請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93654
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳國慶 | zh_TW |
dc.contributor.advisor | Kuo-Ching Chen | en |
dc.contributor.author | 鄭博仲 | zh_TW |
dc.contributor.author | Po-Chung Cheng | en |
dc.date.accessioned | 2024-08-07T16:12:32Z | - |
dc.date.available | 2024-08-10 | - |
dc.date.copyright | 2024-08-07 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-30 | - |
dc.identifier.citation | [1] M. Ouyang, M. Zhang, X. Feng, L. Lu, J. Li, X. He, et al., Internal short circuit detection for battery pack using equivalent parameter and consistency method, J. Power Sources 294 (2015) 272-283.
[2] X. Lai, W. Yi, X. Kong, X. Han, L. Zhou, T. Sun, et al., Online detection of early stage internal short circuits in series-connected lithium-ion battery packs based on state-of-charge correlation, Journal of Energy Storage 30 (2020), 101514. [3] X. Feng, Y. Pan, X. He, L. Wang, M. Ouyang, Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm, Journal of Energy Storage 18 (2018) 26-39. [4] W. Gao, Y. Zheng, M. Ouyang, J. Li, X. Lai, X. Hu, Micro-short-circuit diagnosis for series-connected lithium-ion battery packs using mean-difference model, IEEE Transactions on Industrial Electronics 66 (2019) 2132-2142. [5] M. Seo, T. Goh, M. Park, G. Koo, S. Kim, Detection of internal short circuit in lithium ion battery using model-based switching model method, Energies 10 (2017). [6] D. Qiao, X. Wang, X. Lai, Y. Zheng, X. Wei, H. Dai, Online quantitative diagnosis of internal short circuit for lithium-ion batteries using incremental capacity method, Energy 243 (2022), 123082. [7] X. Kong, Y. Zheng, M. Ouyang, L. Lu, J. Li, Z. Zhang, Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs, J. Power Sources 395 (2018) 358-368. [8] W. Fan, D. Qiao, X. Lai, Y. Zheng, X. Wei, H. Dai, A novel method of quantitative internal short circuit diagnosis based on charging electric quantity in fixed voltage window, Journal of Energy Storage 70 (2023), 108096. [9] J. Zhao, H. Ling, J. Wang, A.F. Burke, Y. Lian, Data-driven prediction of battery failure for electric vehicles, iScience 25 (2022), 104172. [10] T. Gao, W. Lu, Machine learning toward advanced energy storage devices and systems, iScience 24 (2021), 101936. [11] A. Naha, A. Khandelwal, S. Agarwal, P. Tagade, K.S. Hariharan, A. Kaushik, et al., Internal short circuit detection in li-ion batteries using supervised machine learning, Sci Rep 10 (2020), 1301. [12] Y. Liu, C. Liao, W. Zhang, G. Hu, C. Zhang, L. Wang, Internal short circuit diagnosis of lithium-ion battery based on mechanism model and deep learning, Journal of The Electrochemical Society 169 (2022), 100514. [13] G. Zhu, T. Sun, Y. Xu, Y. Zheng, L. Zhou, Identification of internal short-circuit faults in lithium-ion batteries based on a multi-machine learning fusion, Batteries 9 (2023). [14] D. Qiao, X. Wei, B. Jiang, W. Fan, X. Lai, Y. Zheng, et al., Quantitative diagnosis of internal short circuit for lithium-ion batteries using relaxation voltage, IEEE Transactions on Industrial Electronics (2024) 1-10. [15] N. Meddings, M. Heinrich, F. Overney, J.-S. Lee, V. Ruiz, E. Napolitano, et al., Application of electrochemical impedance spectroscopy to commercial li-ion cells: A review, J. Power Sources 480 (2020), 228742. [16] L.-f. Wang, M.-m. Geng, X.-n. Ding, C. Fang, Y. Zhang, S.-s. Shi, et al., Research progress of the electrochemical impedance technique applied to the high-capacity lithium-ion battery, International Journal of Minerals, Metallurgy and Materials 28 (2021) 538-552. [17] X. Wang, X. Wei, J. Zhu, H. Dai, Y. Zheng, X. Xu, et al., A review of modeling, acquisition, and application of lithium-ion battery impedance for onboard battery management, eTransportation 7 (2021), 100093. [18] N. H, K. T, Diagnosis method to detect the incorporation of metallic particles in lithium ion battery, ECS Transactions (2015) 59-68. [19] X. Kong, G.L. Plett, M. Scott Trimboli, Z. Zhang, D. Qiao, T. Zhao, et al., Pseudo-two-dimensional model and impedance diagnosis of micro internal short circuit in lithium-ion cells, Journal of Energy Storage 27 (2020), 101085. [20] R. Ma, J. He, Y. Deng, Investigation and comparison of the electrochemical impedance spectroscopy and internal resistance indicators for early-stage internal short circuit detection through battery aging, Journal of Energy Storage 54 (2022), 105346. [21] B. Cui, H. Wang, R. Li, L. Xiang, J. Du, H. Zhao, et al., Internal short circuit early detection of lithium-ion batteries from impedance spectroscopy using deep learning, J. Power Sources 563 (2023), 232824. [22] T. Yokoshima, D. Mukoyama, K. Nakazawa, Y. Gima, H. Isawa, H. Nara, et al., Application of electrochemical impedance spectroscopy to ferri/ferrocyanide redox couple and lithium ion battery systems using a square wave as signal input, Electrochimica Acta 180 (2015) 922-928. [23] C. Hadrien, B. Henri, R. Lorenzo, C. Aurore, Electrochemical impedance spectroscopy for online satellite battery monitoring using square wave excitation, European Space Power Conference (2019). [24] L. Wang, Z. Song, L. Zhu, J. Jiang, Fast electrochemical impedance spectroscopy of lithium-ion batteries based on the large square wave excitation signal, iScience 26 (2023), 106463. [25] K. Mc Carthy, H. Gullapalli, K.M. Ryan, T. Kennedy, Electrochemical impedance correlation analysis for the estimation of li-ion battery state of charge, state of health and internal temperature, Journal of Energy Storage 50 (2022), 104608. [26] Q. Zhang, C.-G. Huang, H. Li, G. Feng, W. Peng, Electrochemical impedance spectroscopy based state-of-health estimation for lithium-ion battery considering temperature and state-of-charge effect, IEEE Transactions on Transportation Electrification 8 (2022) 4633-4645. [27] A. Barai, K. Uddin, W.D. Widanage, A. McGordon, P. Jennings, A study of the influence of measurement timescale on internal resistance characterisation methodologies for lithium-ion cells, Sci Rep 8 (2018), 21. [28] L. Chen, Z. Lü, W. Lin, J. Li, H. Pan, A new state-of-health estimation method for lithium-ion batteries through the intrinsic relationship between ohmic internal resistance and capacity, Measurement 116 (2018) 586-595. [29] M.-R. Tsai, K.-C. Chen, One single polynomial function-based charge voltage curve and its application to estimate the states of lithium-ion batteries in series, Journal of Energy Storage 59 (2023), 106502. [30] Q.-Q. Yu, R. Xiong, L.-Y. Wang, C. Lin, A comparative study on open circuit voltage models for lithium-ion batteries, Chinese Journal of Mechanical Engineering 31 (2018) 31-65. [31] R. Zhang, B. Xia, B. Li, L. Cao, Y. Lai, W. Zheng, et al., A study on the open circuit voltage and state of charge characterization of high capacity lithium-ion battery under different temperature, Energies 11 (2018). [32] X. Lai, C. Jin, W. Yi, X. Han, X. Feng, Y. Zheng, et al., Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: Recent advances and perspectives, Energy Storage Materials 35 (2021) 470-499. [33] G. Zhang, X. Wei, X. Tang, J. Zhu, S. Chen, H. Dai, Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review, Renewable and Sustainable Energy Reviews 141 (2021), 110790. [34] X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia, X. He, Thermal runaway mechanism of lithium ion battery for electric vehicles: A review, Energy Storage Materials 10 (2018) 246-267. [35] L. Huang, L. Liu, L. Lu, X. Feng, X. Han, W. Li, et al., A review of the internal short circuit mechanism in lithium‐ion batteries: Inducement, detection and prevention, International Journal of Energy Research 45 (2021) 15797-15831. [36] S. Bharathraj, M. Lee, S.P. Adiga, K.S. Mayya, J.H. Kim, Isolation of relaxation times under open-circuit conditions: Toward prognosis of nascent short circuits in li-ion batteries, iScience 26 (2023), 106636. [37] M. Baak, R. Koopman, H. Snoek, S. Klous, A new correlation coefficient between categorical, ordinal and interval variables with pearson characteristics, Computational Statistics & Data Analysis 152 (2020), 107043. [38] X. Sui, S. He, S.B. Vilsen, J. Meng, R. Teodorescu, D.-I. Stroe, A review of non-probabilistic machine learning-based state of health estimation techniques for lithium-ion battery, Appl. Energy 300 (2021), 117346. [39] Z. Liu, C. Lyu, J. Huo, S. Wang, J. Chen, Gaussian process regression for transportation system estimation and prediction problems: The deformation and a hat kernel, IEEE Transactions on Intelligent Transportation Systems 23 (2022) 22331-22342. [40] C. Hu, G. Jain, P. Zhang, C. Schmidt, P. Gomadam, T. Gorka, Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery, Appl. Energy 129 (2014) 49-55. [41] K.S.R. Mawonou, A. Eddahech, D. Dumur, D. Beauvois, E. Godoy, State-of-health estimators coupled to a random forest approach for lithium-ion battery aging factor ranking, J. Power Sources 484 (2021), 229154. [42] N. Yan, Y.-B. Yao, Z.-D. Jia, L. Liu, C.-T. Dai, Z.-G. Li, et al., Online battery health diagnosis for electric vehicles based on dtw-xgboost, Energy Reports 8 (2022) 121-128. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93654 | - |
dc.description.abstract | 鋰離子電池 (lithium ion batteries, LIBs) 因其高效能和耐用性,廣泛應用於電動車和再生能源系統。當LIBs退化且無法再提供高性能時,大規模退役這些電池會帶來顯著的環境和經濟挑戰。相比於處置和回收,再利用電池不僅延長了其壽命和價值,還減少了對新電池製造成本的需求。然而,未及早檢測到的內部短路(ISC)可能會導致熱失控和嚴重事故。現有的診斷方法為了解決上述問題,需要完整的充放電周期或長時間的靜置期以獲取足夠的訊息,檢測過程相對耗時。因此,本研究提出了一種高效的診斷方法,僅通過110秒的兩個連續方波測量即可獲得安全訊息和電池狀態。由於ISC和電池狀態對電化學阻抗譜都有影響,第一個方波主要用於評估電池狀態,而第二個方波提供識別ISC的關鍵訊息。通過利用歐姆電阻、初始電壓和低頻段的前三個阻抗作為特徵,並將其應用於機器學習模型,該方法可以準確地將ISC的嚴重程度分類到不同等級,準確率達93.83%,同時預測電池健康狀態和電量狀態,其均方根誤差分別為2.22% 和1.72%。該方法特別適用於LIBs快速的狀態評估與安全性分類,為電池再利用提供了重要價值,有助於最大化汰役電池的剩餘價值,延長其使用壽命,並促進可持續能源的利用。 | zh_TW |
dc.description.abstract | LIBs are widely used in electric vehicles and renewable energy systems due to their high efficiency and durability. When LIBs degrade and can no longer deliver high performance, the large-scale retirement of these batteries poses significant environmental and economic challenges. Compared to disposal and recycling, battery reuse not only extends its lifespan and value but also reduces the demand for manufacturing costs of new batteries. However, internal short circuits (ISC) not detected early can lead to thermal runaway and severe accidents. Existing diagnostic methods to tackle the above problem, however, are time-consuming as they require complete charge and discharge cycles or long relaxation period for sufficient information to be obtained. Therefore, this study proposes an efficient diagnostic method that obtains safety information as well as battery states through only 110 seconds of two consecutive square waves measurement. Due to the influence of both ISC and battery states on the impedance spectrum, the first square wave is primarily utilized to evaluate the battery state, while the second square wave provides crucial information for identifying the ISC. By utilizing the ohmic resistance, initial voltage, and the first three low-frequency impedances as features and applying them to a machine learning model, the proposed method can accurately classify the severity of ISC into different levels with an accuracy of 93.83%, while simultaneously predicting the battery state of health and state of charge with root mean square errors of 2.22% and 1.72%, respectively. This method is particularly suitable for rapid LIBs safety and state assessment, providing significant value for battery reuse initiatives. It contributes to maximizing the residual value of decommissioned batteries, extending their useful life, and promoting sustainable energy utilization. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-07T16:12:31Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-07T16:12:32Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii 圖次 vi 表次 viii 第1章 序章 1 1.1 研究背景與動機 1 1.2 研究目的 1 1.3 論文架構 2 第2章 文獻回顧 3 2.1 電池安全性檢測的方法 3 2.2 基於機器學習模型的檢測方法 7 2.3 基於EIS的檢測方法 10 2.4 方波相關文獻 12 第3章 方法與原理 14 3.1 使用方波產生EIS 14 3.2 ISC檢測 16 3.2.1 透過EIS低頻識別ISC 16 3.2.2 激勵電流振幅對檢測精度之影響 18 3.3 狀態指標:歐姆電阻和初始電壓 19 3.4 連續方波對於識別ISC的影響 22 3.5 電池安全和狀態評估之架構 25 第4章 實驗架設與步驟 26 4.1 實驗儀器與電池資訊 26 4.2 內短路模擬實驗 27 4.3 實驗流程 28 4.3.1 電池活化 28 4.3.2 容量測試 28 4.3.3 方波檢測 28 4.3.4 循環老化 29 第5章 阻抗特徵選取範圍 30 5.1 有效頻率範圍 30 5.2 阻抗特徵與ISC之相關性 32 第6章 結果與討論 34 6.1 實驗數據集與模型表現評估 34 6.2 使用不同模型進行預測 35 6.3 使用不同阻抗範圍進行預測 37 6.4 驗證模型之穩健性 40 第7章 結論與未來展望 42 7.1 結論 42 7.2 未來展望 45 第8章 參考文獻 46 | - |
dc.language.iso | zh_TW | - |
dc.title | 使用兩個連續且不等的方波對鋰離子電池同時進行安全和狀態評估 | zh_TW |
dc.title | Simultaneous assessment of safety and states of lithium ion batteries using two consecutive unequal square waves | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 梁世豪;郭志禹;周鼎贏;林祺皓 | zh_TW |
dc.contributor.oralexamcommittee | Shih-Hao Liang;Chih-Yu Kuo;Dean Chou;Chi-Hao Lin | en |
dc.subject.keyword | 鋰離子電池,內部短路,方波,狀態估計,機器學習, | zh_TW |
dc.subject.keyword | Lithium-ion battery,Internal short circuit,Square wave,State estimation,Machine learning, | en |
dc.relation.page | 49 | - |
dc.identifier.doi | 10.6342/NTU202402740 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-01 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 應用力學研究所 | - |
dc.date.embargo-lift | 2026-08-01 | - |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 此日期後於網路公開 2026-08-01 | 6.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。