請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93617完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊東霖 | zh_TW |
| dc.contributor.advisor | Tony Yang | en |
| dc.contributor.author | 荀嘉斌 | zh_TW |
| dc.contributor.author | JIA BIN XUN | en |
| dc.date.accessioned | 2024-08-06T16:19:26Z | - |
| dc.date.available | 2024-08-10 | - |
| dc.date.copyright | 2024-08-06 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-29 | - |
| dc.identifier.citation | Abbe, E. (1873). "Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung." Archiv für Mikroskopische Anatomie 9(1): 413-468.
Bates, M., B. Huang, G. T. Dempsey and X. Zhuang (2007). "Multicolor Super-Resolution Imaging with Photo-Switchable Fluorescent Probes." Science 317(5845): 1749-1753. Bates, M., B. Huang and X. Zhuang (2008). "Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes." Current Opinion in Chemical Biology 12(5): 505-514. Chang, J.-B., F. Chen, Y.-G. Yoon, E. E. Jung, H. Babcock, J. S. Kang, S. Asano, H.-J. Suk, N. Pak, P. W. Tillberg, A. T. Wassie, D. Cai and E. S. Boyden (2017). "Iterative expansion microscopy." Nature Methods 14(6): 593-599. Chang, T.-J. B., J. C.-C. Hsu and T. T. Yang (2023). "Single-molecule localization microscopy reveals the ultrastructural constitution of distal appendages in expanded mammalian centrioles." Nature Communications 14(1): 1688. Chen, F., P. W. Tillberg and E. S. Boyden (2015). "Expansion microscopy." Science 347(6221): 543-548. Coles, B. C., S. E. D. Webb, N. Schwartz, D. J. Rolfe, M. Martin-Fernandez and V. Lo Schiavo (2016). "Characterisation of the effects of optical aberrations in single molecule techniques." Biomedical Optics Express 7(5): 1755-1767. Dempsey, G. T., J. C. Vaughan, K. H. Chen, M. Bates and X. Zhuang (2011). "Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging." Nature Methods 8(12): 1027-1036. Fernández-Suárez, M. and A. Y. Ting (2008). "Fluorescent probes for super-resolution imaging in living cells." Nature Reviews Molecular Cell Biology 9(12): 929-943. Gambarotto, D., F. U. Zwettler, M. Le Guennec, M. Schmidt-Cernohorska, D. Fortun, S. Borgers, J. Heine, J.-G. Schloetel, M. Reuss, M. Unser, E. S. Boyden, M. Sauer, V. Hamel and P. Guichard (2019). "Imaging cellular ultrastructures using expansion microscopy (U-ExM)." Nature Methods 16(1): 71-74. Gustafsson, M. G. L. (2000). "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy." Journal of Microscopy 198(2): 82-87. Healy, M. and B. P. Bogert (1963). "FORTRAN subroutines for time series analysis." Communications of the ACM 6(1): 32-34. Hell, S. W. and J. Wichmann (1994). "Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy." Optics Letters 19(11): 780-782. Hess, S. T., T. P. Girirajan and M. D. Mason (2006). "Ultra-high resolution imaging by fluorescence photoactivation localization microscopy." Biophys J 91(11): 4258-4272. Lampe, A., V. Haucke, S. J. Sigrist, M. Heilemann and J. Schmoranzer (2012). "Multi-colour direct STORM with red emitting carbocyanines." Biology of the Cell 104(4): 229-237. Li, Y., Y.-L. Wu, P. Hoess, M. Mund and J. Ries (2019). "Depth-dependent PSF calibration and aberration correction for 3D single-molecule localization." Biomedical Optics Express 10(6): 2708-2718. Rust, M. J., M. Bates and X. Zhuang (2006). "Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)." Nature Methods 3(10): 793-796. Schnitzbauer, J., M. T. Strauss, T. Schlichthaerle, F. Schueder and R. Jungmann (2017). "Super-resolution microscopy with DNA-PAINT." Nature Protocols 12(6): 1198-1228. Sun, D.-e., X. Fan, Y. Shi, H. Zhang, Z. Huang, B. Cheng, Q. Tang, W. Li, Y. Zhu, J. Bai, W. Liu, Y. Li, X. Wang, X. Lei and X. Chen (2021). "Click-ExM enables expansion microscopy for all biomolecules." Nature Methods 18(1): 107-113. Tam, J., G. A. Cordier, J. S. Borbely, Á. S. Álvarez and M. Lakadamyali (2014). "Cross-Talk-Free Multi-Color STORM Imaging Using a Single Fluorophore." PLOS ONE 9(7): e101772. Thompson, R. E., D. R. Larson and W. W. Webb (2002). "Precise Nanometer Localization Analysis for Individual Fluorescent Probes." Biophysical Journal 82(5): 2775-2783. van de Linde, S., U. Endesfelder, A. Mukherjee, M. Schüttpelz, G. Wiebusch, S. Wolter, M. Heilemann and M. Sauer (2009). "Multicolor photoswitching microscopy for subdiffraction-resolution fluorescence imaging." Photochemical & Photobiological Sciences 8(4): 465-469. van de Linde, S., A. Löschberger, T. Klein, M. Heidbreder, S. Wolter, M. Heilemann and M. Sauer (2011). "Direct stochastic optical reconstruction microscopy with standard fluorescent probes." Nature Protocols 6(7): 991-1009. 王嘉會 (2021). 共時無色相差雙色單分子定位顯微技術之設計與實驗, 國立臺灣大學. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93617 | - |
| dc.description.abstract | 超解析顯微技術(super-resolution microscopy)作為光學顯微技術領域裡的一類重要技術,能夠讓科研人員打破繞射極限的約束,在極微小的尺度上進行細胞或分子領域的研究。超解析顯微技術發展至今在各種基本方法中衍生出了諸多不同的技術,在解析度或是易用性上都已經有了程度不一的改良。其中,單分子定位顯微鏡(SMLM)更是能夠在解析度上達到十至二十奈米的卓越尺度。在當前的方法研究中,更多的目光被聚焦在了不同類別技術和概念的整合上,以彌補各項技術中存在的性能缺陷並且進一步提升成像性能。多色顯微影像在超解析影像,乃至普通的光學顯微影像中都是十分常見以及被大量使用的工具,在單分子定位顯微技術中的使用也對醫學及生物中的分子共定位研究起到了很大的推動。目前,對於實現多色單分子影像已經有多個方法被提出,而其中大部分仍然使用不同波長的鐳射進行激發,以多個波段進行熒光訊號的接受,如此的實現方法會在系統中無可避免地帶來色相差,對於十奈米甚至十奈米以下的定位準確性造成巨大幹擾。
本研究提出了一項共時無色相差雙色擴展超解析顯微方法,將單一波長激發,單一波段接收訊號並實現雙色影像的方法引入EX-dSTORM (Expansion Direct Stochastic Optical Reconstruction Microscopy)這一強大的混合超解析技術,從而在物理上徹底消除色相差的存在,並且大大簡化拍攝傳統雙色EX-dSTORM影像的流程。通過對特定熒光染料光動力學特征甄別,能夠在原有單色影像光學組件下實現雙色單分子影像,結合擴展顯微技術帶來的樣品物理上的放大,這項方法能夠在盡可能消除人為引入誤差的狀況下達到十奈米的影像解析度。 | zh_TW |
| dc.description.abstract | Super-resolution microscopy, as an important technological breakthrough in optical microscopy, enables researchers to overcome the diffraction limit and conduct studies at extremely small scales in cellular or molecular domains. Over time, super-resolution microscopy has evolved into various techniques with different improvements in resolution and ease of use. Among these, single molecule localization microscopy (SMLM) stands out for achieving resolutions of 10 to 20 nm. Current research increasingly focuses on integrating different techniques and concepts to address existing limitations and further enhance imaging performance. Multicolor microscopy imaging is a common and widely used tool in both super-resolution and conventional optical microscopy, significantly aiding molecular co-localization studies in biology and medicine. Several methods have been proposed to achieve multicolor single-molecule imaging, most of which still rely on multiple lasers in different wavelengths for excitation and multiple bands for fluorescence signal reception. This approach inevitably introduces chromatic aberration into the imaging system, significantly impacting localization accuracy, especially at resolutions of 10 nanometers or below.
This study introduces a simultaneous chromatic aberration-free dual-color expansion single molecule localization method. It integrates the single-wavelength excitation and single-band signal reception approach into EX-dSTORM (Expansion Direct Stochastic Optical Reconstruction Microscopy), a powerful super-resolution microscopy technique. This unique method physically eliminates chromatic aberration and significantly simplifies the conventional process of acquiring dual-color EX-dSTORM images. By identifying specific photo-switching kinetic characteristics of fluorescent dyes, dual-color single-molecule imaging can be achieved using the existing monochromatic optical setups without changing components. Combined with the physical magnification brought by expansion microscopy, this approach can achieve an image resolution of 10 nanometers while minimizing artificially introduced errors. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-06T16:19:24Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-06T16:19:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv CONTENTS vi LIST OF FIGURES viii LIST OF TABLES ix Chapter 1 Introduction 1 1.1 Background 1 1.2 Literature review 3 1.2.1 Diffraction limit in optical microscopy 3 1.2.2 Optical super-resolution methods 4 1.2.3 dSTORM microscopy 7 1.2.4 Expansion microscopy 10 1.2.5 Multi-color SMLM approaches 11 1.3 Research motivation 13 1.4 Thesis structure 15 Chapter 2 Experimental Design 16 2.1 Characteristic analysis and selection of fluorescent dyes 16 2.1.1 Potentially viable fluorescent dye combinations 16 2.1.2 Choice of fluorescent dye combinations 19 2.2 Photo-switching kinetic characteristics of fluorescent dye pair 22 2.2.1 Blinking patten of AF647 and ATTO647N 22 2.2.2 Fast Fourier Transform of AF647 and ATTO647N blinking signal 24 Chapter 3 Materials and Methods 26 3.1 Cell culture 27 3.2 Sample expansion and immunostaining 28 3.3 EX-dSTORM imaging 31 3.4 Drift correction 34 3.5 Image data pre-processing 36 3.6 Feature extraction and classification 37 3.6.1 Defining correlative event 37 3.6.2 Feature extraction from the correlative events 40 3.6.3 Classification using feature extracted 41 3.7 Dual-color reconstruction 42 Chapter 4 Results and Discussions 43 4.1 Cellular structure imaging 43 4.1.1 Super-resolution images of ARL13B and CENTRIOLIN 43 4.1.2 Super-resolution images of centriolar proteins 46 4.2 Data retention and image quality 48 4.2.1 Data preservation rate affected by the confidence factor 48 4.2.2 Data accuracy affected by the confidence factor 50 4.2.3 Resolution enhancement brought by the expansion technique 53 Chapter 5 Conclusion 55 Chapter 6 Future work 58 REFERENCE 61 | - |
| dc.language.iso | en | - |
| dc.subject | 無色相差 | zh_TW |
| dc.subject | EX-dSTORM | zh_TW |
| dc.subject | 擴展顯微鏡 | zh_TW |
| dc.subject | 超解析影像 | zh_TW |
| dc.subject | 多色成像 | zh_TW |
| dc.subject | Aberration-free | en |
| dc.subject | Expansion microscopy | en |
| dc.subject | Multi-color image | en |
| dc.subject | Super-resolution image | en |
| dc.subject | EX-dSTORM | en |
| dc.title | 共時無色相差雙色擴展超解析顯微技術 | zh_TW |
| dc.title | Simultaneous Chromatic Aberration-Free Dual-Color Expansion Single Molecule Localization Microscopy | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃念祖;陳奕帆 | zh_TW |
| dc.contributor.oralexamcommittee | Nien-Tsu Huang;Yih-Fan Chen | en |
| dc.subject.keyword | EX-dSTORM,擴展顯微鏡,多色成像,無色相差,超解析影像, | zh_TW |
| dc.subject.keyword | EX-dSTORM,Super-resolution image,Expansion microscopy,Multi-color image,Aberration-free, | en |
| dc.relation.page | 63 | - |
| dc.identifier.doi | 10.6342/NTU202402495 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-07-31 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
| dc.date.embargo-lift | 2029-08-01 | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 2.63 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
