Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 統計與數據科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93534
Title: 精準化識別函數數據顯著差異區段之研究
An improved testing procedure for localizing significant intervals for functional data
Authors: 陳文凱
Wen-Kai Chen
Advisor: 丘政民
Jeng-Min Chiou
Keyword: 雙樣本檢定,區間檢定,切割方法,均值檢定,拔靴法,偽發現率,
Two sample testing,Interval testing,Partition,Mean test,Bootstrap,False discovery rate,
Publication Year : 2024
Degree: 碩士
Abstract: 在函數數據的雙樣本檢定中,我們除了判定樣本的差異與否,還特別關注差異的所在位置。在目前的文獻中,學者們針對這類型的問題 (區間檢定),提供了不少方法,並且多數要求在執行方法前,對資料定義域均勻地切割,而切割的精細度決定了資料標定差異區間的準確度。然而,當差異區間越小,便須越精細的切割,否則容易檢測出過大的區間,並增加方法的錯誤拒絕率。此外,即便選擇一個相對更密集的切割,也得面臨計算時間上的需求,或是控制錯誤拒絕率對大樣本的要求。因此這篇論文我們針對區間檢定的前置步驟,分割,進行改良,以增強檢測的準確性。同時將其中一種現存的均值檢定法,從相同共變異數均值檢定推廣至相異共變異數均值檢定。最後將改良後的區間均值檢定法,應用於兩組資料 (氣象、車流量) 以展示改良前後與推廣前後的差異性。
In two-sample tests for functional data, it is essential not only to determine overall differences but also to identify the specific locations of these differences. This presents what is known as an interval testing problem. Most existing methods require a pre-defined partition whose resolution may affect detection accuracy. However, a higher resolution necessitating a denser partition could lead to excessive computational time. Besides, although a higher resolution generally increases the detection precision, it also requires a larger sample size to control the same level of false discovery rates.
To address these issues, we have introduced a novel adjustment strategy that involves constructing a suitable partition as a preliminary step before implementing interval testing methods. This approach enhances the detection precision across various resolution scenarios. The concept is also extended to tests involving unequal sample covariances. Our simulation study indicates that the proposed approach yields higher statistical power in identifying significant intervals under small sample situations. We apply the approach to weather and traffic data, examining temperature differences at different locations and traffic flow differences on weekends, respectively.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93534
DOI: 10.6342/NTU202402123
Fulltext Rights: 同意授權(限校園內公開)
metadata.dc.date.embargo-lift: 2029-07-26
Appears in Collections:統計與數據科學研究所

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Restricted Access
1.46 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved