請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93656完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林之謙 | zh_TW |
| dc.contributor.advisor | Jacob J. Lin | en |
| dc.contributor.author | 洪梓航 | zh_TW |
| dc.contributor.author | Ang Chi-Hang | en |
| dc.date.accessioned | 2024-08-07T16:13:22Z | - |
| dc.date.available | 2024-08-08 | - |
| dc.date.copyright | 2024-08-07 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-26 | - |
| dc.identifier.citation | Aoki, Y., Goforth, H., Srivatsan, R. A., and Lucey, S. (2019). Pointnetlk: Robust & efficient point cloud registration using pointnet. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 7163–7172.
Arnold, E., Mozaffari, S., and Dianati, M. (2021). Fast and robust registration of partially overlapping point clouds. IEEE Robotics and Automation Letters, 7(2):1502–1509. Arun, K. S., Huang, T. S., and Blostein, S. D. (1987). Least-squares fitting of two 3-d point sets. IEEE Transactions on pattern analysis and machine intelligence, (5):698–700. Bai, X., Luo, Z., Zhou, L., Fu, H., Quan, L., and Tai, C.-L. (2020). D3feat: Joint learning of dense detection and description of 3d local features. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 6359–6367. Bartoli, A., Hartley, R. I., and Kahl, F. (2003). Motion from 3d line correspondences: linear and nonlinear solutions. In 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings., volume 1, pages I–477. IEEE. Besl, P. J. and McKay, N. D. (1992). Method for registration of 3-d shapes. In Sensor fusion IV: control paradigms and data structures, volume 1611, pages 586–606. Spie. Bradski, G., Kaehler, A., et al. (2000). Opencv. Dr. Dobb's journal of software tools, 3(2). Bueno, M., Bosché, F., González-Jorge, H., Martínez-Sánchez, J., and Arias, P. (2018). 4-plane congruent sets for automatic registration of as-is 3d point clouds with 3d bim models. Automation in Construction, 89:120–134. Chen, Y. and Medioni, G. (1992). Object modelling by registration of multiple range images. Image and vision computing, 10(3):145–155. Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural information processing systems, 26. Dong, Z., Liang, F., Yang, B., Xu, Y., Zang, Y., Li, J., Wang, Y., Dai, W., Fan, H., Hyyppä, J., et al. (2020). Registration of large-scale terrestrial laser scanner point clouds: A review and benchmark. ISPRS Journal of Photogrammetry and Remote Sensing, 163:327–342. Dong, Z., Yang, B., Liu, Y., Liang, F., Li, B., and Zang, Y. (2017). A novel binary shape context for 3d local surface description. ISPRS Journal of Photogrammetry and Remote Sensing, 130:431–452. Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6):381–395. Godin, G., Rioux, M., and Baribeau, R. (1994). Three-dimensional registration using range and intensity information. In Videometrics III, volume 2350, pages 279–290. SPIE. Horn, B. K., Hilden, H. M., and Negahdaripour, S. (1988). Closed-form solution of absolute orientation using orthonormal matrices. Josa a, 5(7):1127–1135. Huang, S., Gojcic, Z., Usvyatsov, M., Wieser, A., and Schindler, K. (2021a). Predator: Registration of 3d point clouds with low overlap. In Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition, pages 4267–4276. Huang, X., Mei, G., and Zhang, J. (2020). Feature-metric registration: A fast semi-supervised approach for robust point cloud registration without correspondences. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 11366–11374. Huang, X., Mei, G., and Zhang, J. (2023). Cross-source point cloud registration: Challenges, progress and prospects. Neurocomputing, page 126383. Huang, X., Mei, G., Zhang, J., and Abbas, R. (2021b). A comprehensive survey on point cloud registration. arXiv preprint arXiv:2103.02690. Jaw, J.-J. and Chuang, T.-Y. (2008). Registration of ground-based lidar point clouds by means of 3d line features. Journal of the Chinese Institute of Engineers, 31(6):1031–1045. Li, Y. and Harada, T. (2022). Lepard: Learning partial point cloud matching in rigid and deformable scenes. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 5554–5564. Lin, J. J., Han, K. K., and Golparvar-Fard, M. (2015). A framework for model-driven acquisition and analytics of visual data using uavs for automated construction progress monitoring. In Computing in civil engineering 2015, pages 156–164. Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2017). Focal loss for dense object detection. In Proceedings of the IEEE international conference on computer vision, pages 2980–2988. Liu, L., Li, H., Yao, H., and Zha, R. (2021). Pluckernet: Learn to register 3d line reconstructions. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1842–1852. Liu, S., Yu, Y., Pautrat, R., Pollefeys, M., and Larsson, V. (2023). 3d line mapping revisited. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 21445–21455. Lu, X., Liu, Y., and Li, K. (2019). Fast 3d line segment detection from unorganized point cloud. arXiv preprint arXiv:1901.02532. Lusk, P. C., Fathian, K., and How, J. P. (2021). Clipper: A graph-theoretic framework for robust data association. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages 13828–13834. IEEE. Masuda, T., Sakaue, K., and Yokoya, N. (1996). Registration and integration of multiple range images for 3-d model construction. In Proceedings of 13th international conference on pattern recognition, volume 1, pages 879–883. IEEE. Meyer, T., Brunn, A., and Stilla, U. (2022). Change detection for indoor construction progress monitoring based on bim, point clouds and uncertainties. Automation in Construction, 141:104442. Mirzaei, K., Arashpour, M., Asadi, E., Masoumi, H., Bai, Y., and Behnood, A. (2022). 3d point cloud data processing with machine learning for construction and infrastructure applications: A comprehensive review. Advanced engineering informatics, 51:101501. Mirzaei, K., Arashpour, M., Asadi, E., Masoumi, H., Mahdiyar, A., and Gonzalez, V. (2023). End-to-end point cloud-based segmentation of building members for automating dimensional quality control. Advanced Engineering Informatics, 55:101878. Pautrat, R., Lin, J.-T., Larsson, V., Oswald, M. R., and Pollefeys, M. (2021). Sold2: Self-supervised occlusion-aware line description and detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11368–11378. Pautrat, R., Suárez, I., Yu, Y., Pollefeys, M., and Larsson, V. (2023). Gluestick: Robust image matching by sticking points and lines together. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 9706–9716. Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017a). Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 652–660. Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017b). Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Advances in neural information processing systems, 30. Qin, Z., Yu, H., Wang, C., Guo, Y., Peng, Y., and Xu, K. (2022). Geometric transformer for fast and robust point cloud registration. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 11143–11152. Rusu, R. B., Blodow, N., and Beetz, M. (2009). Fast point feature histograms (fpfh) for 3d registration. In 2009 IEEE international conference on robotics and automation, pages 3212–3217. IEEE. Rusu, R. B., Blodow, N., Marton, Z. C., and Beetz, M. (2008). Aligning point cloud views using persistent feature histograms. In 2008 IEEE/RSJ international conference on intelligent robots and systems, pages 3384–3391. IEEE. Sun, T., Hao, Y., Huang, S., Savarese, S., Schindler, K., Pollefeys, M., and Armeni, I. (2023). Nothing stands still: A spatiotemporal benchmark on 3d point cloud registration under large geometric and temporal change. arXiv preprint arXiv:2311.09346. Thomas, H., Qi, C. R., Deschaud, J.-E., Marcotegui, B., Goulette, F., and Guibas, L. J. (2019). Kpconv: Flexible and deformable convolution for point clouds. In Proceedings of the IEEE/CVF international conference on computer vision, pages 6411–6420. Turk, G. and Levoy, M. (1994). Zippered polygon meshes from range images. In Proceedings of the 21st annual conference on Computer graphics and interactive techniques, pages 311–318. Wang, Z., Wu, F., and Hu, Z. (2009). Msld: A robust descriptor for line matching. Pattern Recognition, 42(5):941–953. Xu, E., Xu, Z., and Yang, K. (2021). Using 2-lines congruent sets for coarse registration of terrestrial point clouds in urban scenes. IEEE Transactions on Geoscience and Remote Sensing, 60:1–18. Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, J., and Funkhouser, T. (2017). 3dmatch: Learning local geometric descriptors from rgb-d reconstructions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 1802–1811. Zeng, H., Deng, X., and Hu, Z. (2008). A new normalized method on line-based homography estimation. Pattern Recognition Letters, 29(9):1236–1244. Zhang, L. and Koch, R. (2013). An efficient and robust line segment matching approach based on lbd descriptor and pairwise geometric consistency. Journal of visual communication and image representation, 24(7):794–805. Zhong, Y. (2009). Intrinsic shape signatures: A shape descriptor for 3d object recognition. In 2009 IEEE 12th international conference on computer vision workshops, ICCV Workshops, pages 689–696. IEEE. Zhou, F., Cui, Y., Gao, H., and Wang, Y. (2013). Line-based camera calibration with lens distortion correction from a single image. Optics and Lasers in Engineering, 51(12):1332–1343. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93656 | - |
| dc.description.abstract | 點雲相比於影像,具備三維的特徵且更能反映現場真實狀況,能幫助許多工程上的應用,例如進度管理、品質管理等等。在點雲的應用上,點雲套合是一件重要的前置任務。現今,我們需要將點雲手動整合到統一的座標系統,這是一項重複性且耗費人力的工作,而自動化的點雲套合受困于難以在低重叠、跨源頭的點雲取得對應特徵,進而影響其套合成效。本研究基於在建築環境内多是結構線的緣由,提出一個以線特徵進行點雲自動套合的框架,此框架分由4個模組組成,包括線的分割 (Line Extraction),線特徵的萃取與配對 (Line Feature Extraction and Matching),離群值檢驗 (Outlier Pruning)和線的套合模組 (Line-based Registration)。此外,我們設計了一個深度神經網路(LineNet),以進行線的特徵萃取和配對。我們的線特徵套合框架在點雲套合的資料集(3DMatch)上達到26.46%的套合成功率,超過目前最好的線特徵套合模型。最後我們也對使用線特徵進行套合的重要因素進行討論,其中包括針對各個模組的品質因子的討論。 | zh_TW |
| dc.description.abstract | Point clouds have a broad range of applications in construction monitoring and management, such as progress monitoring and quality inspection. Nonetheless, point cloud registration is a crucial task before most point cloud applications. Currently, the alignment of point clouds into the same global coordinate system largely requires manual work, which is repetitive and labor-intensive, and the automated point cloud registration suffers from finding correct correspondences between cross-source or low overlapping point clouds. The salient and abundant line geometry in man-made structures contains the potential to automate the registration process. This research aims to perform point cloud registration by using line geometry as a matching feature. We propose a line-based point cloud registration framework and design the LineNet, a line feature encoding network to perform the feature extraction and matching. We experimented with the proposed framework on the representative 3DMatch dataset, and the overall registration recall is 26.46%, which have great improvement against the latest line-based method. Some discussions on the important factors to perform a good line-based point cloud registration have been made. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-07T16:13:22Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-07T16:13:22Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 3
Abstract 5 Contents 7 List of Figures 11 List of Tables 13 Chapter 1 Introduction 1 1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Challenges on Point Cloud Registration . . . . . . . . . . . . . . . . 2 1.3 Research Gap and Objectives . . . . . . . . . . . . . . . . . . . . . 4 1.4 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 6 Chapter 2 Related Work 7 2.1 Direct Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Transform Registration . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Hand-crafted Feature Extraction . . . . . . . . . . . . . . . . . . . 10 2.2.2 Learning-based Feature Extraction . . . . . . . . . . . . . . . . . . 11 2.2.3 Line and Plane Features . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 End-to-end Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Chapter 3 Methodology 17 3.1 Line Extraction Module . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Line Feature Extraction and Matching Module . . . . . . . . . . . . 21 3.2.1 Line Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2.2 Attention Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.3 Matching Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.4 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.5 LineNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.6 PluckerNet Modification . . . . . . . . . . . . . . . . . . . . . . . 27 3.3 Outlier Pruning Module . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4 RANSAC-based Line Registration Module . . . . . . . . . . . . . . 30 3.4.1 Minimal 2-line Solver . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4.2 Minimal 3-line Solver . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4.3 Random Sampling Consensus (RANSAC) . . . . . . . . . . . . . . 36 Chapter 4 Results 39 4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.1.1 3DMatch and UrbanDataset . . . . . . . . . . . . . . . . . . . . . . 39 4.1.2 Dataset Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.2 Line Extraction Module . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3 Line Feature Extraction and Matching accuracy . . . . . . . . . . . . 44 4.4 RANSAC-based Line Registration Module . . . . . . . . . . . . . . 47 Chapter 5 Discussion 51 5.1 Experiment on the Matching Accuracy Requirement . . . . . . . . . 51 5.2 Comparison between the 2-line Solver and 3-line Solver . . . . . . . 53 5.3 The Performance of LineNet on Low Overlapping Ratio Point Cloud Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.4 Comparison with the State-of-the-art Point-based Methods . . . . . . 55 5.5 Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Chapter 6 Conclusion 59 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 References 63 | - |
| dc.language.iso | en | - |
| dc.subject | 線特徵 | zh_TW |
| dc.subject | 建築區域 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 點雲套合 | zh_TW |
| dc.subject | point cloud registration | en |
| dc.subject | built environment | en |
| dc.subject | line feature | en |
| dc.subject | deep learning | en |
| dc.title | 應用深度線特徵於建築環境内之點雲套合 | zh_TW |
| dc.title | Using Deep Line Feature for Point Cloud Registration in Built Environment | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 韓仁毓;紀宏霖 | zh_TW |
| dc.contributor.oralexamcommittee | Jen-Yu Han;Hung-Lin Chi | en |
| dc.subject.keyword | 點雲套合,建築區域,線特徵,深度學習, | zh_TW |
| dc.subject.keyword | point cloud registration,built environment,line feature,deep learning, | en |
| dc.relation.page | 69 | - |
| dc.identifier.doi | 10.6342/NTU202402124 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-29 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2026-07-31 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2026-07-31 | 17.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
