請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93494完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 宋孔彬 | zh_TW |
| dc.contributor.advisor | Kung-Bin Sung | en |
| dc.contributor.author | 李浩維 | zh_TW |
| dc.contributor.author | Hao-Wei Lee | en |
| dc.date.accessioned | 2024-08-05T16:12:10Z | - |
| dc.date.available | 2024-08-06 | - |
| dc.date.copyright | 2024-08-05 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-23 | - |
| dc.identifier.citation | [1] 脈搏血氧計市場:按類型(指尖脈搏血氧計、手持式脈搏血氧計)、按最終用戶(家庭護理、醫院)分類- COVID-19、俄羅斯-烏克蘭衝突和高通貨膨脹的累積影響- 2023 年- 2030 年全球預測- 日商環球訊息有限公司(GII). 360iResearch, June 2023.
[2] Felix Scholkmann, Stefan Kleiser, Andreas Jaakko Metz, Raphael Zimmermann, Juan Mata Pavia, Ursula Wolf, and Martin Wolf. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage, 85:6–27, 2014. [3] Alexey N Bashkatov, Elina A Genina, and Valery V Tuchin. Optical properties of skin, subcutaneous, and muscle tissues: a review. Journal of Innovative Optical Health Sciences, 4(01):9–38, 2011. [4] C Rebecca Simpson, Matthias Kohl, Matthias Essenpreis, and Mark Cope. Nearinfrared optical properties of ex vivo human skin and subcutaneous tissues measured using the monte carlo inversion technique. Physics in Medicine & Biology, 43(9):2465, 1998. [5] Jinjun Xia, Amanda Weaver, David E Gerrard, and Gang Yao. Monitoring sarcomere structure changes in whole muscle using diffuse light reflectance. Journal of Biomedical Optics, 11(4):040504–040504, 2006. [6] JF Beek, P Blokland, P Posthumus, M Aalders, JW Pickering, HJCM Sterenborg, and MJC Van Gemert. In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm. Physics in Medicine & Biology, 42(11):2255, 1997. [7] Annika MK Nilsson, Roger Berg, and Stefan Andersson-Engels. Measurements of the optical properties of tissue in conjunction with photodynamic therapy. Applied optics, 34(21):4609–4619, 1995. [8] Luca Pollonini. Optical properties and molar hemoglobin concentration of skeletal muscles measured in vivo with wearable near infrared spectroscopy. IEEE Sensors Journal, 18(6):2326–2334, 2018. [9] Giles Blaney, Phillip Curtsmith, Angelo Sassaroli, Cristianne Fernandez, and Sergio Fantini. Broadband absorption spectroscopy of heterogeneous biological tissue. Applied Optics, 60(25):7552–7562, 2021. [10] Philippe Thueler, Igor Charvet, Frederic Bevilacqua, M St. Ghislain, G Ory, Pierre Marquet, Paolo Meda, Ben Vermeulen, and Christian Depeursinge. In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties. Journal of biomedical optics, 8(3):495–503, 2003. [11] Alex F Bielajew et al. Fundamentals of the monte carlo method for neutral and charged particle transport. The University of Michigan, 1, 2001. [12] Tiziano Binzoni, Terence S Leung, Amir H Gandjbakhche, Daniel Ruefenacht, and DT Delpy. The use of the henyey–greenstein phase function in monte carlo simulations in biomedical optics. Physics in Medicine & Biology, 51(17):N313, 2006. [13] Brian C Wilson and Gerhard Adam. A monte carlo model for the absorption and flux distributions of light in tissue. Medical physics, 10(6):824–830, 1983. [14] Lihong Wang, Steven L Jacques, and Liqiong Zheng. Mcml—monte carlo modeling of light transport in multi-layered tissues. Computer methods and programs in biomedicine, 47(2):131–146, 1995. [15] Erik Alerstam, Tomas Svensson, and Stefan Andersson-Engels. Parallel computing with graphics processing units for high-speed monte carlo simulation of photon migration. Journal of biomedical optics, 13(6):060504–060504, 2008. [16] Erik Alerstam, Stefan Andersson-Engels, and Tomas Svensson. White monte carlo for time-resolved photon migration. Journal of biomedical optics, 13(4):041304–041304, 2008. [17] Partha Pratim Ray. Chatgpt: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. Internet of Things and Cyber-Physical Systems, 2023. [18] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5:115–133, 1943. [19] Sheng-Yang Tsui, Chiao-Yi Wang, Tsan-Hsueh Huang, and Kung-Bin Sung. Modelling spatially-resolved diffuse reflectance spectra of a multi-layered skin model by artificial neural networks trained with monte carlo simulations. Biomedical optics express, 9(4):1531–1544, 2018. [20] Scott A Prahl, Martin JC van Gemert, and Ashley J Welch. Determining the optical properties of turbid media by using the adding–doubling method. Applied optics, 32(4):559–568, 1993. [21] Cemre Kortun, Yasser R Hijazi, and Dizem Arifler. Combined monte carlo and finite-difference time-domain modeling for biophotonic analysis: implications on reflectance-based diagnosis of epithelial precancer. Journal of Biomedical Optics, 13(3):034014–034014, 2008. [22] Qing Lan, Ryan G McClarren, and Karthik Vishwanath. Neural network-based inverse model for diffuse reflectance spectroscopy. Biomedical Optics Express, 14(9):4725–4738, 2023. [23] Tomas Ysehak Abay and Panayiotis A Kyriacou. Reflectance photoplethysmography as noninvasive monitoring of tissue blood perfusion. IEEE Transactions on Biomedical Engineering, 62(9):2187–2195, 2015. [24] Chiao-Yi Wang, Tzu-Chia Kao, Yin-Fu Chen, Wen-Wei Su, Hsin-Jou Shen, and Kung-Bin Sung. Validation of an inverse fitting method of diffuse reflectance spectroscopy to quantify multi-layered skin optical properties. In Photonics, volume 6, page 61. MDPI, 2019. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93494 | - |
| dc.description.abstract | 定量組織光學參數有利於使用光子進行活體診斷和治療。然而現有文獻缺乏在測量活體肌肉組織的光學參數時,考慮淺層組織的光學參數。本研究目標為穩定地測量頸部肌肉組織光學參數。測量部分為自建漫反射光譜系統,採用寬頻發光二極體及三通道自製光纖(SDS=4.5, 7.5, 10.5 mm),分析波長範圍為711∼880nm。根據受試者的真皮和皮下脂肪厚度建立蒙地卡羅模型,並訓練神經網路代理模型作為順向工具加速模擬,代理模型的平均方均根誤差小於2%。模型分為表皮、真皮、皮下脂肪和肌肉層平行均質四層,其μa 和μs 範圍參考了文獻。在表皮層中,散射相位函數是透過時域有限差分模擬得出的,g=0.94。而其他組織層則使用Henyey-Greenstein 散射相位函數,真皮層中g=0.715、其餘組織層g=0.9,折射率皆設定為1.4。在擬合過程中,μa(λ) 是透過計算每個組織層內各種吸光物質的濃度決定,μs(λ) 是透過逆冪律決定。本研究採用非線性迭代曲線擬合方法萃取組織光學參數。本研究對三名受試者的頸部區域進行了測量。我們提取的每個組織的μa(λ) 與先前文獻提供的範圍一致,而受試者B 的肌肉層μ′s(λ) 略低於文獻,受試者D 的真皮層與肌肉層μ′s(λ) 略高於文獻。三名受試者的實驗光譜皆擬合良好,光譜誤差分別僅有1.52%, 2.39% 及3.72%。為了估計定量光學參數的準確性,將我們系統上測量的雜訊添加到測試光譜中並進行擬合。μa(λ) 和μ′s(λ) 的平均方均根誤差最大為真皮層μa 的23%。本研究也對受試者的前臂進行了動脈和靜脈閉塞實驗,其光強度的變化與預期的生理狀態改變一致。 | zh_TW |
| dc.description.abstract | Quantifying tissue optical parameters facilitates the use of photons for in-vivo diagnosis and treatment. However, the existing literature lacks consideration of optical parameters of superficial tissues when measuring optical parameters of muscle tissue. The goal of this study is to stably measure the optical parameters of neck muscle. The measurement part is a self-built diffuse reflectance spectroscopy system, which uses broadband lightemitting diodes and three-channel self-made optical fibers (SDS=4.5, 7.5, 10.5 mm), and also the analysis wavelength range is 711∼880 nm. A Monte Carlo model was established based on the layer thickness of the subject’s dermis and subcutaneous fat tissue, and a neural network surrogate model was trained as a forward tool to accelerate simulation. The average root mean square error of the surrogate model was less than 2% . The model is divided into four parallel and homogeneous layers: epidermis, dermis, subcutaneous fat and muscle layers. The ranges of μa and μs refer to the literature. In the epidermis layer, the scattering phase function is obtained through finite-difference time domain simulationwith g=0.94. The other tissue layers use the Henyey-Greenstein scattering phase function, with g=0.715 in the dermis layer, g=0.9 in the other tissue layers, and the refractive index is set to 1.4. During the fitting process, μa(λ) is determined by calculating the concentration of various chromophores in each tissue layer, and μs(λ) is determined through the inverse power law. In this study, a nonlinear iterative curve fitting method was used to extract tissue optical parameters. This study measured the neck region of three participants. The μa(λ) we extracted for each tissue was consistent with the range of previous literature. However, The muscle layer μ′s(λ) of subject B is slightly lower than the literature, and the dermis layer and muscle layer μ′s(λ) of subject D is slightly higher than the literature. The experimental spectra of the three subjects all fit well, with spectral errors of only 1.52%, 2.39% and 3.72% respectively. To estimate the accuracy of the quantitative optical parameters, the noise measured on our system was added to the test spectra and fitted. The maximum average root mean square errors of μa(λ) and μ′s(λ) is 23% of the dermis μa. This study also conducted arterial and venous occlusion experiments on the subject’s forearm, and the changes in light intensity were consistent with expected physiological state changes. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-05T16:12:10Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-05T16:12:10Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次:
口試委員審定書 . . . i 誌謝 . . . iii 中文摘要 . . . v 英文摘要 . . . vii 第一章緒論1 1.1 前言 . . . 1 1.2 研究動機 . . . 2 1.3 文獻回顧 . . . 2 1.4 研究目標 . . . 3 第二章理論基礎5 2.1 漫反射光譜術 . . . 5 2.2 蒙地卡羅法 . . . 6 2.2.1 多層漫反射蒙地卡羅法 . . . 7 2.2.2 白蒙地卡羅法 . . . 14 2.3 類神經網路. . . 15 2.4 曲線擬合 . . . 18 第三章研究方法19 3.1 光譜量測系統 . . . 19 3.1.1 硬體設計 . . . 19 3.1.2 波長校正 . . . 23 3.1.3 系統響應校正 . . . 24 3.1.4 光譜量測 . . . 26 3.2 漫反射光譜模擬 . . . 28 3.2.1 組織模型. . . 28 3.2.2 神經網路代理模型建立. . . 30 3.3 光譜擬合. . . 32 3.3.1 光譜擬合方法 . . . 32 3.3.2 測試光譜 . . . 34 第四章研究結果與討論35 4.1 逆向方法之理論誤差 . . . 35 4.2 人體前臂動脈與靜脈堵塞實驗結果 . . . 36 4.3 萃取健康受試者頸部肌肉及淺層組織光學參數結果 . . . 42 第五章結論與未來展望55 5.1 結論 . . . 55 5.2 未來展望 . . . 56 參考文獻59 附錄A — 系統硬體調整63 A.1 認識硬體 . . . 63 A.2 長通道光纖調整 . . . 64 A.3 短通道光纖調整. . . 64 附錄B — 光譜儀及相機軟體設定67 B.1 SpectraPro 控制軟體──Monochromator Control 設定 . . . 67 B.2 EMCCD 控制軟體──Andor Solis 設定 . . . 69 圖次: 2.1 多個SDS 量測不同深度的訊號. . . 6 2.2 光子與組織的交互作用示意圖. . . 7 2.3 筆型光束、高斯光束與平頂光束. . . 8 2.4 方位角與天頂角示意圖. . . 9 2.5 蒙地卡羅法流程圖. . . 14 2.6 (a) 單個神經元示意圖(b) 類神經網路架構示意圖. . . 16 2.7 疊代式曲線擬合流程圖. . . 18 3.1 硬體說明(a) 光學系統架構圖(b) 機櫃. . . 19 3.2 鋁基板電路圖與光纖(a) 鋁基板電路圖(b) 自製光纖外觀(c) 光譜儀側光纖(d)3D 列印探頭設計圖. . . 20 3.3 探頭貼放於頸部. . . 21 3.4 波長與像素轉換. . . 23 3.5 校正仿體. . . 24 3.6 校正仿體於波長800nm 之各SDS 校正效果. . . 25 3.7 校正仿體之校正後實驗光譜與模擬光譜比對紅線: 校正後實驗光譜 藍線: 模擬光譜(a) 仿體4 (b) 仿體5 . . . 26 3.8 光譜量測系統穩定度測試——連續拍攝50 次仿體光譜與變異係數 虛線: 變異係數實線: 不同次之拍攝. . . 27 3.9 光譜量測系統穩定度測試——重複擺放探頭共8 次光譜與變異係數 虛線: 變異係數實線: 不同次之拍攝. . . 28 3.10 組織模型. . . 28 3.11 本研究使用之神經網路架構. . . 31 3.12 神經網路於測試集之誤差分布(a) 通道一(SDS=4.5mm) (b) 通道二(SDS=7.5mm) (c) 通道三(SDS=10.5mm) . . . 32 3.13 吸收物質之吸收係數. . . 34 4.1 測試光譜擬合之各層組織μa 與μs 誤差(a)μa 誤差(b)μs 誤差長條: 平均方均根誤差誤差線: 標準差. . . 35 4.2 含雜訊的測試光譜擬合之各層組織μa 與μs 誤差(a)μa 誤差(b)μs 誤差長條: 平均方均根誤差誤差線: 標準差. . . 36 4.3 進行動脈與靜脈堵塞實驗之照片. . . 37 4.4 三位受試者動脈堵塞實驗結果(a) 受試者A (b) 受試者B (c) 受試者C 39 4.5 三位受試者靜脈堵塞實驗結果(a) 受試者A (b) 受試者B (c) 受試者C 41 4.6 文獻光學參數範圍長虛線: 體外測量短虛線: 活體測量左:μa 右:μ′s 由上至下: 表皮層、真皮層、皮下脂肪層、肌肉層. . . 45 4.7 受試者A 篩選後之光學參數多重解左:μa 右:μ′s 由上至下: 表皮層、真皮層、皮下脂肪層、肌肉層. . . 46 4.8 受試者A 篩選後皮下脂肪層μ′s 與文獻比較長虛線: 體外測量短虛線: 活體測量實線: 本研究. . . 47 4.9 受試者A 篩選後肌肉層μ′s 與文獻比較長虛線: 體外測量短虛線: 活體測量實線: 本研究. . . 48 4.10 受試者A 最佳解光譜擬合結果(編號2) . . . 48 4.11 受試者B 篩選後之光學參數多重解左:μa 右:μ′s 由上至下: 表皮層、真皮層、皮下脂肪層、肌肉層. . . 49 4.12 受試者B 篩選後皮下脂肪層μ′s 與文獻比較長虛線: 體外測量短虛線: 活體測量實線: 本研究. . . 50 4.13 受試者B 最佳解光譜擬合結果(編號6) . . . 51 4.14 受試者D 篩選後之光學參數多重解左:μa 右:μ′s 由上至下: 表皮層、真皮層、皮下脂肪層、肌肉層. . . 52 4.15 受試者D 最佳解光譜擬合結果(編號12) . . . 53 A.1 系統硬體. . . 63 A.2 將光纖鎖入光纖固定器. . . 65 A.3 確認光纖在狹縫洞口. . . 65 A.4 拍攝仿體. . . 66 A.5 確認每根光纖影像清晰呈水平線. . . 66 B.6 Monochromator Control 安裝畫面. . . 67 B.7 SpectraPro 接RS-232 . . . 68 B.8 電腦沒讀到SpectraPro . . . 68 B.9 電腦有讀到SpectraPro . . . 69 B.10 調整SpectraPro 畫面. . . 69 B.11 Acquisition Mode 調整位置. . . 70 B.12 Readout Mode 調整位置. . . 70 B.13 multi-track mode 設定. . . 71 B.14 multi-track mode 讀出影像. . . 72 B.15 曝光時間調整位置. . . 73 B.16 基本設定頁面其餘選項. . . 73 B.17 binning 調整位置. . . . 74 B.18 拍攝按紐. . . 74 B.19 存檔按鈕. . . 75 B.20 Auto-Save 設定位置. . . 75 表次: 3.1 光學元件規格表. . . 22 3.2 校正仿體配方. . . 24 3.3 組織參數說明. . . 30 3.4 神經網路輸入參數之範圍. . . 31 3.5 擬合之組織參數範圍. . . 33 4.1 人體前臂動脈與靜脈堵塞實驗受試者資料. . . 36 4.2 健康受試者頸部測量實驗受試者資料. . . 42 4.3 受試者A 之20 組擬合誤差. . . 43 4.4 受試者B 之20 組擬合誤差. . . 43 4.5 受試者D 之20 組擬合誤差. . . 43 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | 肌肉光學參數 | zh_TW |
| dc.subject | 組織光學參數 | zh_TW |
| dc.subject | 近紅外光譜 | zh_TW |
| dc.subject | 漫反射光譜術 | zh_TW |
| dc.subject | 蒙地卡羅法 | zh_TW |
| dc.subject | artificial neural network | en |
| dc.subject | diffuse reflectance spectroscopy | en |
| dc.subject | near-infrared spectroscopy | en |
| dc.subject | Monte Carlo | en |
| dc.subject | optical properties of muscle | en |
| dc.subject | tissue optical properties | en |
| dc.title | 以漫反射光譜術與蒙地卡羅模擬於活體定量人體頸部肌肉及淺層組織光學參數 | zh_TW |
| dc.title | Quantification of Optical Parameters of Human Neck Muscles and Superficial Tissues In Vivo Using Diffuse Reflectance Spectroscopy and Monte Carlo Simulation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林致廷;陳思妤 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Ting Lin;Szu-Yu Chen | en |
| dc.subject.keyword | 漫反射光譜術,近紅外光譜,蒙地卡羅法,肌肉光學參數,組織光學參數,類神經網路, | zh_TW |
| dc.subject.keyword | diffuse reflectance spectroscopy,near-infrared spectroscopy,Monte Carlo,optical properties of muscle,tissue optical properties,artificial neural network, | en |
| dc.relation.page | 75 | - |
| dc.identifier.doi | 10.6342/NTU202400122 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-23 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
| dc.date.embargo-lift | 2026-08-01 | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2026-08-01 | 31.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
