Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93639
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 黃威翔 | zh_TW |
dc.contributor.advisor | Wei-Hsiang Huang | en |
dc.contributor.author | 林佳威 | zh_TW |
dc.contributor.author | Chia-Wei Lin | en |
dc.date.accessioned | 2024-08-06T16:30:34Z | - |
dc.date.available | 2024-08-07 | - |
dc.date.copyright | 2024-08-06 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-28 | - |
dc.identifier.citation | Saukko, P. and B. Knight, Knight's forensic pathology. 2015: CRC press.
Dettmeyer, R.B., M.A. Verhoff, and H.F. Schütz, Forensic medicine: fundamentals and perspectives. 2013: Springer Science & Business Media. Hardy, J., et al., The patients dying after long terminal phase have acidotic brains; implications for biochemical measurements on autopsy tissue. Journal of neural transmission, 1985. 61: p. 253-264. Holoyda, B.J. and W.J. Newman, Childhood animal cruelty, bestiality, and the link to adult interpersonal violence. Int J Law Psychiatry, 2016. 47: p. 129-35. Mota-Rojas, D., et al., Animal Abuse as an Indicator of Domestic Violence: One Health, One Welfare Approach. Animals (Basel), 2022. 12(8). Monsalve, S., F. Ferreira, and R. Garcia, The connection between animal abuse and interpersonal violence: A review from the veterinary perspective. Res Vet Sci, 2017. 114: p. 18-26. Rosato, E., et al., Forensic Biochemical Markers to Evaluate the Agonal Period: A Literature Review. Molecules, 2021. 26(11). Brocca, G., et al., The use of Corticotropin-releasing factor (CRF) as a marker of agonic stress in abused dogs: Preliminary results. Res Vet Sci, 2021. 141: p. 1-3. Astrup, B.S. and J.L. Thomsen, The routine use of C-reactive protein in forensic investigations. Forensic Science International, 2007. 172(1): p. 49-55. Fujita, M.Q., et al., Serum C-reactive protein levels in postmortem blood—an analysis with special reference to the cause of death and survival time. Forensic Science International, 2002. 130(2): p. 160-166. Ondruschka, B., et al., Acute phase response after fatal traumatic brain injury. Int J Legal Med, 2018. 132(2): p. 531-539. Wang, W., et al., Serum ferritin: Past, present and future. Biochimica et Biophysica Acta (BBA) - General Subjects, 2010. 1800(8): p. 760-769. Müller, E., W.G. Franke, and R. Koch, Thyreoglobulin and violent asphyxia. Forensic Science International, 1997. 90(3): p. 165-170. Tani, N., et al., Thyroid-related hormones as potential markers of hypoxia/ischemia. Hum Cell, 2020. 33(3): p. 545-558. Sieber, M., et al., Post-mortem biochemistry of NSE and S100B: A supplemental tool for detecting a lethal traumatic brain injury? Journal of Forensic and Legal Medicine, 2018. 55: p. 65-73. Breitling, B., et al., Post-mortem serum concentrations of GFAP correlate with agony time but do not indicate a primary cerebral cause of death. PLOS ONE, 2018. 13(10): p. e0205323. Kashiwagi, M., et al., Diagnostic implications of urinary liver-type fatty acid-binding protein and 8-hydroxy-2'-deoxyguanosine in forensic autopsy cases. Leg Med (Tokyo), 2013. 15(3): p. 140-4. Scendoni, R., et al., Analysis of immunohistochemical expression of inducible nitric oxide synthase for the evaluation of agonal time in forensic medicine. Int J Legal Med, 2016. 130(6): p. 1639-1646. Piette, M.H., S.E. Pieters, and E.A. De Letter, Evaluation of the agonal stress: can immunohistochemical detection of ubiquitin in the locus coeruleus be useful? Int J Legal Med, 2011. 125(3): p. 333-40. Salio, C., et al., Neuropeptides as synaptic transmitters. Cell and Tissue Research, 2006. 326(2): p. 583-598. Sukhareva, E.V., The role of the corticotropin-releasing hormone and its receptors in the regulation of stress response. Vavilovskii Zhurnal Genet Selektsii, 2021. 25(2): p. 216-223. Dedic, N., A. Chen, and J.M. Deussing, The CRF Family of Neuropeptides and their Receptors - Mediators of the Central Stress Response. Curr Mol Pharmacol, 2018. 11(1): p. 4-31. Jiang, Y., et al., Role of Corticotropin Releasing Factor in the Neuroimmune Mechanisms of Depression: Examination of Current Pharmaceutical and Herbal Therapies. Front Cell Neurosci, 2019. 13: p. 290. Hauger, R.L., et al., Corticotropin releasing factor (CRF) receptor signaling in the central nervous system: new molecular targets. CNS Neurol Disord Drug Targets, 2006. 5(4): p. 453-79. Vale, W., et al., Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science, 1981. 213(4514): p. 1394-7. Furutani, Y., et al., Cloning and sequence analysis of cDNA for ovine corticotropin-releasing factor precursor. Nature, 1983. 301(5900): p. 537-40. Patthy, M., et al., Isolation and amino acid sequence of corticotropin-releasing factor from pig hypothalami. Proceedings of the National Academy of Sciences, 1985. 82(24): p. 8762-8766. Seasholtz, A.F., et al., Nucleotide sequence and expression of the mouse corticotropin-releasing hormone gene. Molecular and Cellular Neuroscience, 1991. 2(3): p. 266-273. Watt, M., et al., Corticotropin releasing hormone is present in the feline placenta and maternal serum. Front Endocrinol (Lausanne), 2023. 14: p. 1132743. Vandenborne, K., et al., Molecular cloning and developmental expression of corticotropin-releasing factor in the chicken. Endocrinology, 2005. 146(1): p. 301-308. Stenzel-Poore, M., et al., Characterization of the genomic corticotropin-releasing factor (CRF) gene from Xenopus laevis: two members of the CRF family exist in amphibians. Molecular Endocrinology, 1992. 6(10): p. 1716-1724. Okawara, Y., et al., Cloning and sequence analysis of cDNA for corticotropin-releasing factor precursor from the teleost fish Catostomus commersoni. Proceedings of the National Academy of Sciences, 1988. 85(22): p. 8439-8443. Furutani, Y., et al., Cloning and sequence analysis of cDNA for ovine corticotropin-releasing factor precursor. Nature, 1983. 301(5900): p. 537-540. Bernier, N.J., X. Lin, and R.E. Peter, Differential expression of corticotropin-releasing factor (CRF) and urotensin I precursor genes, and evidence of CRF gene expression regulated by cortisol in goldfish brain. General and Comparative Endocrinology, 1999. 116(3): p. 461-477. Van Enckevort, F., et al., Oreochromis mossambicus (tilapia) corticotropin‐releasing hormone: cDNA sequence and bioactivity. Journal of Neuroendocrinology, 2000. 12(2): p. 177-186. Huising, M., et al., Structural characterisation of a cyprinid (Cyprinus carpio L.) CRH, CRH-BP and CRH-R1, and the role of these proteins in the acute stress response. Journal of Molecular Endocrinology, 2004. 32(3): p. 627-648. Gjerstad, J.K., S.L. Lightman, and F. Spiga, Role of glucocorticoid negative feedback in the regulation of HPA axis pulsatility. Stress, 2018. 21(5): p. 403-416. Jiang, Z., S. Rajamanickam, and N.J. Justice, Local Corticotropin-Releasing Factor Signaling in the Hypothalamic Paraventricular Nucleus. J Neurosci, 2018. 38(8): p. 1874-1890. Michael, D.J., et al., Mechanisms of peptide hormone secretion. Trends in Endocrinology & Metabolism, 2006. 17(10): p. 408-415. Barañano, D.E., C.D. Ferris, and S.H. Snyder, Atypical neural messengers. Trends in neurosciences, 2001. 24(2): p. 99-106. Isaac, J.T., R.A. Nicoll, and R.C. Malenka, Silent glutamatergic synapses in the mammalian brain. Canadian journal of physiology and pharmacology, 1999. 77(9): p. 735-737. Nicoll, R.A. and R.C. Malenka, Leaky synapses. Neuron, 1999. 23(2): p. 197-198. Zoli, M., et al., Volume transmission in the CNS and its relevance for neuropsychopharmacology. Trends in pharmacological sciences, 1999. 20(4): p. 142-150. Inda, C., et al., Endocrinology and the brain: corticotropin-releasing hormone signaling. Endocr Connect, 2017. 6(6): p. R99-R120. Herman, J.P., et al., Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response. Compr Physiol, 2016. 6(2): p. 603-21. Chung, S., G.H. Son, and K. Kim, Circadian rhythm of adrenal glucocorticoid: its regulation and clinical implications. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2011. 1812(5): p. 581-591. Aguilera, G. and Y. Liu, The molecular physiology of CRH neurons. Frontiers in Neuroendocrinology, 2012. 33(1): p. 67-84. Schotanus, K., F.J. Tilders, and F. Berkenbosch, Human recombinant interleukin-1 receptor antagonist prevents adrenocorticotropin, but not interleukin-6 responses to bacterial endotoxin in rats. Endocrinology, 1993. 133(6): p. 2461-8. Turnbull, A.V. and C.L. Rivier, Sprague-Dawley rats obtained from different vendors exhibit distinct adrenocorticotropin responses to inflammatory stimuli. Neuroendocrinology, 1999. 70(3): p. 186-95. Vahl, T.P., et al., Comparative analysis of ACTH and corticosterone sampling methods in rats. Am J Physiol Endocrinol Metab, 2005. 289(5): p. E823-8. Kovács, K.J. and P.E. Sawchenko, Regulation of stress-induced transcriptional changes in the hypothalamic neurosecretory neurons. Journal of Molecular Neuroscience, 1996. 7(2): p. 125-133. Lightman, S.L. and W.S. Young, 3rd, Corticotrophin-releasing factor, vasopressin and pro-opiomelanocortin mRNA responses to stress and opiates in the rat. J Physiol, 1988. 403: p. 511-23. Imaki, T., et al., Stress-induced activation of neuronal activity and corticotropin-releasing factor gene expression in the paraventricular nucleus is modulated by glucocorticoids in rats. J Clin Invest, 1995. 96(1): p. 231-8. Makino, S., M.A. Smith, and P.W. Gold, Increased expression of corticotropin-releasing hormone and vasopressin messenger ribonucleic acid (mRNA) in the hypothalamic paraventricular nucleus during repeated stress: association with reduction in glucocorticoid receptor mRNA levels. Endocrinology, 1995. 136(8): p. 3299-309. Watts, A.G., The impact of physiological stimuli on the expression of corticotropin-releasing hormone (CRH) and other neuropeptide genes. Front Neuroendocrinol, 1996. 17(3): p. 281-326. Ulrich-Lai, Y.M., et al., Chronic stress induces adrenal hyperplasia and hypertrophy in a subregion-specific manner. Am J Physiol Endocrinol Metab, 2006. 291(5): p. E965-73. Dhabhar, F.S., B.S. McEwen, and R.L. Spencer, Adaptation to prolonged or repeated stress--comparison between rat strains showing intrinsic differences in reactivity to acute stress. Neuroendocrinology, 1997. 65(5): p. 360-8. Flak, J.N., et al., Opposing effects of chronic stress and weight restriction on cardiovascular, neuroendocrine and metabolic function. Physiol Behav, 2011. 104(2): p. 228-34. Sterrenburg, L., et al., Chronic stress induces sex-specific alterations in methylation and expression of corticotropin-releasing factor gene in the rat. PLoS One, 2011. 6(11): p. e28128. Erkut, Z.A., C. Pool, and D.F. Swaab, Glucocorticoids suppress corticotropin-releasing hormone and vasopressin expression in human hypothalamic neurons. J Clin Endocrinol Metab, 1998. 83(6): p. 2066-73. Keller-Wood, M.E. and M.F. Dallman, Corticosteroid inhibition of ACTH secretion. Endocr Rev, 1984. 5(1): p. 1-24. Kiss, A., D. Jezova, and G. Aguilera, Activity of the hypothalamic pituitary adrenal axis and sympathoadrenal system during food and water deprivation in the rat. Brain Res, 1994. 663(1): p. 84-92. Yadawa, A.K. and C.M. Chaturvedi, Expression of stress hormones AVP and CRH in the hypothalamus of Mus musculus following water and food deprivation. Gen Comp Endocrinol, 2016. 239: p. 13-20. Kovács, L., et al., Corticotropin-Releasing Factor-Producing Cells in the Paraventricular Nucleus of the Hypothalamus and Extended Amygdala Show Age-Dependent FOS and FOSB/DeltaFOSB Immunoreactivity in Acute and Chronic Stress Models in the Rat. Front Aging Neurosci, 2019. 11: p. 274. Seth, R. and C.M. Chaturvedi, Age and Sex Dependent Variations in the Arginine Vasotocin Gene in Response to Dehydration in the Chicken and Japanese Quail. Zoological Studies, 2004. 43. Pinnock, S.B. and J. Herbert, Corticosterone differentially modulates expression of corticotropin releasing factor and arginine vasopressin mRNA in the hypothalamic paraventricular nucleus following either acute or repeated restraint stress. Eur J Neurosci, 2001. 13(3): p. 576-84. Makino, S., P.W. Gold, and J. Schulkin, Effects of corticosterone on CRH mRNA and content in the bed nucleus of the stria terminalis; comparison with the effects in the central nucleus of the amygdala and the paraventricular nucleus of the hypothalamus. Brain Research, 1994. 657(1): p. 141-149. Zhu, S., et al., Unpredictable chronic mild stress not chronic restraint stress induces depressive behaviours in mice. Neuroreport, 2014. 25(14): p. 1151-5. Willner, P., The chronic mild stress (CMS) model of depression: History, evaluation and usage. Neurobiol Stress, 2017. 6: p. 78-93. Nishiyama, M., et al., CRH mRNA expression in the hypothalamic paraventricular nucleus is inhibited despite the activation of the hypothalamo-pituitary-adrenal axis during starvation. Brain Res, 2008. 1228: p. 107-12. Dallman, M.F., et al., Starvation: early signals, sensors, and sequelae. Endocrinology, 1999. 140(9): p. 4015-23. Kovacs, K.J., CRH: the link between hormonal-, metabolic- and behavioral responses to stress. J Chem Neuroanat, 2013. 54: p. 25-33. Herman, J.P., et al., Neural regulation of the stress response: glucocorticoid feedback mechanisms. Braz J Med Biol Res, 2012. 45(4): p. 292-8. De Francesco, P.N., et al., Neuroanatomical and functional characterization of CRF neurons of the amygdala using a novel transgenic mouse model. Neuroscience, 2015. 289: p. 153-65. Kono, J., et al., Distribution of corticotropin-releasing factor neurons in the mouse brain: a study using corticotropin-releasing factor-modified yellow fluorescent protein knock-in mouse. Brain Struct Funct, 2017. 222(4): p. 1705-1732. Peng, J., et al., A Quantitative Analysis of the Distribution of CRH Neurons in Whole Mouse Brain. Front Neuroanat, 2017. 11: p. 63. Garcia, I., et al., Local corticotropin releasing hormone (CRH) signals to its receptor CRHR1 during postnatal development of the mouse olfactory bulb. Brain Struct Funct, 2016. 221(1): p. 1-20. Wang, L., et al., Comparison of CRF-immunoreactive neurons distribution in mouse and rat brains and selective induction of Fos in rat hypothalamic CRF neurons by abdominal surgery. Brain Res, 2011. 1415: p. 34-46. Science, A.I.f.B. Allen Mouse Brain Atlas. 2011; Available from: https://mouse.brain-map.org/experiment/show/292. Vandevelde, M., R. Higgins, and A. Oevermann, Veterinary neuropathology: essentials of theory and practice. 2012: John Wiley & Sons. 廖珮雯, 以β-澱粉樣前驅蛋白作為貓創傷性軸突損傷生物標記之評估, in 分子暨比較病理生物學研究所. 2021, 國立臺灣大學. p. 1-150. Mishra, P., et al., Descriptive statistics and normality tests for statistical data. Ann Card Anaesth, 2019. 22(1): p. 67-72. Nürnberg, G. and D. Rasch, The Influence of Different Shapes of Distributions with the Same First four Moments on Robustness, in Robustness of Statistical Methods and Nonparametric Statistics, D. Rasch and M.L. Tiku, Editors. 1984, Springer Netherlands: Dordrecht. p. 83-84. Rasch, D., F. Teuscher, and V. Guiard, How robust are tests for two independent samples? Journal of Statistical Planning and Inference, 2007. 137(8): p. 2706-2720. Zimmerman, D.W. and B.D. Zumbo, Rank Transformations and the Power of the Student T Test and Welch T' Test for Non-Normal Populations with Unequal Variances. Canadian Journal of Experimental Psychology, 1993. 47: p. 523-539. Ruxton, G.D., The unequal variance t-test is an underused alternative to Student's t-test and the Mann–Whitney U test. Behavioral Ecology, 2006. 17(4): p. 688-690. Zimmerman, D.W., Comparative Power of Student T Test and Mann-Whitney U Test for Unequal Sample Sizes and Variances. The Journal of Experimental Education, 1987. 55(3): p. 171-174. Horvath, K., et al., Recruitment of Corticotropin-Releasing Hormone (CRH) Neurons in Categorically Distinct Stress Reactions in the Mouse Brain. Int J Mol Sci, 2023. 24(14). Merchenthaler, I., Corticotropin releasing factor (CRF)-like immunoreactivity in the rat central nervous system. Extrahypothalamic distribution. Peptides, 1984. 5 Suppl 1: p. 53-69. Bethea, C.L. and M.L. Centeno, Ovarian steroid treatment decreases corticotropin-releasing hormone (CRH) mRNA and protein in the hypothalamic paraventricular nucleus of ovariectomized monkeys. Neuropsychopharmacology, 2008. 33(3): p. 546-556. Sawchenko, P. and L. Swanson, Organization of CRF immunoreactive cells and fibers in the rat brain: immunohistochemical studies, in Corticotropin-Releasing Factor. 2018, CRC Press. p. 29-52. Amano, M., et al., Cloning of corticotropin-releasing hormone (CRH) precursor cDNA and immunohistochemical detection of CRH peptide in the brain of the Japanese eel, paying special attention to gonadotropin-releasing hormone. Cell and tissue research, 2014. 356: p. 243-251. Pepels, P.P., et al., Distribution and quantification of corticotropin‐releasing hormone (CRH) in the brain of the teleost fish Oreochromis mossambicus (tilapia). Journal of Comparative Neurology, 2002. 453(3): p. 247-268. Edgerton, M.E., S.A. Roberts, and K.T. Montone, Immunohistochemical performance of antibodies on previously frozen tissue. Appl Immunohistochem Mol Morphol, 2000. 8(3): p. 244-8. Lundström, Y., et al., Detection of Changes in Immunohistochemical Stains Caused by Postmortem Delay and Fixation Time. Appl Immunohistochem Mol Morphol, 2019. 27(3): p. 238-245. Gelpi, E., et al., Autopsy at 2 months after death: brain is satisfactorily preserved for neuropathology. Forensic Sci Int, 2007. 168(2-3): p. 177-82. Omalu, B.I., et al., Diagnosis of Alzheimer's disease in an exhumed decomposed brain after twenty months of burial in a deep grave. J Forensic Sci, 2005. 50(6): p. 1453-8. Arase, K., et al., Effects of corticotropin-releasing factor on food intake and brown adipose tissue thermogenesis in rats. American Journal of Physiology-Endocrinology And Metabolism, 1988. 255(3): p. E255-E259. Krahn, D.D., et al., Behavioral effects of corticotropin-releasing factor: localization and characterization of central effects. Brain research, 1988. 443(1-2): p. 63-69. Ahima, R.S., et al., Role of leptin in the neuroendocrine response to fasting. Nature, 1996. 382(6588): p. 250-252. Dallman, M.F., et al., Feast and famine: critical role of glucocorticoids with insulin in daily energy flow. Frontiers in neuroendocrinology, 1993. 14(4): p. 303-347. Schwartz, M.W., M.F. Dallman, and S.C. Woods, Hypothalamic response to starvation: implications for the study of wasting disorders. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 1995. 269(5): p. R949-R957. Brady, L.S., et al., Altered expression of hypothalamic neuropeptide mRNAs in food-restricted and food-deprived rats. Neuroendocrinology, 1990. 52(5): p. 441-447. Dallman, M.F., et al., Starvation: early signals, sensors, and sequelae. Endocrinology, 1999. 140(9): p. 4015-4023. Hwang, B.H. and J.M. Guntz, Downregulation of corticotropin-releasing factor mRNA, but not vasopressin mRNA, in the paraventricular hypothalamic nucleus of rats following nutritional stress. Brain research bulletin, 1997. 43(5): p. 509-514. Cabanac, M. and D. Richard, Acute intraventricular CRF lowers the hoarding threshold in male rats. Physiology & behavior, 1995. 57(4): p. 705-710. Richard, D., Q. Huang, and E. Timofeeva, The corticotropin-releasing hormone system in the regulation of energy balance in obesity. International Journal of Obesity, 2000. 24(2): p. S36-S39. Arase, K., N. Shargill, and G.A. Bray, Effects of corticotropin releasing factor on genetically obese (fatty) rats. Physiology & behavior, 1989. 45(3): p. 565-570. ROHNER-JEANRENAUD, F., et al., Central corticotropin-releasing factor administration prevents the excessive body weight gain of genetically obese (fa/fa) rats. Endocrinology, 1989. 124(2): p. 733-739. Green, P.K., C.W. Wilkinson, and S.C. Woods, Intraventricular corticosterone increases the rate of body weight gain in underweight adrenalectomized rats. Endocrinology, 1992. 130(1): p. 269-275. Zakrzewska, K.E., et al., Induction of obesity and hyperleptinemia by central glucocorticoid infusion in the rat. Diabetes, 1999. 48(2): p. 365-370. Maniam, J. and M.J. Morris, The link between stress and feeding behaviour. Neuropharmacology, 2012. 63(1): p. 97-110. Jahng, J.W., et al., Dexamethasone reduces food intake, weight gain and the hypothalamic 5-HT concentration and increases plasma leptin in rats. European journal of pharmacology, 2008. 581(1-2): p. 64-70. Nieuwenhuizen, A.G. and F. Rutters, The hypothalamic-pituitary-adrenal-axis in the regulation of energy balance. Physiology & behavior, 2008. 94(2): p. 169-177. Samarghandian, S., et al., Corticotropin-releasing factor as well as opioid and dopamine are involved in tail-pinch-induced food intake of rats. Neuroscience, 2003. 116(2): p. 519-524. Levine, A.S. and J.E. Morley, Stress-induced eating in rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 1981. 241(1): p. R72-R76. Rowland, N.E. and S.M. Antelman, Stress-induced hyperphagia and obesity in rats: a possible model for understanding human obesity. Science, 1976. 191(4224): p. 310-312. Gallagher, J.P., et al., Synaptic physiology of central CRH system. Eur J Pharmacol, 2008. 583(2-3): p. 215-25. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93639 | - |
dc.description.abstract | 在法醫學中,動物在死前承受痛苦的程度是一項重要的評估因素。死亡的過程可能持續一段時間,稱為瀕死期(agonal phase),而瀕死期的持續時間可能反映動物受苦的程度。儘管有少數研究探討了能夠評估瀕死壓力的免疫組織化學(immunohistochemistry, IHC)標記,但在獸醫法醫學中仍缺乏一個有效的標記物。促腎上腺皮質激素釋放激素(corticotropin-releasing factor, CRF)是一種由腦室旁核(paraventricular nucleus, PVN)產生並釋放到腦下垂體門脈系統(hypothalamo-hypophyseal portal system)的神經胜肽,是調節Hypothalamus-pituatary-adrenal axis(HPA軸)的重要因子,在壓力反應中扮演重要作用。本研究旨在通過分析貓腦中CRF胜肽和信使核糖核酸(messenger ribonucleic acid, mRNA)的表達,建立一個可靠的免疫組織化學標記以評估瀕死期。
透過回溯性搜尋的方式,本研究共蒐集79例貓法醫解剖病例,對包含下視丘與視丘的兩個腦切面(4A與4B)進行IHC染色,其中12例包含原位雜合試驗(in-situ hybridization, ISH)染色,所有結果以影像數位化和全片分析技術進行定量或半定量。 本研究以半定量方式量化陽性控制組基因探針的ISH陽性訊號,發現受組織在固定前冷凍解凍以及隨死後變化程度影響,ISH染色所偵測的表現量會明顯減少。CRF mRNA基因探針染色後,在4A切面,CRF mRNA訊號主要可見於視丘、下視丘與新皮質,在海馬迴、杏仁核也可見少量陽性訊號,其中下視丘的陽性神經元尤其集中於第三腦室周圍。透過半定量的方式,本研究比較了CRF mRNA表現量與不同瀕死期的關係,然而,受限於樣本數較少,短瀕死期(1小時以內)與長瀕死期(1小時以上)之間無顯著差異。 CRF染色結果發現在冷藏保存和冷凍保存組織製作的切片中,貓腦中皆可偵測到CRF 胜肽。CRF胜肽在4A與4B腦切面的分布區域包含視丘、下視丘、新皮質、大腦白質、海馬迴、及杏仁核皆可見陽性訊號。透過西方墨點分析法(Western bolt),可見貓下視丘樣本中有與CRF前激素原大小相似的條帶。以統計方式分析比較CRF胜肽表現量後,本研究發現冷藏保存的組織相較冷凍保存的組織有顯著較高的CRF胜肽表現量,也發現體態評分(body condition score, BCS)在6至9之間的解剖病例相較BCS在1至3之間以及4至5之間的有顯著較高CRF胜肽表現量。最後,本研究發現CRF胜肽在短瀕死期以及在嚴重痛苦的死因下有顯著較高表現量。這些發現證明屍體保存方式及體態可能與CRF的IHC表現量有關,且CRF可作為獸醫法醫學中評估瀕死期和瀕死壓力的標記。 | zh_TW |
dc.description.abstract | In forensic science, the degree of suffering endured by animals before death is a critical evaluation factor. The death process, known as the agonal phase, may continue for a varying length, reflecting the extent of the animal's agonal stress and suffering. Although some researchers have investigated immunohistochemical markers for evaluating the length of the agonal phase, there is still a lack of a well-established marker in veterinary forensics. Corticotropin-releasing factor (CRF) is a neuropeptide produced in the paraventricular nucleus (PVN) and released into the hypothalamo-hypophyseal portal system, playing an important role in regulating the hypothalamus-pituitary-adrenal (HPA) axis and stress responses. This study aims to establish a reliable immunohistochemical marker to evaluate the agonal phase by analyzing the expression of CRF polypeptide and messenger ribonucleic acid (mRNA) in cat brains.
Through a retrospective study, selected brain sections of 79 forensic necropsy cases were collected for immunohistochemistry (IHC), including 12 cases with in-situ hybridization (ISH). The selected brain sections were 4A and 4B sections, which contain the hypothalamus and thalamus. All results were quantitatively or semi-quantitatively analyzed by whole-slide imaging techniques. The ISH positive signals of the positive control group gene probe were quantified by semi-quantification, finding that the expression detected by ISH staining markedly decreased due to tissue freezing and thawing before fixation and postmortem changes. After CRF mRNA gene probe staining in the 4A sections, CRF mRNA signals were mainly observed in the thalamus, hypothalamus, and neocortex, particularly concentrated around the third ventricle in the hypothalamus, with a small number of positive signals also seen in the hippocampus and amygdala. Through semi-quantitative methods, the current study compared the CRF mRNA expression between different agonal phases. However, due to the limited number of samples, no significant differences were found between short agonal phases (less than one hour) and long agonal phases (more than one hour). IHC staining against CRF showed detectable CRF peptides in cat brain sections made from both refrigerated and frozen-preserved tissues. In the 4A and 4B sections, positive signals were observed in the thalamus, hypothalamus, neocortex, cerebral white matter, hippocampus, and amygdala. Western blot analysis revealed a band in cat hypothalamic samples similar to the size of CRF preprohormone. Statistical analysis revealed that tissues preserved by refrigeration exhibited significantly higher CRF peptide expression compared to those preserved by freezing. It also found cases with body condition score (BCS) between 6 and 9 showed significantly higher CRF peptide expression levels compared to those with BCS between 1 and 3, and 4 and 5. Last but not least, the study found significantly higher CRF peptide expression in cases with a short agonal period and in those with causes of death involving severe distress. These findings suggest that the methods of tissue preservation and body condition may be associated with CRF expression levels in immunohistochemistry (IHC). Moreover, these findings demonstrate that CRF can serve as a marker for assessing the agonal phase and stress in veterinary forensics. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-06T16:30:34Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-06T16:30:34Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract v 目次 vii 圖次 1 表次 4 1 第一章 前言 5 2 第二章 文獻回顧 6 2.1 瀕死期(agonal phase) 6 2.2 瀕死期與獸醫法醫學 6 2.3 評估瀕死期之相關研究 7 2.3.1 人類法醫領域 7 2.3.2 獸醫法醫領域 9 2.4 促腎上腺皮質激素釋放激素介紹 9 2.5 促腎上腺皮質激素釋放激素的調節 11 2.6 促腎上腺皮質激素釋放激素在大腦的分布 13 2.6.1 促腎上腺皮質激素釋放激素胜肽 13 2.6.2 促腎上腺皮質激素釋放激素信使核醣核酸 14 2.7 研究假說與目的 15 3 第三章 研究材料與方法 16 3.1 實驗流程 16 3.2 病例收集 16 3.2.1 瀕死期長度之評估 17 3.2.2 腦組織切面選擇 17 3.3 免疫組織化學染色 18 3.3.1 陽性對照組 18 3.3.2 免疫組織化學染色流程 19 3.4 西方墨點分析法 20 3.4.1 樣本製備 20 3.4.2 電泳分離(electrophoresis) 21 3.4.3 轉漬(transfer) 22 3.4.4 阻斷(blocking) 23 3.4.5 抗體反應 23 3.4.6 訊號偵測 24 3.5 原位雜合試驗 24 3.5.1 陽性與陰性對照組 24 3.5.2 初步測試 24 3.5.3 原位雜合試驗流程 24 3.6 訊號分析與定量 27 3.6.1 切片影像數位化 27 3.6.2 免疫組織化學染色之訊號辨認及量化 27 3.6.3 原位雜合試驗之訊號評估及半定量 28 3.7 統計分析 29 4 第四章 結果 31 4.1 免疫組織化學染色 31 4.2 CRF胜肽於不同腦區之分布 31 4.2.1 陽性對照組—小鼠腦組織之CRF陽性訊號 31 4.2.2 貓腦組織之CRF陽性訊號 33 4.3 西方墨點分析法 35 4.4 CRF胜肽表現量比較 36 4.4.1 年齡 43 4.4.2 性別 43 4.4.3 4A與4B切面 44 4.4.4 瀕死期(agonal phase) 45 4.4.5 屍體保存方式 47 4.4.6 體態評分(BCS) 49 4.4.7 死因(cause of death) 52 4.4.8 「消瘦且死因為營養不良」及「短瀕死期且死於創傷」 56 4.4.9 控制部分變因的比較 57 4.5 原位雜合試驗 64 4.5.1 初步測試 64 4.5.2 CRF基因的分布及表現量 65 4.6 CRF胜肽與CRF mRNA 68 5 第五章 討論 69 5.1 CRF胜肽於小鼠、犬及貓腦的分布 69 5.2 貓CRF mRNA於大腦的分布 70 5.3 不同瀕死期下的CRF胜肽表現量 70 5.4 不同瀕死期下的CRF mRNA表現量 72 5.5 不同屍體保存方式下的CRF表現量 73 5.6 消瘦對CRF表現量的影響 74 5.7 肥胖對CRF表現量的影響 76 5.8 不同死因的CRF表現量 77 5.8.1 車禍死亡與病死之間有顯著差異 78 5.8.2 犬咬死亡與病死之間無顯著差異、人道處理與各組無顯著差異78 5.9 4A與4B腦組織切面 78 5.10 影像掃描與全片分析 79 5.11 研究限制 80 5.12 結論 80 參考文獻 83 | - |
dc.language.iso | zh_TW | - |
dc.title | 以免疫組織化學染色法及原位雜合試驗偵測促腎上腺皮質激素釋放激素對評估貓隻瀕死壓力之應用 | zh_TW |
dc.title | Immunohistochemical (IHC) and In-situ Hybridization (ISH) Detection of Corticotropin-Releasing Factor (CRF) for Evaluating Agonal Stress in Cats | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 曾柏元;張雅珮;陳雅媚 | zh_TW |
dc.contributor.oralexamcommittee | Bo-Yuan Tseng;Ya-Pei Chang;Ya-Mei Chen | en |
dc.subject.keyword | 貓,瀕死期,促腎上腺皮質激素釋放激素,免疫組織化學染色,原位雜合試驗,動物法醫,獸醫法醫, | zh_TW |
dc.subject.keyword | cat,agonal phase,corticotropin-releasing factor (CRF),immunohistochemistry (IHC),in-situ hybridization (ISH),veterinary forensic pathology,veterinary forensic medicine, | en |
dc.relation.page | 91 | - |
dc.identifier.doi | 10.6342/NTU202402034 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-07-30 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 分子暨比較病理生物學研究所 | - |
Appears in Collections: | 分子暨比較病理生物學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-112-2.pdf Restricted Access | 4.11 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.