Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9366
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏家鈺(Jia-Yush Yen)
dc.contributor.authorFan-Che Yenen
dc.contributor.author顏凡哲zh_TW
dc.date.accessioned2021-05-20T20:19:22Z-
dc.date.available2009-06-24
dc.date.available2021-05-20T20:19:22Z-
dc.date.copyright2009-06-24
dc.date.issued2009
dc.date.submitted2009-06-15
dc.identifier.citation[1] Vital Statistics, Department of Health, R.O.C., 2005.
[2] 武又瑞, Wireless Sensor Network Design and Implementation for Health Telecare
and Diagnosis Assistance Applications, 台灣大學資訊工程學研究所碩士論文,2005.
[3] G. Strang, Linear Algebra and Its Application,4th edition, Thompson Brooks/Cole,2006.
[4] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines,Cambridge University Press, 2000.
[5] E.J. R.S.H.Istepanian and Y.T.Zhang, “Introduction to the special section on m-Health: Beyond seamless mobility and global wireless health-care connectivity,”IEEE Transactions on Information Technology in Biomedicine, vol. 8, pp.405-414, 2004.
[6] The Official Bluetooth® technology Info Site, available at http://www.bluetooth.com/
[7] ZigBee Alliance, available at http://www.zigbee.org/
[8] 鍾慶諺, “Research on Wavelet Analysis for Embedded Health Monitoring System,”台灣大學機械工程研究所碩士論文, 2004.
[9] 張銘偉, “Novel Approach to Fuzzy-Wavelet EKG Signal Analysis,” 台灣大學機械工程研究所碩士論文, 2005.
[10] V. N. Vapnik (1995). The Nature of Statistical Learning Theory, Berlin: Springer-Verlag.
[11] Terrence S. Furey; N. Cristianini; N. Duffy; D. w. Bednarski; M. Schummer and D. Haussler, “Support vector machine classification and validation of cancer tissue
samples using microarray expression data,” Oxford University Press, 16(102000), pp. 906-914, 2000.
[12] L. Biel; O. Pettersson; L. Philipson and P. Wide, 'ECG Analysis: A New Approach in Human Identification,” IEEE Transactions on Instrumentation and Measurement, vol. 50, no.3, 2001.
[13] S. Osowski; L. T. Hoai and T. Markiewicz, “Support Vector Machine-Based Expert System for Reliable Heartbeat Recognition,” IEEE Transactions on Biomedical Engineering, vol. 51, no.4, 2004.
[14] MIT-BIH Arrhythmia Database ,available at http://www.physionet.org/physiobank/
[15] S. Graja and J. M. Boucher, “SVM Classification of patients prone to atrial fibrillation,” IEEE International Workshop on Intelligent Signal Processing, pp. 370-374, 1-3 Sept. 2005.
[16] D. Ghosh; B.L. Midya; C. Koley and P. Purkait, “Wavelet Aided SVM Analysis of ECG Signals for Cardiac Abnormality Detection,” INDICON, 2005 Annual IEEE , vol., no., pp. 9-13, 11-13 Dec. 2005.
[17] H. Zhang and L.Q. Zhang, 'ECG analysis based on PCA and Support Vector Machines,' Neural Networks and Brain, 2005. ICNN&B '05. International Conference on , vol.2, pp.743-747, 13-15 Oct. 2005.
[18] Đ. Güler and E. D. Übeyli, “ECG beat classifier designed by combined neural network model,” Pattern Recognition, vol. 38, no. 2, pp. 199-208, Feb. 2005.
[19] E. D. Übeyli, “ECG beats classification using multiclass support vector machines with error correcting output codes,” Digital Signal Processing, vol. 17, pp. 675-684, 2007.
[20] E. D. Übeyli, “Features for analysis of electrocardiographic changes in partial epileptic patients,” Expert Systems with Application, vol. 36, pp. 6780-6789, 2009.
[21] M.H. Jin; R.G. Lee; C.Y. Kao; Y.R. Wu; D. F. Hsu; T. P. Dong and K.T Huang, “Sensor Network Design and Implementation for Health Telecare and Diagnosis Assistance Applications,” ICPADS, pp. 407-411, 2005.
[22] 張瑋茜, “Embedded System Technology for Monitoring Biomedical Signals,” 台灣大學機械工程研究所碩士論文, 2006.
[23] 林冠民, “Implementation of Embedded Mobile Device On Wireless Bio-diagnosis Platform,” 台灣大學機械工程研究所碩士論文,2007.
[24] 徐玄宗, “Biomedical Signal Analysis based on AR model and Support vector machine for a wireless remote health monitoring system,” 台灣大學機械工程研究所碩士論文, 2008.
[25] R. Mettala, “Bluetooth Protocol Architecture Version 1.0,” Bluetooth Special Interest Group, 1999.
[26] “Bluetooth specification version 1.1,” Bluetooth Special Interest Group, 2001.
[27] T. Muller, “Bluetooth Security Architecture Version 1.0,” Bluetooth Special Interest Group, 1999.
[28] MSDN online Library, available at http://msdn.microsoft.com/library/
[29] S. Haykin, Communication Systems, Prentice Hall, 2000.
[30] S.L.M. Jr., Digital Spectral Analysis with applications, Prentice Hall, 1987.
[31] S.M. Kay, Modern Spectral Estimation -- theory & application, Prentice Hall, 1988.
[32] “An User Guide to Wavelet Tool Box,” , available at http://www.mathworks.com/
[33] C.C. Chang and C.J. Lin, LIBSVM : a library for support vector machines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
[34] I. Daubechies, Ten lectures on wavelets, SIAM, Philadelphia, 1992.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9366-
dc.description.abstract本篇論文以國立台灣大學的無線奈米生醫檢測系統為發展藍圖,開發出一嵌入式生醫資訊監控裝置。無線奈米生醫檢測系統包含有植入式的體內感測器、生理監控裝置以及健康監控伺服中心。本文中實現了生理監控裝置以及健康監控伺服中心。此生理監控裝置架構在智慧型手機上,其作業系統為Symbian 作業系統,同時在此生理監控裝置與健康監控伺服中心上也建構了一份訊號分析檢測系統。本篇論文使用心電圖訊號作為生理訊號分析之範本,其中訊號分析主要以頻譜估測、小波轉換、主成份分析為基礎;醫學訊號檢測的判斷依據則是以支向量機分析理論為基礎,進行六種病症與健康情形之分辨。zh_TW
dc.description.abstractThis thesis describes the embedded system technology in the monitoring device for the National Taiwan University Wireless Health Advanced Monitoring Bio-Diagnosis System (WHAM-bios). The WHAM-bios consists of body-embedded sensors, a monitoring device, and a center health care server. A prototype of the monitoring device and the health care center is implemented in this thesis. The monitoring device is a smart phone running Symbian operating system. The biomedical diagnosis system is implemented in the center health care server as well as the smart phone. The
thesis uses Electrocardiogram (ECG or EKG) as example. The ECG signal analysis is based on spectral estimation, wavelet transformation and principal component analysis. The diagnosis dealing with healthy state and six other arrhythmia abnormalities is based on support vector machine
classification algorithm.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:19:22Z (GMT). No. of bitstreams: 1
ntu-98-R96522801-1.pdf: 3037064 bytes, checksum: ad2ce72ad5de976317e4534885efe207 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsChapter 1 Introduction .................................................................................................................. 1
1-1 Motivation and Objective ..................................................................................................... 1
1-2 Related Works ...................................................................................................................... 4
1-3 Organization of this thesis.................................................................................................... 9
1-4 Contributions ........................................................................................................................ 9
Chapter 2 System Architecture and Environment ...................................................................... 13
2-1 System Architecture ........................................................................................................... 13
2-2 Hardware Architecture ....................................................................................................... 14
2-3 Software Architecture ........................................................................................................ 15
2-3-1 User Interface ............................................................................................................. 16
2-3-2 Signal processing ....................................................................................................... 17
2-3-3 Data communication .................................................................................................. 17
2-3-4 Records of Daily Biomedical Signal .......................................................................... 23
Chapter 3 Signal Analysis Theorem ........................................................................................... 25
3-1 Random Process ................................................................................................................. 25
3-2 Spectral Analysis................................................................................................................ 31
3-2-1 Classical Spectral Estimation ..................................................................................... 32
3-3 Wavelet Transformation .................................................................................................... 39
3-3-1 Fundamental Concept ................................................................................................. 39
3-3-2 Multi-level Decomposition[32] .................................................................................. 41
3-3-3 Mother Wavelet .......................................................................................................... 43
3-4 Principal Component Analysis........................................................................................... 44
3-5 Support Vector Machine .................................................................................................... 45
3-5-1 Support Vector ........................................................................................................... 45
3-5-2 Lagrange’s multiplier ................................................................................................. 48
3-5-3 Feature Space and Kernel [33] ................................................................................... 50
3-5-4 Decision Function ...................................................................................................... 51
Chapter 4 System Implementation .............................................................................................. 53
4-1 Hardware Implementation .................................................................................................. 53
4-2 Software Implementation ................................................................................................... 54
4-2-1 Socket/Bluetooth Connection ..................................................................................... 55
4-2-2 Mobile Database ......................................................................................................... 57
4-2-3 User Interface ............................................................................................................. 57
4-2-4 Remote Server ............................................................................................................ 58
4-3 Signal Processing ............................................................................................................... 59
4-3-1 Basic Concept of ECG Signal .................................................................................... 60
4-3-2 Preprocessing of ECG Signal ..................................................................................... 63
4-3-3 Feature Extraction ...................................................................................................... 65
4-3-4 SVM Classification .................................................................................................... 67
4-3-5 Experimental Result ................................................................................................... 71
Chapter 5 Conclusions and Future Works .................................................................................. 77
5-1 Conclusions ........................................................................................................................ 77
5-2 Future Works...................................................................................................................... 78
References ................................................................................................................................... 79
dc.language.isoen
dc.title以支向量機結合小波轉換與自回歸模型之生醫訊號分析於行動生醫檢測系統zh_TW
dc.titleBiomedical Signal based on wavelet transform and AR model with Support Vector Machine for mobile biomedical signal analysis systemen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林啟萬(Chii-Wann Lin),陳文翔(Wen-Shiang Chen)
dc.subject.keyword生醫信號檢測系統,智慧型手機,頻譜估測,小波轉換,主成份分析,支向量機,心電圖,zh_TW
dc.subject.keywordBiomedical Diagnosis System,Smart Phone,Spectral Estimation,Wavelet Transformation,Principal Component Analysis,Support Vector Machine,Electrocardiogram,en
dc.relation.page82
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-06-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf2.97 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved