 H3K9/14Ac 及 H3K9Bhb 所修飾 122 二十七、βHB 於 MEFs 上調 Pparg 及 Ppargc1a 的基因表現 123 二十八、Bdh1 維持前驅細胞內 βHB 程度並正調節 Ppargc1a 表現與米色脂肪前驅細胞的基因指標 123 二十九、βHB 於 MEFs 上調整體組蛋白乙醯化和 β-羥基丁醯化修飾程度並使 Ppargc1a 啟動子區域發生修飾 123 三十一、EKDL 調節的米色脂肪分化需依賴 Pgc-1α 途徑 125 三十二、哺乳期提高血酮濃度促進米色脂肪分化以改善成年後飲食誘導的代謝紊亂 126 第六節 討論 169 一、哺乳期酮症的生理現象 169 二、母奶的 MCFAs 成份影響哺乳期酮症的發生 170 三、常規配方奶不含有 MCFAs 171 四、1,3BD 小鼠實驗模式與人體試驗的其他貢獻 172 五、EKDL 通過表觀遺傳記憶來調節米色脂肪分化 174 六、βHB 依賴的米色脂肪分化之關鍵轉錄因子 175 七、βHB 通過 Bdh1 依賴性調節脂肪前驅細胞表現 Pgc-1α 176 八、CD81+ 米色脂肪前驅細胞 176 第七節 結論 177 第三章 親代肥胖的子代小鼠在哺乳期增強生酮作用下促進米色脂肪分化並減緩成年後的代謝紊亂 Preweaning β-hydroxybutyrate elevation attenuates predisposition to metabolic dysregulation and impairs beige fat biogenesis in offspring of parents with high-fat diet-induced obesity 178 第一節 摘要 178 第二節 前言 179 一、親代肥胖(PO)的子代在代謝紊亂的高易感性與脂肪組織發育的關聯性 179 二、藉由酮體的促米色脂肪分化作用來抵抗代高肥胖易感性的可能性 180 第三節 研究假說與實驗設計 181 第四節 材料與方法 181 一、小鼠飼養 181 二、血液分析與血壓測量 183 三、流式細胞儀 183 四、慢病毒感染 183 五、RNA-Seq 分析 184 六、統計分析與數據整理 184 七、其他試驗方法 184 第五節 實驗結果 185 一、PO 的子代(Ob 子代)有早期體重過重現象 185 二、誘導 EKDL 的 Ob 子代在成年後具有抵抗飲食誘導的肥胖 185 三、誘導 EKDL 的 Ob 子代在成年後改變各代謝參數 187 四、誘導 EKDL 的 Ob 子代在成年後改變其代謝特徵 187 五、誘導 EKDL 的 Ob 子代在成年後增強脂肪米色化作用與產熱作用 188 六、誘導 EKDL 的 Ob 子代使脂肪前驅細胞增強米色脂肪分化與功能 189 七、鑑定仔鼠與中年小鼠的皮下脂肪內米色脂肪前驅細胞數量的分群與差異性 190 八、Ob 子代經由 EKDL 恢復損害的米色脂肪前驅細胞之活性 190 九、Ob 子代損害的米色脂肪分化可以經由 EKDL 誘導改變其米色脂肪分化的基因變化 191 十、有或無誘導 EKDL的 Ob 及 Ln 子代在皮下脂肪之前驅細胞的 RNA-seq 分析並以 ORA 方法顯示出的訊息途徑 192 十一、有或無誘導 EKDL的 Ob 及 Ln 子代在皮下脂肪之前驅細胞的 RNA-seq 分析並以 GSEA 方法顯示出的訊息途徑 194 十二、有或無誘導 EKDL 的 Ln 子代在皮下脂肪之前驅細胞的 RNA-seq 分析並以熱圖顯示出受調節的轉錄因子表現之排序 194 十三、Ln 與 Ob 子代在皮下脂肪之前驅細胞的 RNA-seq 分析並以熱圖顯示出受調節的轉錄因子表現之排序 195 十四、有或無誘導 EKDL 的 Ob 及 Ln 子代在皮下脂肪之前驅細胞的 RNA-seq 分析並以熱圖顯示出受調節的轉錄因子表現之排序 196 十五、EKDL 調節 Ob 子代的脂肪前驅細胞的 Ppargc1a、Klf9 和 Vdr 基因啟動子區域被 H3K9Bhb 所修飾 196 十六、Ob 子代的脂肪前驅細胞具有較高的 Hdac3 表現量且抑制 Hdac3 表現的脂肪前驅細胞在酮體 βHB 處理下能上調米色脂肪前驅細胞的基因指標 198 十七、母乳成份可能經由影響米色脂肪發育來活化白色脂肪組織的產熱功能 198 十八、誘導 EKDL 刺激脂肪前驅細胞活化 mTOR 活性訊號 199 十九、人類脂肪幹細胞處理 βHB 對 mTOR 活性與分化脂肪細胞後對代謝功能影響 200 二十、誘導 EKDL 對於 Ob 子代在代謝功能及米色脂肪生成之影響 200 第六節 討論 227 一、PO 子代造成的代謝特徵與酮體代謝動態之變化 227 二、EKDL 誘導的 PO 子代部分改善米色分化來抵抗成年後的代謝紊亂 228 三、βHB 可能透過多種途徑促進調節米色脂肪分化 229 四、βHB 在成熟脂肪細胞中脂肪米色化的影響 230 五、PO 調節子代的白色或米色脂肪分化 231 六、βHB 作為天然 Hdac 抑制劑的潛在應用性 231 第七節 結論 232 總討論 233 第一節 本研究之新穎性 233 第二節 本研究的實驗侷限性 236 第三節 可能的延伸性研究 237 總 結 240 參考文獻 242 附 錄 - 1 - | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 米色脂肪生成 | zh_TW |
| dc.subject | 酮體 | zh_TW |
| dc.subject | 哺乳期酮症 | zh_TW |
| dc.subject | 肥胖易感性 | zh_TW |
| dc.subject | APOE 基因 | zh_TW |
| dc.subject | 親代肥胖 | zh_TW |
| dc.subject | preweaning ketosis | en |
| dc.subject | beige fat biogenesis | en |
| dc.subject | parental obesity | en |
| dc.subject | APOE | en |
| dc.subject | obesity susceptibility | en |
| dc.subject | β-hydroxybutyrate | en |
| dc.title | 以小鼠模式探討酮體在米色脂肪細胞分化之作用 與抗肥胖之潛力 | zh_TW |
| dc.title | Elucidating the Role of Ketone Bodies in Beige Adipogenesis and Their Potential Anti-Obesity Effects Using Mouse Models | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 王志豪;李弘元;阮琪昌;阮麗蓉;黃青真;蔡曜聲 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Hao Wang;Hung-Yuan Li;Chi-Chang Juan;Li-Jung Juan;Ching-jang Huang;Yau-Sheng Tsai | en |
| dc.subject.keyword | 米色脂肪生成,酮體,哺乳期酮症,肥胖易感性,APOE 基因,親代肥胖, | zh_TW |
| dc.subject.keyword | beige fat biogenesis,β-hydroxybutyrate,preweaning ketosis,obesity susceptibility,APOE,parental obesity, | en |
| dc.relation.page | 296 | - |
| dc.identifier.doi | 10.6342/NTU202401070 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-07-28 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科技學系 | - |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 33.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
