請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93529
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳希立 | zh_TW |
dc.contributor.advisor | Sih-Li Chen | en |
dc.contributor.author | 劉宇城 | zh_TW |
dc.contributor.author | Yu-Cheng Liu | en |
dc.date.accessioned | 2024-08-05T16:22:57Z | - |
dc.date.available | 2024-08-06 | - |
dc.date.copyright | 2024-08-05 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-31 | - |
dc.identifier.citation | [ 1 ] Center, E. P. B. The Energy Performance of Buildings Directive (EPBD).
[ 2 ] United Nations Environment Programme. (Year). The Global Status Report for Buildings and Construction (Buildings-GSR). United Nations Environment Programme. URL [ 3 ] Layer, O. (1988). Montreal Protocol on Substances that Deplete the Ozone Layer Final Act 1987. [ 4 ] Protocol, K. (1997). United Nations framework convention on climate change. Kyoto Protocol, Kyoto, 19(8), 1-21. [ 5 ] Birmpili, T. (2018). Montreal Protocol at 30: The governance structure, the evolution, and the Kigali Amendment. Comptes Rendus Geoscience, 350(7), 425-431. [ 6 ] Aprea, C., Greco, A., Maiorino, A., & Masselli, C. (2017). A comparison between electrocaloric and magnetocaloric materials for solid state refrigeration. International journal of heat and technology, 35(1), 225-234. [ 7 ] Greco, A., Aprea, C., Maiorino, A., & Masselli, C. (2019). A review of the state of the art of solid-state caloric cooling processes at room-temperature before 2019. International Journal of Refrigeration, 106, 66-88. [ 8 ] Aprea, C., Greco, A., Maiorino, A., & Masselli, C. (2018). Energy performances and numerical investigation of solid-state magnetocaloric materials used as refrigerant in an active magnetic regenerator. Thermal Science and Engineering Progress, 6, 370-379. [ 9 ] Greco, A., & Masselli, C. (2020). Electrocaloric cooling: A review of the thermodynamic cycles, materials, models, and devices. Magnetochemistry, 6(4), 67. [ 10 ] Fujita, A., Fujieda, S., Hasegawa, Y., & Fukamichi, K. (2003). Itinerant-electron metamagnetic transition and large magnetocaloric effects in La (Fe x Si 1− x) 13 compounds and their hydrides. Physical Review B, 67(10), 104416. [ 11 ] Qian, S., Geng, Y., Wang, Y., Ling, J., Hwang, Y., Radermacher, R., ... & Cui, J. (2016). A review of elastocaloric cooling: Materials, cycles and system integrations. International journal of refrigeration, 64, 1-19. [ 12 ] Jani, J. M., Leary, M., Subic, A., & Gibson, M. A. (2014). A review of shape memory alloy research, applications and opportunities. Materials & Design (1980-2015), 56, 1078-1113. [ 13 ] Li, B., Kawakita, Y., Ohira-Kawamura, S., Sugahara, T., Wang, H., Wang, J., ... & Zhang, Z. (2019). Colossal barocaloric effects in plastic crystals. Nature, 567(7749), 506-510. [ 14 ] Crossley, S., Mathur, N. D., & Moya, X. (2015). New developments in caloric materials for cooling applications. Aip Advances, 5(6). [ 15 ] Cirillo, L., Farina, A. R., Greco, A., & Masselli, C. (2022). The optimization of the energy performances of a single bunch of elastocaloric elements to be employed in an experimental device. Thermal Science and Engineering Progress, 27, 101152. [ 16 ] He, J., Ya, C., Tang, X., Ma, L., Wu, J., & Lu, B. (2023). Numerical study of a cascade cycle for the reciprocating solid-state magnetic refrigerator. Applied Thermal Engineering, 219, 119695. [ 17 ] Meng, X., Gong, P., Wang, S., Zhao, Y., Ma, X., & Xiong, W. (2023). Simulation study on superposition expansion of belt electrocaloric refrigeration structure. Applied Thermal Engineering, 221, 119855. [ 18 ] Yuan, L., Wang, Y., Yu, J., Greco, A., Masselli, C., & Qian, S. (2023). Numerical study of a double-effect elastocaloric cooling system powered by low-grade heat. Applied Thermal Engineering, 218, 119302. [ 19 ] Buehler, W. J., & Wang, F. E. (1968). A summary of recent research on the nitinol alloys and their potential application in ocean engineering. Ocean Engineering, 1(1), 105-120. [ 20 ] Wayman, C. M., & Duerig, T. W. (1990). An introduction to martensite and shape memory. Engineering aspects of shape memory alloys, 3-20. [ 21 ] Funakubo, H., & Kennedy, J. B. (1987). Shape memory alloys. Gordon and Breach, xii+ 275, 15 x 22 cm, Illustrated. [ 22 ] Ölander, A. (1932). An electrochemical investigation of solid cadmium-gold alloys. Journal of the American Chemical Society, 54(10), 3819-3833. [ 23 ] Wayman, C. M. (1993). Shape memory alloys. MRS bulletin, 18(4), 49-56. [ 24 ] Otsuka, K., & Wayman, C. M. (Eds.). (1999). Shape memory materials. Cambridge university press. [ 25 ] Pushin, V. G., Kuranova, N. N., Marchenkova, E. B., Belosludtseva, E. S., Kourov, N. I., Kuntsevich, T. E., ... & Uksusnikov, A. N. (2015). Thermoelastic Martensitic Transitions and Shape Memory Effects: Classification, Crystal and Structural Mechanisms of Transformations, Properties, Production and Application of Promising Alloys. Shape memory alloys: properties, technologies, opportunities, Trans. Tech. Publication, Switzeland, 33, 978-3. [ 26 ] Sehitoglu, H., Hamilton, R., Canadinc, D., Zhang, X. Y., Gall, K., Karaman, I., ... & Maier, H. J. (2003). Detwinning in NiTi alloys. Metallurgical and Materials Transactions A, 34, 5-13. [ 27 ] Stöckel, D. (1995). The shape memory effect-phenomenon, alloys and applications. Proceedings: Shape Memory Alloys for Power Systems EPRI, 1, 1-13. [ 28 ] Auricchio, F., & Sacco, E. (1997). A superelastic shape-memory-alloy beam modal. Journal of intelligent material systems and structures, 8(6), 489-501. [ 29 ] XIAO, F., CHEN, H., & JIN, X. (2020). Research progress in elastocaloric cooling effect basing on shape memory alloy. Acta Metall Sin, 57(1), 29-41. [ 30 ] Chauhan, A., Patel, S., Vaish, R., & Bowen, C. R. (2015). A review and analysis of the elasto-caloric effect for solid-state refrigeration devices: Challenges and opportunities. MRS Energy & Sustainability, 2, E16. [ 31 ] Kirsch, S. M., Welsch, F., Michaelis, N., Schmidt, M., Wieczorek, A., Frenzel, J., ... & Seelecke, S. (2018). NiTi‐Based Elastocaloric Cooling on the Macroscale: From Basic Concepts to Realization. Energy Technology, 6(8), 1567-1587. [ 32 ] Lewis, G. N., Randall, M., & Lewis, D. (1961). Thermodynamics. Journal of The Electrochemical Society, 108(10), 234Ca. [ 33 ] Cui, J., Wu, Y., Muehlbauer, J., Hwang, Y., Radermacher, R., Fackler, S., ... & Takeuchi, I. (2012). Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires. Applied Physics Letters, 101(7). [ 34 ] Borzacchiello, A., Cirillo, L., Greco, A., & Masselli, C. (2023). A comparison between different materials with elastocaloric effect for a rotary cooling prototype. Applied Thermal Engineering, 235, 121344. [ 35 ] Joule, J. P. (1859). V. On some thermo-dynamic properties of solids. Philosophical Transactions of the Royal Society of London, (149), 91-131. [ 36 ] Rodriguez, C., & Brown, L. C. (1980). The thermal effect due to stress-induced martensite formation in β-CuAlNi single crystals. Metallurgical and Materials Transactions A, 11, 147-150. [ 37 ] Buehler, W. J., Gilfrich, J. V., & Wiley, R. C. (1963). Effect of low‐temperature phase changes on the mechanical properties of alloys near composition TiNi. Journal of applied physics, 34(5), 1475-1477. [ 38 ] Bruederlin, F., Bumke, L., Chluba, C., Ossmer, H., Quandt, E., & Kohl, M. (2018). Elastocaloric cooling on the miniature scale: a review on materials and device engineering. Energy Technology, 6(8), 1588-1604. [ 39 ] Qian, S., Wang, Y., Xu, S., Chen, Y., Yuan, L., & Yu, J. (2021). Cascade utilization of low-grade thermal energy by coupled elastocaloric power and cooling cycle. Applied Energy, 298, 117269. [ 40 ] Chluba, C., Ge, W., Lima de Miranda, R., Strobel, J., Kienle, L., Quandt, E., & Wuttig, M. (2015). Ultralow-fatigue shape memory alloy films. Science, 348(6238), 1004-1007. [ 41 ] Bechtold, C., Chluba, C., Lima de Miranda, R., & Quandt, E. (2012). High cyclic stability of the elastocaloric effect in sputtered TiNiCu shape memory films. Applied Physics Letters, 101(9). [ 42 ] Piao, M., Miyazaki, S., & Otsuka, K. (1992). Characteristics of deformation and transformation in Ti44Ni47Nb9 shape memory alloy. Materials Transactions, JIM, 33(4), 346-353. [ 43 ] Pataky, G. J., Ertekin, E., & Sehitoglu, H. (2015). Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiAl. Acta Materialia, 96, 420-427. [ 44 ] Miura, S., Morita, Y., & Nakanishi, N. (1975). Superelasticity and shape memory effect in Cu-Sn alloys. Shape memory effects in alloys, 389-405. [ 45 ] Miura, S., Maeda, S., & Nakanishi, N. (1974). Pseudoelasticity in Au-Cu-Zn thermoelastic martensite. Philosophical Magazine, 30(3), 565-581. [ 46 ] Bonnot, E., Romero, R., Mañosa, L., Vives, E., & Planes, A. (2008). Elastocaloric effect associated with the martensitic transition in shape-memory alloys. Physical review letters, 100(12), 125901. [ 47 ] Chen, Y., Zhang, X., Dunand, D. C., & Schuh, C. A. (2009). Shape memory and superelasticity in polycrystalline Cu–Al–Ni microwires. Applied Physics Letters, 95(17). [ 48 ] Picornell, C., Pons, J., & Cesari, E. (2004). Stress-temperature relationship in compression mode in Cu-Al-Ni shape memory alloys. Materials transactions, 45(5), 1679-1683. [ 49 ] Xiao, F., Fukuda, T., Kakeshita, T., & Jin, X. (2015). Elastocaloric effect by a weak first-order transformation associated with lattice softening in an Fe-31.2 Pd (at.%) alloy. Acta Materialia, 87, 8-14. [ 50 ] Alaneme, K. K., Anaele, J. U., & Okotete, E. A. (2021). Martensite aging phenomena in Cu-based alloys: Effects on structural transformation, mechanical and shape memory properties: A critical review. Scientific African, 12, e00760. [ 51 ] Cirillo, L., Greco, A., & Masselli, C. (2023). A numerical comparison among different solutions for the design of a rotary elastocaloric prototype. Applied Thermal Engineering, 228, 120487. [ 52 ] Xie, Z., Sebald, G., & Guyomar, D. (2015). Elastocaloric effect dependence on pre-elongation in natural rubber. Applied Physics Letters, 107(8). [ 53 ] Patel, S., Chauhan, A., Vaish, R., & Thomas, P. (2016). Elastocaloric and barocaloric effects in polyvinylidene di-fluoride-based polymers. Applied Physics Letters, 108(7). [ 54 ] Chen, J., Zhang, K., Kan, Q., Yin, H., & Sun, Q. (2019). Ultra-high fatigue life of NiTi cylinders for compression-based elastocaloric cooling. Applied Physics Letters, 115(9). [ 55 ] Cory, J. S. (1981). U.S. Patent No. 4,305,250. Washington, DC: U.S. Patent and Trademark Office. [ 56 ] Schiller, E. H. (2002). Heat engine driven by shape memory alloys: Prototyping and design (Doctoral dissertation, Virginia Tech). [ 57 ] Saylor, A., 2012. ARPA-E summit technology showcase. <http:// www.energy.gov/articles/2012-arpa-e-summit-technology -showcase> (accessed 12.11.15). [ 58 ] Qian, S., Alabdulkarem, A., Ling, J., Muehlbauer, J., Hwang, Y., Radermacher, R., & Takeuchi, I. (2015). Performance enhancement of a compressive thermoelastic cooling system using multi-objective optimization and novel designs. International Journal of Refrigeration, 57, 62-76. [ 59 ] Qian, S., Wang, Y., Geng, Y., Ling, J., Muehlbauer, J., Hwang, Y., ... & Takeuchi, I. (2016). Experimental evaluation of compressive elastocaloric cooling system. [ 60 ] Qian, S., Catalini, D., Muehlbauer, J., Liu, B., Mevada, H., Hou, H., ... & Takeuchi, I. (2023). High-performance multimode elastocaloric cooling system. Science, 380(6646), 722-727. [ 61 ] Ossmer, H., Miyazaki, S., & Kohl, M. (2015, June). Elastocaloric heat pumping using a shape memory alloy foil device. In 2015 Transducers-2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) (pp. 726-729). IEEE. [ 62 ] Ossmer, H., Chluba, C., Kauffmann-Weiss, S., Quandt, E., & Kohl, M. (2016). TiNi-based films for elastocaloric microcooling—fatigue life and device performance. APL Materials, 4(6). [ 63 ] Bruederlin, F., Ossmer, H., Wendler, F., Miyazaki, S., & Kohl, M. (2017). SMA foil-based elastocaloric cooling: from material behavior to device engineering. Journal of Physics D: Applied Physics, 50(42), 424003. [ 64 ] IEEE Electron Devices Society and Institute of Electrical and Electronics Engineers, 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII). [ 65 ] Tušek, J., Engelbrecht, K., Eriksen, D., Dall’Olio, S., Tušek, J., & Pryds, N. (2016). A regenerative elastocaloric heat pump. Nature Energy, 1(10), 1-6. [ 66 ] Engelbrecht, K., Tušek, J., Eriksen, D., Lei, T., Lee, C. Y., Tušek, J., & Pryds, N. (2017). A regenerative elastocaloric device: experimental results. Journal of Physics D: Applied Physics, 50(42), 424006. [ 67 ] Ianniciello, L., Bartholome, K., Fitger, A., & Engelbrecht, K. (2022). Long life elastocaloric regenerator operating under compression. Applied Thermal Engineering, 202, 117838. [ 68 ] Schmidt, M., Schütze, A., & Seelecke, S. (2015). Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes. International Journal of Refrigeration, 54, 88-97. [ 69 ] Snodgrass, R., & Erickson, D. (2019). A multistage elastocaloric refrigerator and heat pump with 28 K temperature span. Scientific reports, 9(1), 18532. [ 70 ] Ahčin, Ž., Dall’Olio, S., Žerovnik, A., Baškovič, U. Ž., Porenta, L., Kabirifar, P., ... & Tušek, J. (2022). High-performance cooling and heat pumping based on fatigue-resistant elastocaloric effect in compression. Joule, 6(10), 2338-2357. [ 71 ] Dall’Olio, S., Ahčin, Ž., Žerovnik, A., Kabirifar, P., Brojan, M., & Tušek, J. (2024). Development of a Tube-Based Elastocaloric Regenerator Loaded in Compression: A Review. Shape Memory and Superelasticity, 1-20. [ 72 ] Cirillo, L., Greco, A., & Masselli, C. (2024). 2D thermo-fluidynamic rotary model of an elastocaloric cooling device: The energy performances. Energy Conversion and Management: X, 100635. [ 73 ] Chluba, C., Ge, W., Lima de Miranda, R., Strobel, J., Kienle, L., Quandt, E., & Wuttig, M. (2015). Ultralow-fatigue shape memory alloy films. Science, 348(6238), 1004-1007. [ 74 ] Cong, D., Xiong, W., Planes, A., Ren, Y., Mañosa, L., Cao, P., ... & Wang, Y. (2019). Colossal elastocaloric effect in ferroelastic Ni-Mn-Ti alloys. Physical review letters, 122(25), 255703. [ 75 ] Ossmer, H., Lambrecht, F., Gültig, M., Chluba, C., Quandt, E., & Kohl, M. (2014). Evolution of temperature profiles in TiNi films for elastocaloric cooling. Acta materialia, 81, 9-20. [ 76 ] Mañosa, L., & Planes, A. (2017). Materials with giant mechanocaloric effects: cooling by strength. Advanced Materials, 29(11), 1603607. [ 77 ] Cirillo, L., Greco, A., Masselli, C., & Qian, S. (2023). The Italian elastocaloric rotary air conditioner: numerical modelling for optimal design and enhanced energy performances. Thermal Science and Engineering Progress, 37, 101605. [ 78 ] 王碩. (2023). 以彈熱材料作為固態冷媒之空調機研究. [ 79 ] Wang, Z. B., Tao, N. R., Li, S. S., Wang, W., Liu, G., Lu, J., & Lu, K. (2003). Effect of surface nanocrystallization on friction and wear properties in low carbon steal. Materials Science and Engineering: A, 352(1-2), 144-149. [ 80 ] Waldron, K. J., Kinzel, G. L., & Agrawal, S. K. (2016). Kinematics, Dynamics, and Design of Machinery (3rd ed.). John Wiley & Sons. [ 81 ] Whitaker, S. (1972). Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres, and for flow in packed beds and tube bundles. AIChE journal, 18(2), 361-371. [ 82 ] Waldron, K. J., Kinzel, G. L., & Agrawal, S. K. (2016). Kinematics, dynamics, and design of machinery. John Wiley & Sons. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93529 | - |
dc.description.abstract | 本研究探討採用鎳鈦合金作為潔淨能源材料之固態冷媒,以彈熱效應的原理開發彈 熱材料應用於空調系統的原型機研製。透過鎳鈦合金本身擁有形狀記憶效應及超彈性的 的性質,受應力誘發產生麻田散體相變態,造成彈熱材料發生放熱效應,相反的,當應 力釋放後產生逆相變態造成彈熱材料發生吸熱效應,此時透過低溫的彈熱材料與空調系 統內的空氣熱交換,將低溫氣體排出系統外達到環境降溫的效果。
為了開發彈熱空調系統原型機,分析鎳鈦合金受應力造成的溫度變化關係,建立彈 熱材料溫度變化與端凸輪角度關係式,設計驅動彈熱材料應變之端凸輪機構。實驗採用 直徑 0.5 mm 之鎳鈦合金線,設計合金線的挾持機構,使合金線能夠延端凸輪位移方向 拉伸及回彈產生熱效應,並隨端凸輪軸向方向移動旋轉,使彈熱材料在不同的流道位置 產生連續熱效應。設計空氣熱交換流道系統與風切機構改良過去文獻模擬發生冷熱氣體 混風問題。 量測彈熱空調原型機中彈熱材料溫度變化,以及冷端流道出口位置的溫度變化,計 算此空調系統原型機的 COP。根據實驗結果顯示,由於流道機構內之彈熱材料質量較 小,導致不足以劇烈的影響流道系統中空氣熱傳,因此 COP 的增幅並不如預期明顯。 將實驗數據與理論分析計算後的溫度變化及 COP 進行比較,由於流道機構的熱傳、鎳 鈦合金線的挾持問題等等,使量測實驗之 COP 較小。這項研究的目的在於透過潔淨能 源材料鎳鈦合金有效產生冷卻效果應用於製冷效應循環之空調系統,實現具有潛力取代 傳統空調系統冷媒之彈熱材料應用。 | zh_TW |
dc.description.abstract | This study explores the use of nickel-titanium (NiTi) alloy as a solid-state refrigerant material for clean energy applications, specifically developing a prototype air conditioning system based on the elastocaloric effect. Utilizing the shape memory effect and superelasticity inherent in NiTi alloys, stress-induced martensitic phase transformation occurs, leading to an exothermic effect in the elastocaloric material. Conversely, when the stress is released, a reverse phase transformation causes an endothermic effect, allowing the low-temperature elastocaloric material to exchange heat with the air in the air conditioning system, expelling the cooled air outside to achieve an environmental cooling effect.
To develop the prototype elastocaloric air conditioning system, the temperature change relationship caused by stress in the NiTi alloy is analyzed, establishing a correlation between temperature change and cam angle. A cam mechanism is designed to drive the strain of the elastocaloric material. Experiments utilize NiTi alloy wires with a diameter of 0.5 mm. A clamping mechanism for the alloy wire is designed to stretch and recoil the wire along the cam displacement direction, generating a thermal effect, and to rotate axially along the cam shaft direction, causing continuous thermal effects at different flow channel positions. An air heat exchange flow channel system and fan mechanism are designed to improve the cold-hot air mixing issue observed in previous studies. The temperature changes of the elastocaloric material and the outlet temperature of the cold end flow channel are measured, and the COP of the prototype air conditioning system is calculated. Experimental results indicate that due to the small mass of the elastocaloric material within the flow channel mechanism, the heat transfer effect on the airflow system is insufficient to significantly impact the COP as expected. By comparing the experimental data with theoretical calculations of temperature changes and COP, it is found that issues such as heat transfer within the flow channel mechanism and clamping problems of the NiTi alloy wire result in a lower measured COP. The aim of this study is to effectively produce a cooling effect using clean energy material NiTi alloy for application in cooling cycle air conditioning systems, demonstrating the potential of elastocaloric materials to replace traditional refrigerants in air conditioning systems. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-05T16:22:57Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-05T16:22:57Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT iv 目次 v 圖次 vii 表次 xi 符號表 xii 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻探討 3 2.1 固態冷媒製冷技術演進 3 2.2 彈熱材料原理與發展 7 2.2.1 形狀記憶合金概述 7 2.2.2 超彈性原理 10 2.2.3 彈熱效應製冷循環 12 2.2.4 彈熱材料的發展歷程概述 15 2.3 彈熱空調原型機的演進 18 第三章 實驗設計 25 3.1 彈熱材料與固態冷媒選用 25 3.2 彈熱材料應變驅動形式 26 3.3 開發彈熱空調系統 27 3.4 彈熱空調系統原型機性能表現分析 34 3.4.1 量測實驗 34 3.4.2 熱傳分析 37 第四章 實驗方法 40 4.1 凸輪模型建立 40 4.1.1 彈熱材料與凸輪關係 40 4.1.2 端凸輪從動件應力分析 53 4.2 彈熱空調系統機構設計 65 4.2.1 材料夾持機構 65 4.2.2 旋轉機構 67 4.2.3 流道機構 70 4.2.4 基座機構 75 4.3 空調流道流量控制 82 第五章 結果與討論 87 第六章 結語 96 6.1 結論 96 6.2 未來展望 97 第七章 附錄 99 第八章 參考文獻 100 | - |
dc.language.iso | zh_TW | - |
dc.title | 以鎳鈦合金作為固態冷媒之空調原型機研製 | zh_TW |
dc.title | Development of an Air Conditioning Prototype Using Nickel-Titanium Alloy as a Solid-State Refrigerant | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳志軒;梁俊德 | zh_TW |
dc.contributor.oralexamcommittee | Chih-Hsuan Chen;Jyun-De Liang | en |
dc.subject.keyword | 鎳鈦合金,彈熱效應,固態冷媒,端凸輪應用,彈熱空調, | zh_TW |
dc.subject.keyword | Nickel-Titanium Alloy,Elastocaloric effect,Solid refrigerant,End cam application,Elastocaloric air conditioning, | en |
dc.relation.page | 107 | - |
dc.identifier.doi | 10.6342/NTU202402398 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-02 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 機械工程學系 | - |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 35.25 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。