請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93593完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 柯佳吟 | zh_TW |
| dc.contributor.advisor | Chia Ying Ko | en |
| dc.contributor.author | 易祐吉 | zh_TW |
| dc.contributor.author | Euchie Jn Pierre | en |
| dc.date.accessioned | 2024-08-06T16:08:37Z | - |
| dc.date.available | 2024-08-07 | - |
| dc.date.copyright | 2024-08-06 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-12 | - |
| dc.identifier.citation | Abdelkafi, I., Loukil, S., & Romdhane, Y. (2022). Economic Uncertainty During COVID-19 Pandemic in Latin America and Asia. Journal of the Knowledge Economy, 1–20. https://doi.org/10.1007/s13132-021-00889-5
Acuña Plavan, A., & Verocai, J. E. (2001). Importancia de la pesquería artesanal y biología de la brótola, Urophycis brasiliensis (Kaup, 1858) (Phycidae, Gadiformes) en la costa uruguaya. Investigaciones marinas, 29(1). https://doi.org/10.4067/S0717-71782001000100005 Ahmed, F., Ali, I., Kousar, S., & Ahmed, S. (2022). The environmental impact of industrialization and foreign direct investment: Empirical evidence from Asia-Pacific region. Environmental Science and Pollution Research International, 29(20), 29778–29792. https://doi.org/10.1007/s11356-021-17560-w Alfonso, A., Gutierrez, Angel, J., Rubio, C., & Gonzalez-Weller, D. (2017). Determination of toxic metals, trace and essentials, and macronutrients in Sarpa salpa and Chelon labrosus: risk assessment for the consumers. Environmental Science and Pollution Research, https://doi.org/10.1007/s11356-017-8741-y Alengebawy, A., Abdelkhalek S, T., Qureshi, S, R.,Wang, M, Q.(2021). (page 27) p. 27 The Industrial Revolution. In R. C. Allen (Ed.), Global Economic History: A Very Short Introduction (p. 0). Oxford University Press. https://doi.org/10.1093/actrade/9780199596652.003.0003 Allen, R. C. (2011). (page 27) p. 27 The Industrial Revolution. In R. C. Allen (Ed.), Global Economic History: A Very Short Introduction (p. 0). Oxford University Press. https://doi.org/10.1093/actrade/9780199596652.003.0003 Alzúa, M. L., & Gosis, P. (2020). Social and economic impact of Covid-19 and policy options in Argentina. Undp Lac C, 19. Angeli, J. L. F., Sartoretto, J. R., Kim, B. S. M., de Lima Ferreira, P. A., de Mahiques, M. M., & Figueira, R. C. L. (2021). Trace element fluxes during the “Anthropocene” in a large South American industrial and port area (Santos and São Vicente estuarine system, SE, Brazil). Environmental Monitoring and Assessment, 193(9), 594. https://doi.org/10.1007/s10661-021-09378-3 ANVISA. (2017). Página inicial. Agência Nacional de Vigilância Sanitária - Anvisa. https://www.gov.br/anvisa/pt-br/pagina-inicial Aparecida, M., Teresinha Maranho. L., Grossi Botello, R., & Luiz Tornisielo, V. (2014). Dissolved Heavy Metal Determination and Ecotoxicological Assessment: A Case Study of the Corumbataí River (São Paulo, Brazil). Archives of Industrial Hygiene and Toxicology. https://doi.org/ 10.2478/10004-1254-65-2014-2551 Arkhipkin, A. I., Nigmatullin, Ch. M., Parkyn, D. C., Winter, A., & Csirke, J. (2023). High seas fisheries: The Achilles’ heel of major straddling squid resources. Reviews in Fish Biology and Fisheries, 33(2), 453–474. https://doi.org/10.1007/s11160-022-09733-8 Arkhipkin, A. I., Rodhouse, P. G., Pierce, G. J., Sauer, W., Sakai, M., Allcock, L., Arguelles, J., Bower, J. R., Castillo, G., & Ceriola, L. (2015). World squid fisheries. Reviews in Fisheries Science & Aquaculture, 23(2), 92–252. ATSDR. (2023). Cadmium Toxicity: What Is the Biological Fate of Cadmium in the Body? | Environmental Medicine | ATSDR. https://www.atsdr.cdc.gov/csem/cadmium/Biological-Fate.html Avigliano, E., Lozano, C., Plá, R. R., & Volpedo, A. V. (2016). Toxic element determination in fish from Paraná River Delta (Argentina) by neutron activation analysis: Tissue distribution and accumulation and health risk assessment by direct consumption. Journal of Food Composition and Analysis, 54, 27–36. https://doi.org/10.1016/j.jfca.2016.09.011 Ball, G. L., McLellan, C. J., & Bhat, V. S. (2012). Toxicological review and oral risk assessment of terephthalic acid (TPA) and its esters: A category approach. Critical Reviews in Toxicology, 42(1), 28–67. https://doi.org/10.3109/10408444.2011.623149 Baptista Neto, J. A., Smith, B. J., & McAllister, J. J. (2000). Heavy metal concentrations in surface sediments in a nearshore environment, Jurujuba Sound, Southeast Brazil. Environmental Pollution, 109(1), 1–9. https://doi.org/10.1016/S0269-7491(99)00233-X Barkate, M. L., Windhauser, M. M., Ramezanzadeh, F. M., Richard, S., & Tulley, R. (1997). The Use of Para-Aminobenzoic Acid (PABA) as a Compliance Measure for Large, Long-Term Feeding Studies. Journal of the American Dietetic Association, 97(9, Supplement), A63. https://doi.org/10.1016/S0002-8223(97)00533-6 Bashir, M. F., Ma, B., Komal, B., Bashir, M. A., Tan, D., & Bashir, M. (2020). Correlation between climate indicators and COVID-19 pandemic in New York, USA. Science of the Total Environment, 728, 138835. Becherucci, M. E., & Pon, J. P. S. (2014). What is left behind when the lights go off? Comparing the abundance and composition of litter in urban areas with different intensity of nightlife use in Mar del Plata, Argentina. Waste Management, 34(8), 1351–1355. Bhat, U. G., & Vamsee, K. (1993). Toxicity of heavy metals Cu, Cd and Hg to the gammarid amphipod Parhalella natalensis (Stebbing). Science of The Total Environment. Bidel, F., Di Poi, C., Imarazene, B., Koueta, N., Budzinski, H., Van Delft, P., Bellanger, C., & Jozet-Alves, C. (2016). Pre-hatching fluoxetine-induced neurochemical, neurodevelopmental, and immunological changes in newly hatched cuttlefish. Environmental Science and Pollution Research, 23(6), 5030–5045. Biolé, F. G., Llamazares Vegh, S., de Carvalho, B. M., Bavio, M., Tripodi, P., Volpedo, A. V., & Thompson, G. (2023). Health risk assessment and differential distribution of Arsenic and metals in organs of Urophycis brasiliensis a commercial fish from Southwestern Atlantic coast. Marine Pollution Bulletin, 187, 114499. https://doi.org/10.1016/j.marpolbul.2022.114499 Bolaño-Ortiz, T. R., Puliafito, S. E., Berná-Peña, L. L., Pascual-Flores, R. M., Urquiza, J., & Camargo-Caicedo, Y. (2020). Atmospheric emission changes and their economic impacts during the COVID-19 pandemic lockdown in Argentina. Sustainability, 12(20), 8661. Breiby and Jobling. (1985). Predatory role of the flying squid (Todarodes sagittatus) in North Norwegian waters. NAFO Scientific Council Studies. Bretnall, A. E., & Clarke, G. S. (2011). 11—Validation of Analytical Test Methods. In S. Ahuja & S. Scypinski (Eds.), Separation Science and Technology (Vol. 10, pp. 429–457). Academic Press. https://doi.org/10.1016/B978-0-12-375680-0.00011-5 Britannica, (n.d.). Industry of South America. South America - Oil, Gas, Coal | Britannica. https://www.britannica.com/place/South-America/Mineral-fuels. Bustamante, P., Grigioni, S., Boucher-Rodoni, R., Caurant, F., Miramand, P., (2000). Bioaccumulation of 12 trace elements in the tissues of the nautilus Nautilus macromphalus from New Caledonia. Marine Pollution Bulletin. Cabrini, T. M. B., Barboza, C. A. M., Skinner, V. B., Hauser-Davis, R. A., Rocha, R. C., Saint’Pierre, T. D., Valentin, J. L., & Cardoso, R. S. (2017). Heavy metal contamination in sandy beach macrofauna communities from the Rio de Janeiro coast, Southeastern Brazil. Environmental Pollution, 221, 116–129. https://doi.org/10.1016/j.envpol.2016.11.053 Camargo, E. R., Zapiola, M. L., Avila, L. A. D., Garcia, M. A., Plaza, G., Gazziero, D., & Hoyos, V. (2020). Current situation regarding herbicide regulation and public perception in South America. Weed Science, 68(3), 232–239. https://doi.org/10.1017/wsc.2020.14 Caumo, S., Yera, A. B., Vicente, A., Alves, C., Roubicek, D. A., & de Castro Vasconcellos, P. (2022). Particulate matter–bound organic compounds: Levels, mutagenicity, and health risks. Environmental Science and Pollution Research, 29(21), 31293–31310. https://doi.org/10.1007/s11356-021-17965-7 Chan, C. T.-L., Ma, C., Chan, R. C.-T., Ou, H.-M., Xie, H.-X., Wong, A. K.-W., Wang, M.-L., & Kwok, W.-M. (2020). A long-lasting sunscreen controversy of 4-aminobenzoic acid and 4-dimethylaminobenzaldehyde derivatives resolved by ultrafast spectroscopy combined with density functional theoretical study. Physical Chemistry Chemical Physics, 22(15), 8006–8020. https://doi.org/10.1039/C9CP07014A Chang, S.-W., Chen, R.-G., Liu, T.-H., Lee, Y.-C., Chen, C.-S., Chiu, T.-S., & Ko, C.-Y. (2021). Dietary Shifts and Risks of Artifact Ingestion for Argentine Shortfin Squid Illex argentinus in the Southwest Atlantic. Frontiers in Marine Science, 8. https://www.frontiersin.org/articles/10.3389/fmars.2021.675560 Christen, M., Kowalski, J., & Bartelt, P. (2010). RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Regions Science and Technology, 63(1–2), 1–14. Cole, M., Lindeque, P., Halsband, C., & Galloway, T. S. (2011). Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin, 62(12), 2588–2597. Crane-Kramer, G., & Buckberry, J. (2023). Changes in health with the rise of industry. International Journal of Paleopathology, 40, 99–102. https://doi.org/10.1016/j.ijpp.2022.12.005 D’Costa, A., Shyama, S. K., Praveen Kumar, M. K. (2017). Bioaccumulation of trace metals and total petroleum and genotoxicity responses in an edible fish population as indicators of marine pollution. Ecotoxicology and Environmental Safety. https://doi.org/ 10.1016/j.ecoenv.2017.03.049 Damak, F., Asano, M., Baba, K., Ksibi, M., & Tamura, K. (2019). Comparison of Sample Preparation Methods for Multi elements Analysis of Olive Oil by ICP-MS. Methods and Protocols, 2, 72. https://doi.org/10.3390/mps2030072 De Gerónimo, E., Aparicio, V. C., Bárbaro, S., Portocarrero, R., Jaime, S., & Costa, J. L. (2014). Presence of pesticides in surface water from four sub-basins in Argentina. Chemosphere, 107, 423–431. Delivorias., A. (2022). Brazil's economy: Challenges for the new president | Think Tank | European Parliament Presence of pesticides in surface water from four sub-basins in Argentina. Di Marzio, A., Lambertucci, S. A., Fernandez, A. J. G., & Martínez-López, E. (2019). From Mexico to the Beagle Channel: A review of metal and metalloid pollution studies on wildlife species in Latin America. Environmental Research, 176, 108462. https://doi.org/10.1016/j.envres.2019.04.029 Di Poi, C., Bidel, F., Dickel, L., & Bellanger, C. (2014). Cryptic and biochemical responses of young cuttlefish Sepia officinalis exposed to environmentally relevant concentrations of fluoxetine. Aquatic Toxicology, 151, 36–45. Dorneles et al., Lailson-Brito, J., dos Santos, R. A., Silva da Costa, P. A., Malm, O., Azevedo, A. F., & Machado Torres, J. P. (2007). Cephalopods and cetaceans as indicators of offshore bioavailability of cadmium off Central South Brazil Bight. Environmental Pollution, 148(1), 352–359. https://doi.org/10.1016/j.envpol.2006.09.022 Doubleday, Z. A., Prowse, T. A., Arkhipkin, A., Pierce, G. J., Semmens, J., Steer, M., Leporati, S. C., Lourenço, S., Quetglas, A., & Sauer, W. (2016). Global proliferation of cephalopods. Current Biology, 26(10), R406–R407. Duran, X., Musacchio, Aldo., Paolera, G. D., O’Rourke, K. H., Williamson, J., (2017). Industrial Growth in South America: Argentina, Brazil, Chile, and Colombia, 1890–2010. Oxford University Press, https://doi.org/10.1093/acprof:oso/9780198753643.003.0013. Endo, S., Escher, B. I., & Goss, K.-U. (2011). Capacities of membrane lipids to accumulate neutral organic chemicals. Environmental Science & Technology, 45(14), 5912–5921. https://doi.org/10.1021/es200855w Ernst, W. (1980). Effects of pesticides and related organic compounds in the sea. Helgoländer Meeresuntersuchungen, 33(1–4), 301–312. https://doi.org/10.1007/BF02414756 European Chemicals Agency (ECHA). (2021). Adipic-acid-march-2021.pdf. https://www.santos.com/wp-content/uploads/2021/04/Adipic-acid-march-2021.pdf Fabbri, E., & Franzellitti, S. (2016). Human pharmaceuticals in the marine environment: Focus on exposure and biological effects in animal species. Environmental Toxicology and Chemistry, 35(4), 799–812. Falandysz, J. (1988). Trace metals in squid Illex argentinus. Zeitschrift Für Lebensmittel-Untersuchung Und Forschung, 187(4), 359–361. Fang, Z. Q., Cheung, R. Y. H., Wong, M. H (2001). Heavy metal concentrations in edible bivalves and gastropods available in major markets of the Pearl River Delta. Journal of Environmental Sciences. FAO Fisheries and Aquaculture Department. (2009). Worldwide review of bottom fisheries in the high seas.pdf. https://www.cbd.int/doc/meetings/mar/soiom-2016-01/other/soiom-2016-01-fao-06-en.pdf FAO. (2010). The State of World Fisheries and Aquaculture 2010. 218. FAO. (2019). Tight supply situation continues | GLOBEFISH | Food and Agriculture Organization of the United Nations. https://www.fao.org/in-action/globefish/market-reports/resource-detail/en/c/1176219/ FAO. (2021). Food systems and COVID-19 in Latin America and the Caribbean. FocusEconomics, A. (2024, March 29). Argentina GDP. FocusEconomics. https://www.focus-economics.com/country-indicator/argentina/gdp/ FocusEconomics, B. (2024, March 29). Brazil GDP. FocusEconomics. https://www.focus-economics.com/country-indicator/brazil/gdp/ FocusEconomics, U. (2024, March 29). Uruguay GDP. FocusEconomics. https://www.focus-economics.com/country-indicator/uruguay/gdp/ Friel, P. N., Hinchcliffe, C., & Wright, J. V. (2005). Hormone replacement with estradiol: Conventional oral doses result in excessive exposure to estrone. Alternative Medicine Review: A Journal of Clinical Therapeutic, 10(1), 36–41. Gaw, S., Thomas, K. V., & Hutchinson, T. H. (2014). Sources, impacts and trends of pharmaceuticals in the marine and coastal environment. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1656), 20130572. Gerpe, M. S., de Moreno, J. E. A., Moreno, V. J., & Patat, M. L. (2000). Cadmium, zinc and copper accumulation in the squid Illex argentinus from the Southwest Atlantic Ocean. Marine Biology, 136(6), 1039–1044. https://doi.org/10.1007/s002270000308 Ghori, N. H., Ghori, T., Hayat, M. Q., Imadi, S., Altay, V., & Ozturk, M., (2019). Heavy metal stress and responses in plants. International journal of Environmental Science and Technology. https://doi.org/ 10.1007/s13762-019-02215-8 Giulivo, M., Capri, E., Eljarrat, E., & Barceló, D. (2016). Analysis of organophosphorus flame retardants in environmental and biotic matrices using on-line turbulent flow chromatography-liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 1474, 71–78. https://doi.org/10.1016/j.chroma.2016.10.042 Gonçalves, C., Marins, A. T., do Amaral, A. M. B., Nunes, M. E. M., Müller, T. E., Severo, E., Feijó, A., Rodrigues, C. C. R., Zanella, R., Prestes, O. D., Clasen, B., & Loro, V. L. (2020). Ecological impacts of pesticides on Astyanax jacuhiensis (Characiformes: Characidae) from the Uruguay river, Brazil. Ecotoxicology and Environmental Safety, 205, 111314. https://doi.org/10.1016/j.ecoenv.2020.111314 Gonzalez, M., Miglioranza, K. S., Aizpún, J. E., Isla, F. I., & Peña, A. (2010). Assessing pesticide leaching and desorption in soils with different agricultural activities from Argentina (Pampa and Patagonia). Chemosphere, 81(3), 351–358. Groumpos, P. P. (2021). A Critical Historical and Scientific Overview of all Industrial Revolutions. IFAC-PapersOnLine, 54(13), 464–471. https://doi.org/10.1016/j.ifacol.2021.10.492 Hamanaka, T., & Ogi, H. (1984). Cadmium and Zinc Concentrations in the Hyperiid Amphipod, Parathemisto libellula from the Bering Sea. He, L., Wang, S., Liu, M., Chen, Z., Xu, J., & Dong, Y. (2023). Transport and transformation of atmospheric metals in ecosystems: A review. Journal of Hazardous Materials Advances, 9, 100218. https://doi.org/10.1016/j.hazadv.2022.100218 Hirt-Chabbert, J., Mechaly, A., & Tapia, C. (2024). Seafood in Argentina: Marine fish species, seasonal presence and prices. Reviews in Fish Biology and Fisheries, 34, 1–22. https://doi.org/10.1007/s11160-024-09836-4 Hong, L., & Simon, J. D. (2007). Current Understanding of the Binding Sites, Capacity, Affinity, and Biological Significance of Metals in Melanin. The Journal of Physical Chemistry. B, 111(28), 7938–7947. https://doi.org/10.1021/jp071439h IICA.INT. (n.d.). Agricultural exports from Latin America increase by 8.5%, while total foreign sales drop by 30%. IICA.INT. https://iica.int/en/press/news/agricultural-exports-latin-america-increase-85-while-total-foreign-sales-drop-30 ISLANDS, F. (2015). STATE OF THE FALKLAND ISLANDS ECONOMY. Ivanovic, M. L., & Brunetti, N. E. (1994). Food and feeding of Illex argentinus. Antarctic Science, 6(2), 185–193. https://doi.org/10.1017/S0954102094000295 Jereb, P., & Roper, C. F.E., (2005), Cephalopods of the world: an annotated and illustrated catalogue of cephalopod species known to date. Food and Agriculture Organization of the United Nations. JLAB Science Education. (n.d.). It’s Elemental-Then Element Zinc. https://education.jlab.org/itselemental/iso030.html Kim, B. M., Rhee, J. S., Jeong, C. B., Seo, J. S., Park, G. S., Lee, Y. M., & Lee, J. S. (2014). Heavy metals induce oxidative stress and trigger oxidative stress-mediated heat shock protein (hsp) modulation in the intertidal copepod Tigriopus japonicus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. Kreuzer, R. (1984). Cephalopods: handling, processing and products. Kuhn, E. C., Jacques, M. T., Teixeira, D., Meyer, S., Gralha, T., Roehrs, R., Camargo, S., Schwerdtle, T., Bornhorst, J., & Ávila, D. S. (2021). Ecotoxicological assessment of Uruguay River and affluents pre- and post-pesticides’ application using Caenorhabditis elegans for biomonitoring. Environmental Science and Pollution Research, 28(17), 21730–21741. https://doi.org/10.1007/s11356-020-11986-4 Lambert, Y., & Dutil, J.-D. (1997). Condition and energy reserves of Atlantic cod (Gadus morhua) during the collapse of the northern Gulf of St. Lawrence stock. Canadian Journal of Fisheries and Aquatic Sciences, 54(10), 2388–2400. https://doi.org/10.1139/f97-145 Liu, Q., Xu, X., Zeng, J., Shi, X., Liao, Y., Du, P., Tang, Y., Huang, W., Chen, Q., & Shou, L. (2019). Heavy metal concentrations in commercial marine organisms from Xiangshan Bay, China, and the potential health risks. Marine Pollution Bulletin, 141, 215–226. https://doi.org/10.1016/j.marpolbul.2019.02.058 Lozano-Bilbao, E., Espinosa, J. M., Jurado-Ruzafa, A., Lozano, Gonzalo., Hardisson, A., Rubio, C., Gonzalez Weller, D., & Gutierrez, A. J., (2020). Inferring Class of organisms in the Central-East Atlantic from eco-toxicological characterization. Regional Studies in Marine Science. https://doi.org/10.1016/j.rsma.2020.101190 Lloret, J., Demestre, M., & Sanchez, J. (2008). Lipid (energy) reserves of European hake (Merluccius merluccius) in the North-Western Mediterranean. Vie Et Milieu-Life and Environment, 58, 77–85. Lucena Frédou, F. (2015). South Atlantic Ocean. Lutz, V. A., Segura, V., Dogliotti, A. I., Gagliardini, D. A., Bianchi, A. A., & Balestrini, C. F. (2010). Primary production in the Argentine Sea during spring estimated by field and satellite models. Journal of Plankton Research, 32(2), 181–195. Marigómez, I., Soto, M., Cajaraville, M. P., Angulo, E., & Giamberini, L. (2002). Cellular and subcellular distribution of metals in molluscs. Microscopy Research and Technique, 56(5), 358–392. Marrari, M., Piola, A. R., & Valla, D. (2017). Variability and 20-year trends in satellite-derived surface chlorophyll concentrations in large marine ecosystems around south and western Central America. Frontiers in Marine Science, 4, 372. Matano, R., Palma, E. D., & Piola, A. R. (2010). The influence of the Brazil and Malvinas Currents on the Southwestern Atlantic Shelf circulation. Ocean Science, 6(4), 983–995. Mathiesen, AM. (2012). The state of the world fisheries and aquaculture 2012. McGeer, J. C., Szebedinszky, C., McDonald, D. G., & Wood, C. M. (2002). The role of dissolved organic carbon in moderating the bioavailability and toxicity of Cu to rainbow trout during chronic waterborne exposure. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 133(1–2), 147–160. Ministerio de Salud de la Nación. (2020). Guias-alimentarias-para-la-poblacion-argentina.pdf. https://bancos.salud.gob.ar/sites/default/files/2020-08/guias-alimentarias-para-la-poblacion-argentina.pdf Ministry of Agriculture Taiwan F. A. (2022). 農業部漁業署. https://www.fa.gov.tw/view.php?theme=FS_AR&subtheme=&id=22 Miramand, P., & Bentley, D. (1992). Concentration and distribution of heavy metals in tissues of two cephalopods, Eledone cirrhosa and Sepia officinalis, from the French coast of the English Channel. Marine Biology, 114(3), 407–414. Mouat, B., Collins, M. A., & Pompert, J. (2001). Patterns in the diet of Illex argentinus (Cephalopoda: Ommastrephidae) from the Falkland Islands jigging fishery. Fisheries Research, 52(1), 41–49. https://doi.org/10.1016/S0165-7836(01)00229-6 Navarro, J., Coll, M., Somes, C. J., & Olson, R. J., (2013). Trophic niche of squids: Insights from isotopic data in marine systems worldwide. Deep Sea Research Part II: Topical Studies in Oceanography. OAS. (2009, August 1). OAS - Organization of American States: Democracy for peace, security, and development [Text]. https://www.oas.org/en/ OECD. (2020). COVID-19 in Latin America and the Caribbean: An overview of government responses to the crisis. OECD. https://www.oecd.org/coronavirus/policy-responses/covid-19-in-latin-america-and-the-caribbean-an-overview-of-government-responses-to-the-crisis-0a2dee41/ Olaniran, A., Balgobind, A., Pillay, B.(2021). Bioavailability of Heavy Metals in Soil: Impact on Microbial Biodegradation of Organic Compounds and Possible Improvement Strategies. International journal of molecular sciences. https://doi.org/ 10.3390/ijms140510197 Pajewska-Szmyt, M., Sinkiewicz-Darol, E., & Gadzala-Kopciuch, R. (2019). The impact of environmental pollution on the quality of mother's milk. Environmental Science and Pollution Research International. https://doi.org/ 10.1007/s11356-019-04141-1 Palma, E. D., Matano, R. P., & Piola, A. R. (2008). A numerical study of the Southwestern Atlantic Shelf circulation: Stratified Ocean response to local and offshore forcing. Journal of Geophysical Research: Oceans, 113(C11). Patriarca, C., Balderrama, A., Može, M., Sjöberg, P. J. R., Bergquist, J., Tranvik, L. J., & Hawkes, J. A. (2020). Investigating the Ionization of Dissolved Organic Matter by Electrospray. Analytical Chemistry, 92(20), 14210–14218. https://doi.org/10.1021/acs.analchem.0c03438 Pazos, R. S., Maiztegui, T., Colautti, D. C., Paracampo, A. H., & Gómez, N. (2017). Microplastics in gut contents of coastal freshwater fish from Río de la Plata estuary. Marine Pollution Bulletin, 122(1–2), 85–90. Penicaud, V., Lacoue-Labarthe, T., & Bustamante, P. (2017). Metal bioaccumulation and detoxification processes in cephalopods: A review. Environmental Research, 155, 123–133. Perugini, M., Cavaliere, M., Giammarino, A., Mazzone, P., Olivieri, V., & Amorena, M. (2004). Levels of polychlorinated biphenyls and organochlorine pesticides in some edible marine organisms from the Central Adriatic Sea. Chemosphere, 57(5), 391–400. Peterson, E., Merton, A., Theobald, D., & Urquhart, N. (2006). Patterns of Spatial Autocorrelation in Stream Water Chemistry. Environmental Monitoring and Assessment, 121, 571–596. https://doi.org/10.1007/s10661-005-9156-7 Piola, A., Palma, E., Bianchi, A., Castro, B., Dottori, M., Guerrero, R., Marrari, M., Matano, R., Möller, O., & Saraceno, M. (2018). Physical Oceanography of the SW Atlantic Shelf: A Review. In Plankton Ecology of the Southwestern Atlantic: From the Subtropical to the Subantarctic Realm (pp. 37–56). https://doi.org/10.1007/978-3-319-77869-3_2 PubChem. (n.d.). Caprolactam. https://pubchem.ncbi.nlm.nih.gov/compound/7768 Rabaoui, L., El Zrelli, R., Balti, R., Mansour, L., Courjault-Radé, P., Daghbouj, N., & Tlig-Zouari, S. (2017). Metal bioaccumulation in two edible cephalopods in the Gulf of Gabes, South-Eastern Tunisia: Environmental and human health risk assessment. Environmental Science and Pollution Research, 24(2), 1686–1699. Ragi, A. S., Leena, P. P., Cheriyan, E., Nair, S. M. (2017). Heavy metal concentrations in some gastropods and bivalves collected from the fishing zone of South India. Marine pollution bulletin. Ranghetti, D. (2021). Directorate of Policy and Economic Development Falkland Islands Government. Ray, I., Bardhan, M., Hasan, M. M., Sahito, A. M., Khan, E., Patel, S., Jani, I., Bhatt, P. K., Sp, R., & Swed, S. (2022). Over the counter drugs and self-medication: A worldwide paranoia and a troublesome situation in India during the COVID-19 pandemic. Annals of Medicine and Surgery, 78, 103797. https://doi.org/10.1016/j.amsu.2022.103797 Rodhouse, P. G., Pierce, G. J., Nichols, O. C., Sauer, W. H., Arkhipkin, A. I., Laptikhovsky, V. V., Lipiński, M. R., Ramos, J. E., Gras, M., & Kidokoro, H. (2014). Environmental effects on cephalopod population dynamics: Implications for management of fisheries. Advances in Marine Biology, 67, 99–233. Rodhouse, P. G., Nigmatullin, Ch. M. (1996). Role as consumers. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. Roldán-Wong, N. T., Kidd, K. A., Marmolejo-Rodríguez, A. J., Ceballos-Vázquez, B. P., Shumilin, E., & Arellano-Martínez, M. (2018). Bioaccumulation and biomagnification of potentially toxic elements in the octopus Octopus hubbsorum from the Gulf of California. Marine Pollution Bulletin, 129(2), 458–468. Romero, I. C., Judkins, H., & Vecchione, M. (2020). Temporal variability of polycyclic aromatic hydrocarbons in deep-sea cephalopods of the northern Gulf of Mexico. Frontiers in Marine Science, 7, 54. RRD Toxicology Unit. (2015). Michigan Department of Environment, Great Lakes & Energy (EGLE). https://www.michigan.gov/egle Saadat, S., Rawtani, D., & Hussain, C. M. (2020). Environmental perspective of COVID-19. Science of the Total Environment, 728, 138870. Sala, B., Giménez, J., Fernández-Arribas, J., Bravo, C., Lloret-Lloret, E., Esteban, A., Bellido, J. M., Coll, M., & Eljarrat, E. (2022). Organophosphate ester plasticizers in edible fish from the Mediterranean Sea: Marine pollution and human exposure. Environmental Pollution, 292, 118377. https://doi.org/10.1016/j.envpol.2021.118377 Salgado-Ramírez, Carla A., Mansilla-Rivera, I., Rodríguez-Sierra, Carlos J.,. (2017). Comparison of trace metals in different fish tissues of <i>Scomberomorus spp</i>. (“sierra”) and <i>Lutjanus synagris</i> (“arrayado”) from Jobos Bay and La Parguera coastal areas in Southern Puerto Rico. Regional Studies in Marine Science. https://doi.org/10.1016/j.rsma.2017.03.006 Sanford, A. A., Manuel, B. A., Romero-Reyes, M. A., & Heemstra, J. M. (2002). Combating small molecule environmental contaminants: Detection and sequestration using functional nucleic acids. Chemical Science, 13(26), 7670–7684. https://doi.org/10.1039/d2sc00117a SCCP. (2006). Sccp_o_058.pdf. https://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_058.pdf Scivicco, M., Nolasco, A., Esposito, L., Ariano, A., Squillante, J., Esposito, F., Cirillo, T., & Severino, L. (2022). Effects of Covid-19 pandemic lockdown and environmental pollution assessment in Campania region (Italy) through the analysis of heavy metals in honeybees. Environmental Pollution (Barking, Essex : 1987), 307, 119504. https://doi.org/10.1016/j.envpol.2022.119504 Severini, M. D. F., Carbone, M. E., Villagran, D. M., & Marcovecchio, J. E. (2018). Toxic metals in a highly urbanized industry-impacted estuary (Bahia Blanca Estuary, Argentina): Spatio-temporal analysis based on GIS. Environmental Earth Sciences, 77(10), 1–19. Shakil, M. H., Munim, Z. H., Tasnia, M., & Sarowar, S. (2020). COVID-19 and the environment: A critical review and research agenda. Science of the Total Environment, 745, 141022. Sinanoglou, V. J., Miniadis-Meimaroglou, S. (1998). Fatty acid of neutral and polar lipids of (edible) Mediterranean cephalopods. Food Research International. Smith, J. D., Plues, L., Heyraud, M., Cherry, R. D. (1984). Concentrations of the elements Ag, Al, Ca, Cd, Cu, Fe, Mg, Mn, Pb and Zn, and the radionuclides 210Pb and 210Po in the digestive gland of the squid Nototodarus gouldi. Marine Environmental Research. Sturla Lompré, J., Malanga, G., Gill, M. N., & Giarratano, E. (2020). Multiple-biomarker approach in a commercial marine scallop from San Jose gulf (Patagonia, Argentina) for health status assessment. Archives of environmental contamination and toxicology. Sunda, W. G. (1989). Trace metal interactions with marine phytoplankton. Biological Oceanographyy. Sykes, A. V., Oliveira, A. R., Domingues, P. M., Cardoso, C. M., Andrade, J. P., Nunes, M. L. (2009). Assessment of European cuttlefish (Sepia officinalis, L.) nutritional value and freshness under ice storage using a developed Quality Index Method (QIM) and biochemical methods. LWT-Food science and technology. Medscape UK., Sulpiride oral formulations dosage, indications, side effects, and more. (n.d.). Retrieved April 22, 2024, from https://www.medscape.co.uk/drug/sulpiride-oral-formulations-69626-69626 Tavengwa, N., & Dalu, T. (2022). Introduction to emerging freshwater pollutants. In Emerging Freshwater Pollutants: Analysis, Fate and Regulations (pp. 1–6). https://doi.org/10.1016/B978-0-12-822850-0.00029-6 Tobías, A., Carnerero, C., Reche, C., Massagué, J., Via, M., Minguillón, M. C., Alastuey, A., & Querol, X. (2020). Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Science of the Total Environment, 726, 138540. Tomazelli, A. C., Martinelli, L. A., Krug, F. J., Santos, D., Ruffini, I., Barbosa de Camargo, P., & Horvat, M. (2007). Mercury Distribution in Medium-Size Rivers and Reservoirs of the São Paulo State (Southeast Brazil). Journal of Environmental Quality, 36(2), 478–486. https://doi.org/10.2134/jeq2005.0407 Tornero, V., & Hanke, G. (2016). Chemical contaminants entering the marine environment from sea-based sources: A review with a focus on European seas. Marine Pollution Bulletin, 112(1–2), 17–38. Tovar-Sanchez, A., Sanchez-Quiles, D., Basterretxea. G., Benede, J. L., Chisvert, A., Salvador, A., Moreno-Garrido, I., & Biasco, J. (2013). Sunscreen products as emerging pollutants to coastal waters. PLoS One. Trading Economics, B. (2024). Brazil Industrial Production—MoM. https://tradingeconomics.com/brazil/industrial-production-mom Trading Economics, A. (2022). Argentina Industrial Production—June 2022 Data—1995-2021 Historical. https://tradingeconomics.com/argentina/industrial-production Trevizani, T. H., Domit, C., Santos, M. C. de O., & Figueira, R. C. L. (2023). Bioaccumulation of heavy metals in estuaries in the southwest Atlantic Ocean. Environmental Science and Pollution Research, 30(10), 26703–26717. https://doi.org/10.1007/s11356-022-23974-x Trevizani, T. H., Domit, C., Vedolin, M. C., Angeli, J. L. F., & Figueira, R. C. L. (2019). Assessment of metal contamination in fish from estuaries of southern and southeastern Brazil. Environmental Monitoring and Assessment, 191(5), 308. https://doi.org/10.1007/s10661-019-7477-1 United Nations. (2021). The recovery paradox in Latin America and the Caribbean. Growth amid persisting structural problems: Inequality, poverty and low investment and productivity. USDA. (2023). Taiwan Seafood Market Update 2023_Taipei ATO_Taiwan_TW2023-0012.pdf. Valdés, M. E., Amé, M. V., de los Angeles Bistoni, M., & Wunderlin, D. A. (2014). Occurrence and bioaccumulation of pharmaceuticals in a fish species inhabiting the Suquía River basin (Córdoba, Argentina). Science of the Total Environment, 472, 389–396. Viana, F., Huertas, R., Danulat, E. (2005). Heavy Metal Levels in Fish from Coastal Waters of Uruguay. Archives of Environmental Contamination and Toxicology. https://doi.org/10.1007/s00244-004-0100-6 Wang, J., Chen, X., & Chen, Y. (2018). Projecting distributions of Argentine shortfin squid (Illex argentinus) in the Southwest Atlantic using a complex integrated model. Acta Oceanologica Sinica, 37(8), 31–37. Wang, L., Zheng, M., Xu, H., Hua, Y., Liu, A., Li, Y., Fang, L., & Chen, X. (2022). Fate and ecological risks of current-use pesticides in seawater and sediment of the Yellow Sea and East China Sea. Environmental Research, 207, 112673. https://doi.org/10.1016/j.envres.2021.112673 World Population Review. (2024). Fish Consumption by Country 2024. https://worldpopulationreview.com/country-rankings/fish-consumption-by-country Wu, S., Yuen, F., Swerdloff, R. S., Pak, Y., Thirumalai, A., Liu, P. Y., Amory, J. K., Bai, F., Hull, L., Blithe, D. L., Anawalt, B. D., Parman, T., Kim, K., Lee, M. S., Bremner, W. J., Page, S. T., & Wang, C. (2018). Safety and Pharmacokinetics of Single-Dose Novel Oral Androgen 11β-Methyl-19-Nortestosterone-17β-Dodecylcarbonate in Men. The Journal of Clinical Endocrinology and Metabolism, 104(3), 629–638. https://doi.org/10.1210/jc.2018-01528 Xu, Q., Guo, W., Jin, L., Guo, Q., & Hu, S. (2015). Determination of cadmium in geological samples by aerosol dilution ICP-MS after inverse aqua regia extraction. Journal of Analytical Atomic Spectrometry, 30(9), 2010–2016. https://doi.org/10.1039/C5JA00182J Yáñez, J. A., Chung, S. A., Román, B. R., Hernández-Yépez, P. J., Garcia-Solorzano, F. O., Del-Aguila-Arcentales, S., Inga-Berrospi, F., Mejia, C. R., & Alvarez-Risco, A. (2021). Prescription, over-the-counter (OTC), herbal, and other treatments and preventive uses for COVID-19. Environmental and Health Management of Novel Coronavirus Disease (COVID-19), 379–416. https://doi.org/10.1016/B978-0-323-85780-2.00001-9 Yera, A., Nascimento, M., Da Rocha, G., De Andrade, J., & Vasconcellos, P. (2020). Occurrence of Pesticides Associated to Atmospheric Aerosols: Hazard and Cancer Risk Assessments. Journal of the Brazilian Chemical Society. https://doi.org/10.21577/0103-5053.20200017 Yi, X. L., Chi, T.T., Liu, B., Liu, C. X., Feng, G. Q., Dai, X. Y., Zhang, K. K., & Zhou, H. (2019). Effect of nano zinc oxide on the acute and reproductive toxicity of cadmium and lead to the marine copepod Tigriopus japonicus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. Ying, G-G., Williams, B. (2000). Laboratory study on the interaction between herbicides and sediments in water systems. Environmental pollution. Yogui, G., Taniguchi, S., Silva, J., Miranda, D., & Montone, R. (2018). The legacy of man-made organic compounds in surface sediments of Pina Sound and Suape Estuary, northeastern Brazil. Brazilian Journal of Oceanography, 66, 58–72. https://doi.org/10.1590/s1679-87592018148206601 Yoo, J.-C., Lee, C.-D., Yang, J.-S., & Baek, K. (2013). Extraction characteristics of heavy metals from marine sediments. Chemical Engineering Journal, 228, 688–699. https://doi.org/10.1016/j.cej.2013.05.029 Zacharia, J. T., (2019). Degradation pathways of persistent organic pollutants (POPs) in the environment. Persistent organic pollutants. Zlatanos, S., Laskaridis, K., Feist, C., & Sagredos, A. (2006). Proximate composition, fatty acid analysis and protein digestibility‐corrected amino acid score of three Mediterranean cephalopods. Molecular nutrition & food research. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93593 | - |
| dc.description.abstract | 工業革命最顯著的影響之一是世界已開發國家環境污染物的排放。誠然,西南大西洋(SWAO)國家也貢獻了相當一部分污染物,污染了其周圍的空氣、土地和海洋。然而,由於缺乏對該地區污染的研究,SWAO區域污染物的時空變化尚未評估。 在這項研究中,我們試圖更深入了解這些污染物在SWAO 內,尤其是阿根廷東部和福克蘭群島北部的時間分佈(2019 年至2021 年(新冠疫情封鎖前至新冠封鎖後)和空間分佈(2019 年和2021 年5 個地點,2020 年4 個地點)。此外,透過調查可食用的阿根廷魷魚其組織內污染物的空間和時間模式,確認其是否對人類有任何潛在危害。 為了實現這些目標,我們使用阿根廷魷魚作為生物指標,對每年二月至四月捕獲的魷魚的肝臟、胃、肌肉和墨囊組織進行污染物檢測。結果顯示,2021 年重金屬總濃度平均值(mg/kg/dw)最高(75.50),其次是 2019 年(74.10)和 2020 年(54.03 mg/kg)。至於小分子化合物,2019 年的總平均值最高(495.79),其次是 2020 年(5.33)和 2021 年(2.42)。整體而言,在空間變化上,污染物在緯度分佈上沒有觀察到顯著的差異。在重金屬中沒有觀察到時間或組織特異性模式。儘管如此,PCA 分析顯示 2019 年和 2021 年肝臟、胃和肌肉組織中小分子的時間分離度較高。對於空間或組織特異性模式,PCA 顯示2021 年肝組織重金屬的21 區和其他區域之間存在一定程度的分離,2020 年小分子的PCA 則顯示樣區60、65 和66 區之間存在一定程度的分離。此外,在所有組織中,肝臟組織的重金屬和有機化合物濃度最高。關於阿根廷魷魚肌肉消耗的危害商數(HQ)值顯示,2019 年,台灣和阿根廷的 Cu、Ni 和 Zn,台灣的 Pb,Cd、Cu、Ni、Tl; 2020年台灣和阿根廷的鐵、鎘、銅、鎳和鋅,以及2021年台灣和阿根廷的鐵、鎘、銅、鎳和鋅,對阿根廷和台灣廣大民眾的健康構成威脅。而除2021年台灣毒死蜱(Chlorpyrifos)外的小分子HQ值均低於1,顯示除了2021年台灣毒死蜱外,大多數化合物對這些國家的一般人群沒有構成任何威脅。總體而言,我的研究結果表明,與小分子相比,SWAO 內新興污染物的流行情況對於重金屬來說變得更加嚴重,並且需要對該地區乃至全球的行業進行適當的監管和嚴格的監控,以幫助保護海洋生物並提高海洋食品安全。 | zh_TW |
| dc.description.abstract | One of the most noticeable impacts of the Industrial Revolution is the emission of environmental pollutants from developed countries all over the world. Admittedly, the countries in the Southwest Atlantic Ocean (SWAO) have contributed their fair share of pollutants that have contaminated their surrounding air, land, and oceans. However, due to the lack of research on pollution in this region, the spatial and temporal variation in pollutants across the SWAO have yet to be evaluated. In this study, we sought to better understand the distribution of these pollutants temporally, from 2019 to 2021 (pre-COVID lockdown to after-COVID lockdown), spatially (5 locations in 2019 and 2021, 4 locations in 2020), within the SWAO, east of Argentina and north of the Falkland Islands. Also, to check for any general spatial and temporal patterns of the tissue-related pollutants, and to determine if there is any potential harm to humans from consuming Illex argentinus. In pursuit of these objectives, using Illex argentinus as a bio-indicator, the liver, stomach, muscle, and inksac tissues of the squids, caught between February and April of each year, were tested for pollutants. The results showed that 2021 had the highest mean (mg/kg/dw) for total heavy metal concentrations (75.50) followed by 2019 (74.10) and then 2020 (54.03 mg/kg). As for small molecules, 2019 had the highest total mean (495.79) followed by 2020 (5.33) and then 2021 (2.42). For spatial variation, no meaningful patterns were observed latitudinally for heavy metals and small molecules. No temporal or tissue-specific patterns were observed in heavy metals. Nonetheless, PCA revealed high temporal separation in 2019 and 2021 for the liver, stomach, and muscle tissue for small molecules. For spatial or tissue-specific patterns, PCA showed some degree of separation between Area 21 and other areas in 2021 for the liver tissue for heavy metals, and between Areas 60, 65, and 66 in 2020 for small molecules. In addition, the liver tissue had the highest concentration, of all tissues, for both heavy metal and organic compound concentrations. The hazard quotient (HQ) values, with regards to the consumption of Illex argentinus’, muscle, showed that Cd for Taiwan, Cu, Ni, and Zn for Taiwan and Argentina in 2019, Pb for Taiwan, Cd, Cu, Ni, Tl, and Zn for Taiwan and Argentina in 2020, and Fe for Taiwan, Cd, Cu, Ni, and Zn for Taiwan and Argentina in 2021 posed a threat to the health of the general populations of Argentina and Taiwan. Whereas the HQ values for small molecules, except Chlorpyrifos for Taiwan in 2021, were all below 1 indicating that most of the compounds, except Chlorpyrifos for Taiwan in 2021, didn’t pose any threat to the general populations of these countries. Overall, my findings illustrate that the prevalence of emerging pollutants within the SWAO is getting more serious for heavy metals as compared to small molecules and that proper regulations and rigorous monitoring of the industries within the region, and globally, are required to help protect marine life and improve marine food safety. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-06T16:08:37Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-06T16:08:37Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Master’s Thesis Acceptance Certificate.......………………i
Acknowledgments……………………………………ii Abstract…………………………………………………………iii-iv List of Tables & Figures………………………………viii-xvii 1. Introduction : 1.1. Environmental Impacts of Industrialization……………………1 1.2. Industrialization in the South West Atlantic Ocean………….........................…2-3 1.3. The Economy; Before, During, and After COVID-19……………...............................3-4 1.4. Pollution within the SWAO…………………………………………........................4-6 1.5. Impacts of Pollution…………………………………………………................6 1.6. Impacts of Pollution on Marine Organisms………………………….........................6-8 1.7. Cephalopods…………………………………………………………...........8-9 1.8. Illex Argentinus…………………………………………………….............10-11 2. Materials and Methods: 2.1. Study Area………………………………………………………….................12 2.2. Sample Collection…………………………………………………..............12-13 2.3. Chemicals and Materials…………………………………………….................13-14 2.4. Sample Preparation and Instrument Setup for Heavy Metals…..............................14 2.5. Sample Preparation and Instrument Setup for Small Molecules...........................…15-16 2.6. Quality Assurance and Quality Control…………………………….........................16-17 2.7. Human Health Risk…………………………………………………....................17-18 2.8. Statistical Analysis…………………………………………………................18-19 3. Results: 3.1. Temporal Variation in Concentrations 3.1.1. Temporal Variation in Heavy Metals…………………….............................20-22 3.1.2. Temporal Variation in Small Molecules…………………...........................23-25 3.2. General Patterns Associated with Temporal or Tissue-specific Differences 3.2.1. Temporal or Tissue-Specific Patterns for Heavy Metals…....................................25-26 3.2.2. Temporal or Tissue-Specific Patterns for Small Molecules..................................26-27 3.3. Spatial Variation in Concentrations 3.3.1. Spatial Variation in Heavy Metals………………………............................27-28 3.3.2. Spatial Variation in Small Molecules……………………..........................28-30 3.4. General Patterns Associated with Spatial or Tissue-specific Differences 3.4.1. Spatial or Tissue-Specific Patterns for Heavy Metals……...................................30-31 3.4.2. Spatial or Tissue-Specific Patterns for Small Molecules….................................31-32 3.5. Health Risks from Consuming Illex argentinus 3.5.1. Heavy Metals Toxicity…………………………………….....................32 3.5.2. Small Molecules Toxicity…………………………………......................33 4. Discussion: 4.1. Temporal Variation in Concentrations 4.1.1. Temporal Variations in Heavy Metals…………………….............................34-35 4.1.2. Temporal Variation in Small Molecules…………………...........................35-36 4.2. Spatial Variation in Concentrations…………………......................36-37 4.2.1. Spatial Variations in Heavy Metals………………………............................37-38 4.2.2. Spatial Variation in Small Molecules………………….....….....................38 4.3. Temporal, Spatial, or Tissue-Specific Patterns in Concentrations.............................38-39 4.3.1. Temporal, Spatial, or Tissue-Specific Patterns for Heavy Metals…………………………………………………………...............39-40 4.3.2. Temporal, Spatial, or Tissue-Specific Patterns for Small Molecules……………………………………………………..............41 4.4. Health Risks from Consuming Illex argentinus………………...........................41-42 4.4.1. Heavy Metals Toxicity……………………………........................42-43 4.4.2. Small Molecules Toxicity……………………………........................43 5. Conclusion……………………………………………………………….........44-45 Tables and Figures………………………………………………………….............46-202 References…………………………………………………………………….....203-223 Appendix……………………………………………................224-290 | - |
| dc.language.iso | en | - |
| dc.subject | 新興污染物 | zh_TW |
| dc.subject | 生物累積 | zh_TW |
| dc.subject | 頭足類 | zh_TW |
| dc.subject | 重金屬 | zh_TW |
| dc.subject | 健康風險 | zh_TW |
| dc.subject | 西南大西洋陸架 (SWAS) | zh_TW |
| dc.subject | 阿根廷魷魚 | zh_TW |
| dc.subject | Bioaccumulation | en |
| dc.subject | Illex argentinus | en |
| dc.subject | Southwest Atlantic Shelf (SWAS) | en |
| dc.subject | Health risks | en |
| dc.subject | Heavy metals | en |
| dc.subject | Cephalopods | en |
| dc.subject | Emerging pollutants | en |
| dc.title | 西南⼤西洋阿根廷魷⿂重⾦屬和有機化合物濃度的時空變化 | zh_TW |
| dc.title | Spatial and Temporal variations in Heavy Metals and Organic Compound Concentrations of Illex argentinus in the Southwest Atlantic Ocean | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 廖文軒;郭庭君;張春偉;吳欣怡 | zh_TW |
| dc.contributor.oralexamcommittee | Wen Hsuan Liao;Ting Chun Kuo;Chun Wei Chang;Hsin Yi Wu | en |
| dc.subject.keyword | 新興污染物,生物累積,頭足類,重金屬,健康風險,西南大西洋陸架 (SWAS),阿根廷魷魚, | zh_TW |
| dc.subject.keyword | Emerging pollutants,Bioaccumulation,Cephalopods,Heavy metals,Health risks,Southwest Atlantic Shelf (SWAS),Illex argentinus, | en |
| dc.relation.page | 290 | - |
| dc.identifier.doi | 10.6342/NTU202401471 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-07-12 | - |
| dc.contributor.author-college | 共同教育中心 | - |
| dc.contributor.author-dept | 生物多樣性國際碩士學位學程 | - |
| 顯示於系所單位: | 生物多樣性國際碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 18.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
