Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93597
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林致廷zh_TW
dc.contributor.advisorChih-Ting Linen
dc.contributor.author朱佳芬zh_TW
dc.contributor.authorChia-Fen Chuen
dc.date.accessioned2024-08-06T16:10:32Z-
dc.date.available2024-08-07-
dc.date.copyright2024-08-06-
dc.date.issued2024-
dc.date.submitted2024-07-30-
dc.identifier.citation[1] 國家發展會人口推估系統,人口金字塔(2022)。檢自https://pop-proj.ndc.gov.tw/Custom_Pyramid.aspx?n=466&sms=0(May.2024)
[2] 中華民國統計資訊網,就業失業統計(2024)。檢自https://www.stat.gov.tw/News_Content.aspx?n=2706&s=232930(May.2024)
[3] 國家發展委員會(2024)。檢自https://www.ndc.gov.tw/Content_List.aspx?n=FB545A4FE662F475(May.2024)
[4] 衛生福利部,112年國人死因統計結果(2024)。檢自https://www.mohw.gov.tw/cp-6650-79055-1.html(July.2024)
[5] 夏徳樁(2019)。找出罕見基因變異,肺癌精準治療助延命!。檢自https://elearning.canceraway.org.tw/page.php?IDno=4478(July.2024)
[6] 澄清醫院中港分院,悄然無聲的殺手:肺腺癌(上)(2022)。檢自https://ck.ccgh.com.tw/department_listDetail1342.htm
[7] Hajian, R., Balderston, S., Tran, T., DeBoer, T., Etienne, J., Sandhu, M., ... & Aran, K. (2019). Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field-effect transistor. Nature biomedical engineering, 3(6), 427-437.
[8] Gootenberg, J. S., Abudayyeh, O. O., Lee, J. W., Essletzbichler, P., Dy, A. J., Joung, J., ... & Zhang, F. (2017). Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 356(6336), 438-442.
[9] Ziegler, C., & Göpel, W. (1998). Biosensor development. Current opinion in chemical biology, 2(5), 585-591.
[10] Newman, J. D., & Turner, A. P. (2007). Historical perspective of biosensor and biochip development. Handbook of Biosensors and Biochips, Wiley-Interscience.
[11] Clark, L. C., & Lyons, C. (1962). Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of sciences, 102(1), 29-45.
[12] Updike, S. J., & Hicks, G. P. (1967). The enzyme electrode. Nature, 214(5092), 986-988.
[13] Guilbault, G. G., Sadar, M. H., Kuan, S., & Casey, D. (1970). Effect of pesticides on liver cholinesterases from rabbit, pigeon, chicken, sheep and pig. Analytica chimica acta, 51(1), 83-93.
[14] Liedberg, B., Nylander, C., & Lunström, I. (1983). Surface plasmon resonance for gas detection and biosensing. Sensors and actuators, 4, 299-304.
[15] Singh, P. (2016). SPR biosensors: historical perspectives and current challenges. Sensors and actuators B: Chemical, 229, 110-130.
[16] Shons, A., Dorman, F., & Najarian, J. (1972). An immunospecific microbalance. Journal of biomedical materials research, 6(6), 565-570.
[17] Fawcett, N. C., Evans, J. A., Chien, L. C., & Flowers, N. (1988). Nucleic acid hybridization detected by piezoelectric resonance. Analytical Letters, 21(7), 1099-1114.
[18] Watson, J. D., & Crick, F. (1953). A structure for deoxyribose nucleic acid.
[19] Goodrich, T. T., Lee, H. J., & Corn, R. M. (2004). Enzymatically amplified surface plasmon resonance imaging method using RNase H and RNA microarrays for the ultrasensitive detection of nucleic acids. Analytical Chemistry, 76(21), 6173-6178.
[20] Vo-Dinh, T., Yan, F., & Stokes, D. L. (2005). Plasmonics-based nanostructures for surface-enhanced Raman scattering bioanalysis. Protein Nanotechnology: Protocols, Instrumentation, and Applications, 255-283.
[21] Albers, J., Grunwald, T., Nebling, E., Piechotta, G., & Hintsche, R. (2003). Electrical biochip technology—a tool for microarrays and continuous monitoring. Analytical and bioanalytical chemistry, 377, 521-527.
[22] Cagnin, S., Caraballo, M., Guiducci, C., Martini, P., Ross, M., SantaAna, M., ... & Lanfranchi, G. (2009). Overview of electrochemical DNA biosensors: new approaches to detect the expression of life. Sensors, 9(4), 3122-3148.
[23] Bhardwaj, T. (2015). Review on biosensor technologies. Int. J. Adv. Res. Eng. Technol, 6(2), 36-62.
[24] Sassolas, A., Leca-Bouvier, B. D., & Blum, L. J. (2008). DNA biosensors and microarrays. Chemical reviews, 108(1), 109-139.
[25] Benvidi, A., Firouzabadi, A. D., Tezerjani, M. D., Moshtaghiun, S. M., Mazloum-Ardakani, M., & Ansarin, A. (2015). A highly sensitive and selective electrochemical DNA biosensor to diagnose breast cancer. Journal of Electroanalytical Chemistry, 750, 57-64.
[26] Rashid, J. I. A., & Yusof, N. A. (2017). The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review. Sensing and bio-sensing research, 16, 19-31.
[27] Deng, J., & Toh, C. S. (2013). Impedimetric DNA biosensor based on a nanoporous alumina membrane for the detection of the specific oligonucleotide sequence of dengue virus. Sensors, 13(6), 7774-7785.
[28] Shamansky, L. M., Davis, C. B., Stuart, J. K., & Kuhr, W. G. (2001). Immobilization and detection of DNA on microfluidic chips. Talanta, 55(5), 909-918.
[29] Li, G., Ma, N. Z., & Wang, Y. (2005). A new handheld biosensor for monitoring blood ketones. Sensors and Actuators B: Chemical, 109(2), 285-290.
[30] Ferreira, M., Fiorito, P. A., Oliveira Jr, O. N., & de Torresi, S. I. C. (2004). Enzyme-mediated amperometric biosensors prepared with the Layer-by-Layer (LbL) adsorption technique. Biosensors and Bioelectronics, 19(12), 1611-1615.
[31] Mulchandani, A., Mulchandani, P., Chauhan, S., Kaneva, I., & Chen, W. (1998). A potentiometric microbial biosensor for direct determination of organophosphate nerve agents. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 10(11), 733-737.
[32] Ratcliffe, N. M. (1990). Polypyrrole-based sensor for hydrazine and ammonia. Analytica chimica acta, 239, 257-262.
[33] Li, L., Zhao, H., Chen, Z., Mu, X., & Guo, L. (2011). Aptamer biosensor for label-free square-wave voltammetry detection of angiogenin. Biosensors and bioelectronics, 30(1), 261-266.
[34] Bard, A. J.and Faulkner, L. R. (2001). Electrochemical methods: fundamentals and applications. 2nd ed., John Wiley & Sons.
[35] Helmholtz, H. V. (1879). Studien über electrische Grenzschichten. Annalen der Physik, 243(7), 337-382.
[36] Grahame, D. C. (1947). The electrical double layer and the theory of electrocapillarity. Chemical reviews, 41(3), 441-501.
[37] Gouy, M. J. J. P. T. A. (1910). Sur la constitution de la charge électrique à la surface d'un électrolyte. J. Phys. Theor. Appl., 9(1), 457-468.
[38] Chapman, D. L. (1913). LI. A contribution to the theory of electrocapillarity. The London, Edinburgh, and Dublin philosophical magazine and journal of science, 25(148), 475-481.
[39] Stern, O. (1924). Zur theorie der elektrolytischen doppelschicht. Zeitschrift für Elektrochemie und angewandte physikalische Chemie, 30(21‐22), 508-516.
[40] Kim, Y. G., Cha, J., & Chandrasegaran, S. (1996). Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences, 93(3), 1156-1160.
[41] Bitinaite, J., Wah, D. A., Aggarwal, A. K., & Schildkraut, I. (1998). Fok I dimerization is required for DNA cleavage. Proceedings of the national academy of sciences, 95(18), 10570-10575.
[42] Gabriel, R., Lombardo, A., Arens, A., Miller, J. C., Genovese, P., Kaeppel, C., ... & Von Kalle, C. (2011). An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nature biotechnology, 29(9), 816-823.
[43] Zhang, Z., Zhang, S., Huang, X., Orwig, K. E., & Sheng, Y. (2013). Rapid assembly of customized TALENs into multiple delivery systems. PLoS One, 8(11), e80281.
[44] Christian, M., Cermak, T., Doyle, E. L., Schmidt, C., Zhang, F., Hummel, A., ... & Voytas, D. F. (2010). Targeting DNA double-strand breaks with TAL effector nucleases. Genetics, 186(2), 757-761.
[45] Mussolino, C., Alzubi, J., Fine, E. J., Morbitzer, R., Cradick, T. J., Lahaye, T., ... & Cathomen, T. (2014). TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic acids research, 42(10), 6762-6773.
[46] Lino, C. A., Harper, J. C., Carney, J. P., & Timlin, J. A. (2018). Delivering CRISPR: a review of the challenges and approaches. Drug delivery, 25(1), 1234-1257.
[47] Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of bacteriology, 169(12), 5429-5433.
[48] Mojica, F. J., Díez‐Villaseñor, C., Soria, E., & Juez, G. (2000). Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Molecular microbiology, 36(1), 244-246.
[49] Jansen, R., Embden, J. D. V., Gaastra, W., & Schouls, L. M. (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Molecular microbiology, 43(6), 1565-1575.
[50] Mojica, F. J., Díez-Villaseñor, C. S., García-Martínez, J., & Soria, E. (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of molecular evolution, 60, 174-182.
[51] Pourcel, C., Salvignol, G., & Vergnaud, G. (2005). CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 151(3), 653-663.
[52] Bolotin, A., Quinquis, B., Sorokin, A., & Ehrlich, S. D. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151(8), 2551-2561.
[53] Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., ... & Horvath, P. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315(5819), 1709-1712.
[54] Horvath, P., & Barrangou, R. (2010). CRISPR/Cas, the immune system of bacteria and archaea. Science, 327(5962), 167-170.
[55] The Nobel Prize in Chemistry 2020(2020). Retrieved from https://www.nobelprize.org/prizes/chemistry/2020/summary/(May.2024)
[56] Makarova, K. S., Haft, D. H., Barrangou, R., Brouns, S. J., Charpentier, E., Horvath, P., ... & Koonin, E. V. (2011). Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology, 9(6), 467-477.
[57] Wiedenheft, B., Lander, G. C., Zhou, K., Jore, M. M., Brouns, S. J., van der Oost, J., ... & Nogales, E. (2011). Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature, 477(7365), 486-489.
[58] Wright, A. V., Nuñez, J. K., & Doudna, J. A. (2016). Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell, 164(1), 29-44.
[59] Koonin, E. V., Makarova, K. S., & Zhang, F. (2017). Diversity, classification and evolution of CRISPR-Cas systems. Current opinion in microbiology, 37, 67-78.
[60] Cubbon, A., Ivancic-Bace, I., & Bolt, E. L. (2018). CRISPR-Cas immunity, DNA repair and genome stability. Bioscience reports, 38(5), BSR20180457.
[61] Maruyama, T., Dougan, S. K., Truttmann, M. C., Bilate, A. M., Ingram, J. R., & Ploegh, H. L. (2015). Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nature biotechnology, 33(5), 538-542.
[62] Ishino, Y., Krupovic, M., & Forterre, P. (2018). History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. Journal of bacteriology, 200(7), 10-1128.
[63] Chen, J. S., Ma, E., Harrington, L. B., Da Costa, M., Tian, X., Palefsky, J. M., & Doudna, J. A. (2018). CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 360(6387), 436-439.
[64] Yao, R., Liu, D., Jia, X., Zheng, Y., Liu, W., & Xiao, Y. (2018). CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synthetic and Systems Biotechnology, 3(3), 135-149.
[65] Paul, B., & Montoya, G. (2020). CRISPR-Cas12a: Functional overview and applications. Biomedical journal, 43(1), 8-17.
[66] Zhang, D., Yan, Y., Que, H., Yang, T., Cheng, X., Ding, S., ... & Cheng, W. (2020). CRISPR/Cas12a-mediated interfacial cleaving of hairpin DNA reporter for electrochemical nucleic acid sensing. ACS sensors, 5(2), 557-562.
[67] Bonini, A., Poma, N., Vivaldi, F., Biagini, D., Bottai, D., Tavanti, A., & Di Francesco, F. (2021). A label-free impedance biosensing assay based on CRISPR/Cas12a collateral activity for bacterial DNA detection. Journal of Pharmaceutical and Biomedical Analysis, 204, 114268.
[68] Liu, X., Bu, S., Feng, J., Wei, H., Wang, Z., Li, X., ... & Wan, J. (2022). Electrochemical biosensor for detecting pathogenic bacteria based on a hybridization chain reaction and CRISPR-Cas12a. Analytical and Bioanalytical Chemistry, 1-8.
[69] Kharismasari, C. Y., Zein, M. I. H., Hardianto, A., Zakiyyah, S. N., Ibrahim, A. U., Ozsoz, M., & Hartati, Y. W. (2023). CRISPR/Cas12-based electrochemical biosensors for clinical diagnostic and food monitoring. Bioelectrochemistry, 108600.
[70] Xu, J., Ma, J., Li, Y., Kang, L., Yuan, B., Li, S., ... & Yuan, Y. (2022). A general RPA-CRISPR/Cas12a sensing platform for Brucella spp. detection in blood and milk samples. Sensors and Actuators B: Chemical, 364, 131864.
[71] Xu, W., Jin, T., Dai, Y., & Liu, C. C. (2020). Surpassing the detection limit and accuracy of the electrochemical DNA sensor through the application of CRISPR Cas systems. Biosensors and Bioelectronics, 155, 112100.
[72] Lee, Y., Choi, J., Han, H. K., Park, S., Park, S. Y., Park, C., ... & Min, J. (2021). Fabrication of ultrasensitive electrochemical biosensor for dengue fever viral RNA Based on CRISPR/Cpf1 reaction. Sensors and Actuators B: Chemical, 326, 128677.
[73] Liu, N., Liu, R., & Zhang, J. (2022). CRISPR-Cas12a-mediated label-free electrochemical aptamer-based sensor for SARS-CoV-2 antigen detection. Bioelectrochemistry, 146, 108105.
[74] Wei, H., Bu, S., Wang, Z., Zhou, H., Li, X., Wei, J., ... & Wan, J. (2022). Click Chemistry Actuated Exponential Amplification Reaction Assisted CRISPR–Cas12a for the Electrochemical Detection of MicroRNAs. ACS omega, 7(40), 35515-35522.
[75] Zhao, K. R., Wang, L., Liu, P. F., Hang, X. M., Wang, H. Y., Ye, S. Y., ... & Liang, G. X. (2021). A signal-switchable electrochemiluminescence biosensor based on the integration of spherical nucleic acid and CRISPR/Cas12a for multiplex detection of HIV/HPV DNAs. Sensors and Actuators B: Chemical, 346, 130485.
[76] Liu, P. F., Zhao, K. R., Liu, Z. J., Wang, L., Ye, S. Y., & Liang, G. X. (2021). Cas12a-based electrochemiluminescence biosensor for target amplification-free DNA detection. Biosensors and Bioelectronics, 176, 112954.
[77] Zensor,電化學系統。檢自https://www.zensor.com.tw/Article09.html(June.2024)
[78] 維基百科,二硫蘇糖醇(2019)。檢自https://zh.wikipedia.org/zh-tw/%E4%BA%8C%E7%A1%AB%E8%8B%8F%E7%B3%96%E9%86%87 (June.2024)
[79] Merck KGaA,PBS(2024)。檢自https://www.sigmaaldrich.com/TW/en/products/chemistry-and-biochemicals/biochemicals/biological-buffers/phosphate-buffer-saline-pbs(June.2024)
[80] Large, S. J., & Large, S. J. (2021). DNA Hairpins I: Calculating the Generalized Friction. Dissipation and Control in Microscopic Nonequilibrium Systems, 51-62.
[81] 維基百科,掃描電子顯微鏡(2024)。檢自https://zh.wikipedia.org/wiki/%E6%89%AB%E6%8F%8F%E7%94%B5%E5%AD%90%E6%98%BE%E5%BE%AE%E9%95%9C(June.2024)
[82] Singh, R., Sumana, G., Verma, R., Sood, S., Pandey, M. K., Gupta, R. K., & Malhotra, B. D. (2010). DNA biosensor for detection of Neisseria gonorrhoeae causing sexually transmitted disease. Journal of biotechnology, 150(3), 357-365.
[83] Chen, Z., Ma, L., Bu, S., Zhang, W., Chen, J., Li, Z., ... & Wan, J. (2021). CRISPR/Cas12a and immuno-RCA based electrochemical biosensor for detecting pathogenic bacteria. Journal of Electroanalytical Chemistry, 901, 115755.
[84] Liang, P., Canoura, J., Yu, H., Alkhamis, O., & Xiao, Y. (2018). Dithiothreitol-regulated coverage of oligonucleotide-modified gold nanoparticles to achieve optimized biosensor performance. ACS applied materials & interfaces, 10(4), 4233-4242.
[85] Deng, F., Li, Y., Hall, T., Vesey, G., & Goldys, E. M. (2023). Bi-functional antibody-CRISPR/Cas12a ribonucleoprotein conjugate for improved immunoassay performance. Analytica Chimica Acta, 1259, 341211.
[86] 維基百科,即時聚合酶連鎖反應(2024)。檢自https://zh.wikipedia.org/zh-tw/%E5%8D%B3%E6%99%82%E8%81%9A%E5%90%88%E9%85%B6%E9%8F%88%E5%BC%8F%E5%8F%8D%E6%87%89(July.2024)
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93597-
dc.description.abstract本論文旨在探索使用金電極來測量CRISPR系統的剪切能力,並進一步研究其靈敏度和選擇性。CRISPR技術自發現以來,由於其在基因編輯和生物感測領域的巨大潛力,以成為一個備受關注的研究焦點。本研究選用Hairpin DNA和Linear DNA作為報告基因(reporter gene)。

實驗過程中我們使用Hairpin DNA和Linear DNA分別固定在金電極表面上,這些電極與不同濃度的目標DNA(target DNA)進行反應,測量CRISPR系統在不同條件下的剪切活性。透過電化學阻抗圖譜(electrochemical impedance spectroscopy, EIS)和循環伏安法(cyclic voltammetry, CV),我們能夠定量分析CRISPR系統對Hairpin DNA和Linear DNA的剪切效率。

為了評估CRISPR系統的靈敏度(sensitivity),我們測量了在不同濃度目標DNA下,金電極上的電化學訊號變化,也測試了CRISPR系統對非目標DNA(non-target DNA)的反應,以評估其選擇性(selectivity)。

本論文展現了使用金電極來測量CRISPR系統剪切能力的可行性,並證實了CRISPR系統在不同濃度的目標DNA下高靈敏度以及對非目標DNA的高選擇性,也就是說,以CRISPR系統可作為高靈敏度及高選擇性的生物感測器,對於基因診斷、疾病檢測等領域具有重要的應用價值。未來的研究可以進一步探討不同的電極材料及不同DNA的修飾端對CRISPR系統剪切能力的影響。
zh_TW
dc.description.abstractThe CRISPR system has become an emerging research field due to its immense potential in gene editing and biosensing fields. It is important to promote the applications of CRISPR detection technologies. Therefore, this work aims to explore the use of gold electrodes in measuring the cleavage activity of the CRISPR system. Furthermore, we will also investigate its sensitivity and selectivity. In this study, we also explored hairpin DNA and linear DNA as reporter genes.

In this experiment, hairpin DNA and linear DNA were separately immobilized on the surface of gold electrodes. These electrodes were then subjected to reactions with target DNA at varying concentrations to measure the CRISPR system’s cleavage activity under different conditions. By employing electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV), we quantitatively analyzed the CRISPR system’s cleavage efficiency on hairpin DNA and linear DNA.

To evaluate the sensitivity of the CRISPR system, we measured changes in electrochemical signals on the gold electrode at different target DNA concentrations. Additionally, we tested the CRISPR system’s response to non-target DNA to assess its selectivity.

This work demonstrates the feasibility of using gold electrodes to measure the cleavage ability of the CRISPR system. It confirms that the CRISPR system exhibits high sensitivity to target DNA at various concentrations and maintains high selectivity even in the presence of non-target DNA. In other words, the CRISPR system can serve as a highly sensitive and selective biosensor, with significant applications in genetic diagnostics and disease detection. Future research could explore the impact of different electrode materials and modifications of DNA ends on the CRISPR system’s cleavage efficiency.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-06T16:10:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-06T16:10:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目 次
口試委員會審定書………………………………………………………………i
誌謝…………………………………………………………………………………………ii
中文摘要……………………………………………………………………………iii
英文摘要………………………………………………………………………………iv
目次…………………………………………………………………………………………vi
圖次…………………………………………………………………………………………ix
表次……………………………………………………………………………………xiii
第一章 序論…………………………………………………………………………1
1.1 研究背景…………………………………………………………………1
1.2 生物感測器……………………………………………………………4
1.3 DNA感測器………………………………………………………………5
1.4 電化學生物感測器………………………………………………7
1.5 研究動機…………………………………………………………………8
1.6 論文架構…………………………………………………………………9
第二章 導論與實驗原理………………………………………………10
2.1 電化學基本原理…………………………………………………10
2.1.1 氧化與還原反應………………………………………10
2.1.2 法拉第過程與非法拉第過程………………11
2.1.3 電雙層簡介…………………………………………………13
2.1.4 電化學反應…………………………………………………16
2.1.5 穩態質傳半反應………………………………………17
2.2 電化學量測……………………………………………………………20
2.2.1 循環伏安法…………………………………………………20
2.2.2 電化學阻抗圖譜………………………………………22
2.3 CRISPR發展與原理……………………………………………26
2.3.1 基因編輯技術………………………………………………26
2.3.2 CRISPR發展…………………………………………………27
2.3.3 CRISPR原理…………………………………………………28
2.3.4 CRISPR/Cas電化學檢測之文獻回顧……………31
第三章 實驗架設與方法………………………………………………………………33
3.1 實驗機制………………………………………………………………………………33
3.2 實驗材料介紹……………………………………………………………………33
3.2.1 電極材料與尺寸參數……………………………………………33
3.2.2 生物材料介紹…………………………………………………………36
3.3 實驗步驟………………………………………………………………………………39
3.3.1 元件前處理………………………………………………………………39
3.3.2 DNA固定化步驟………………………………………………………40
3.3.3 溶液配置……………………………………………………………………40
3.4 量測方法...………………………………………………………………………40
3.4.1 實驗系統架設…………………………………………………………41
3.4.2 實驗驗證儀器…………………………………………………………42
第四章 實驗結果與討論………………………………………………………………43
4.1 電極穩定度分析……………………………………………………………43
4.2 表面改質特性分析………………………………………………………45
4.3 Lba Cas12a剪切可行性……………………………………………50
4.3.1 Lba Cas12a表面剪切………………………………………50
4.3.2 目標DNA對Lba Cas12a之影響…………………………52
4.4 DTT對裂解功能之影響………………………………………………54
4.4.1 DTT對硫醇化DNA之影響…………………………………54
4.4.2 DTT對Lba Cas12a之影響………………………………57
4.5 Lba Cas12a之最佳化分析………………………………………61
4.5.1 降低crRNA之濃度………………………………………………61
4.5.2 增加Cas12a及crRNA濃度及反應時間………63
4.6 Lba Cas12a之靈敏度分析…………………………………………65
4.7 Lba Cas12a之裂解均勻度分析………………………………66
4.8 Lba Cas12a之選擇性分析…………………………………………68
第五章 結論與未來展望……………………………………………………………………71
5.1 結論……………………………………………………………………………………………71
5.2 未來展望…………………………………………………………………………………71
參考文獻………………………………………………………………………………………………………72
-
dc.language.isozh_TW-
dc.subjectCRISPR/Caszh_TW
dc.subject循環伏安法zh_TW
dc.subject電化學阻抗圖譜zh_TW
dc.subject電化學zh_TW
dc.subjectDNA生物感測器zh_TW
dc.subjectDNA biosensoren
dc.subjectelectrochemical impedance spectroscopyen
dc.subjectCRISPR/Casen
dc.subjectcyclic voltammetryen
dc.subjectelectrochemistryen
dc.title利用CRISPR/Cas12a提升電化學分子檢測技術zh_TW
dc.titleEnhancing Electrochemical Molecular Detection Techniques Using CRISPR/Cas12aen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張子璿;黃建璋zh_TW
dc.contributor.oralexamcommitteeTzu-Hsuan Chang;Jian-Jang Huangen
dc.subject.keywordCRISPR/Cas,DNA生物感測器,電化學,電化學阻抗圖譜,循環伏安法,zh_TW
dc.subject.keywordCRISPR/Cas,DNA biosensor,electrochemistry,electrochemical impedance spectroscopy,cyclic voltammetry,en
dc.relation.page78-
dc.identifier.doi10.6342/NTU202402086-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-01-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2029-08-01-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
6.84 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved