請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93491完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林宗賢 | zh_TW |
| dc.contributor.advisor | Tsung-Hsien Lin | en |
| dc.contributor.author | 王珮璇 | zh_TW |
| dc.contributor.author | Pei-Hsuan Wang | en |
| dc.date.accessioned | 2024-08-05T16:11:13Z | - |
| dc.date.available | 2024-08-06 | - |
| dc.date.copyright | 2024-08-05 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-16 | - |
| dc.identifier.citation | References
[1] L. Iotti, A. Mazzanti, and F. Svelto, “Insights into Phase Noise Scaling in Switch-Coupled Multi-Core LC VCOs for E-Band Adaptive Modulation Links,” IEEE J. Solid-State Circuits, vol. 52, no. 7, pp. 1703–1718, Jul. 2017. [2] B. Razavi, “Design of CMOS Phase-Locked Loops: From Circuit Level to Architecture Level,” Cambridge: Cambridge University Press, Mar. 2020. [3] X. Gao, E. A. M. Klumperink, P. F. J. Geraedts, and B. Nauta, "Jitter Analysis and a Benchmarking Figure-of-Merit for Phase-Locked Loops," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 2, pp. 117-121, Feb. 2009. [4] X. Gao, E. A. M. Klumperink, M. Bohsali, and B. Nauta, "A Low Noise Sub-Sampling PLL in Which Divider Noise is Eliminated and PD/CP Noise is Not Multiplied by N2," IEEE Journal of Solid-State Circuits, vol. 44, no. 12, pp. 3253-3263, Dec. 2009. [5] H. Jia, W. Deng, P. Guan, Z. Wang, and B. Chi, "20.3 A 60GHz 186.5dBc/Hz FoM Quad-Core Fundamental VCO Using Circular Triple-Coupled Transformer with No Mode Ambiguity in 65nm CMOS," IEEE International Solid-State Circuits Conference, pp. 1-3, Feb. 2021. [6] S. Yoo et al., "23.4 An 82fsrms-Jitter and 22.5mW-Power, 102GHz W-Band PLL Using a Power-Gating Injection-Locked Frequency-Multiplier-Based Phase Detector in 65nm CMOS," IEEE International Solid-State Circuits Conference, pp. 330-332, Feb. 2021. [7] B.-T. Moon, H.-C. Park, and S.-G. Lee, "10.8 A 281GHz, −1.5dBm Output-Power CMOS Signal Source Adopting a 46fsrms Jitter D-Band Cascaded Subharmonically Injection-Locked Sub-Sampling PLL with a 274MHz Reference," IEEE International Solid-State Circuits Conference, pp. 202-204, Feb. 2024. [8] B.-T. Moon, S.-G. Lee and J. Choi, "24.2 A 264-to-287GHz, −2.5dBm Output Power, and −92dBc/Hz 1MHz-Phase-Noise CMOS Signal Source Adopting a 75fsrms Jitter D-Band Cascaded Sub-Sampling PLL," IEEE International Solid-State Circuits Conference, pp. 364-366, Feb. 2023. [9] L. Wang, Z. Liu and C. P. Yue, "A 24-30 GHz Cascaded QPLL Achieving 56.8-fs RMS Jitter and −248.6-dB FoMjitter," IEEE Symposium on VLSI Technology and Circuits, pp. 1-2, June 2023. [10] K.-W. Tan, T.-S. Chu and S. S. H. Hsu, "A 76.2–89.1 GHz Phase-Locked Loop With 15.6% Tuning Range in 90 nm CMOS for W-Band Applications," IEEE Microwave and Wireless Components Letters, vol. 25, no. 8, pp. 538-540, Aug. 2015. [11] X. Liu and H. C. Luong, "A Fully Integrated 0.27-THz Injection-Locked Frequency Synthesizer With Frequency-Tracking Loop in 65-nm CMOS," IEEE Journal of Solid-State Circuits, vol. 55, no. 4, pp. 1051-1063, April 2020. [12] Y. Shu, H. J. Qian and X. Luo, "17.4 A 18.6-to-40.1GHz 201.7dBc/Hz FoMT Multi-Core Oscillator Using E-M Mixed-Coupling Resonance Boosting," IEEE International Solid-State Circuits Conference, pp. 272-274, Feb. 2020. [13] H. Guo, Y. Chen, Y. Huang, P.-I. Mak and R. P. Martins, "8.4 An 83.3-to-104.7GHz Harmonic-Extraction VCO Incorporating Multi-Resonance, Multi-Core, and Multi-Mode (3M) Techniques Achieving -124dBc/Hz Absolute PN and 190.7dBc/Hz FoMT," IEEE International Solid-State Circuits Conference, pp. 152-154, Feb. 2023. [14] X. Liu, Z. Huang, J. Yin and H. C. Luong, "Magnetic-Tuning Millimeter-Wave CMOS Oscillators (Invited Paper)," IEEE Custom Integrated Circuits Conference, pp. 1-8, April 2019. [15] J. Zhang, C. Zhao, Y. Wu, H. Liu, Y. Zhu and K. Kang, "An Ultralow Phase Noise Eight-Core Fundamental 62-to-67-GHz VCO in 65-nm CMOS," IEEE Microwave and Wireless Components Letters, vol. 29, no. 2, pp. 125-127, Feb. 2019. [16] Y. Peng, J. Yin, P.-I. Mak and R. P. Martins, "Low-Phase-Noise Wideband Mode-Switching Quad-Core-Coupled Mm-Wave VCO Using a Single-Center-Tapped Switched Inductor," IEEE Journal of Solid-State Circuits, vol. 53, no. 11, pp. 3232-3242, Nov. 2018. [17] M. Shahmohammadi, M. Babaie and R. B. Staszewski, "A 1/f Noise Upconversion Reduction Technique for Voltage-Biased RF CMOS Oscillators," IEEE Journal of Solid-State Circuits, vol. 51, no. 11, pp. 2610-2624, Nov. 2016. [18] A. Hajimiri and T. H. Lee, "A General Theory of Phase Noise in Electrical Oscillators," IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998. [19] I. Sarkas et al., "Silicon-Based Radar and Imaging Sensors Operating above 120 GHz," International Conference on Microwaves, Radar & Wireless Communications, pp. 91-96, May 2012. [20] J. Yin and H. C. Luong, "A 57.5–90.1-GHz Magnetically Tuned Multimode CMOS VCO," IEEE Journal of Solid-State Circuits, vol. 48, no. 8, pp. 1851-1861, Aug. 2013. [21] W.-L. Hsu, C.-Z. Chen, Y.-S. Lin and J.-F. Chang, "A 9.3-GHz-Tuning-Range, 58-GHz CMOS Direct Injection-Locked Frequency Divider using Input-Power-Matching Technique," Electronic Components and Technology Conference, pp. 1846-1849, May 2009. [22] K. Yamamoto and M. Fujishima, "70GHz CMOS Harmonic Injection-Locked Divider," IEEE International Solid-State Circuits Conference - Digest of Technical Papers, pp. 2472-2481, Feb. 2006. [23] C.-Y. Wu and C.-Y. Yu, "Design and Analysis of a Millimeter-Wave Direct Injection-Locked Frequency Divider With Large Frequency Locking Range," IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 8, pp. 1649-1658, Aug. 2007. [24] T.-H. Lin, C.-L. Ti and Y.-H. Liu, "Dynamic Current-Matching Charge Pump and Gated-Offset Linearization Technique for Delta-Sigma Fractional-N PLLs," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 5, pp. 877-885, May 2009. [25] K.-H. Tsai and S.-I. Liu, "A 104-GHz Phase-Locked Loop Using a VCO at Second Pole Frequency," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 1, pp. 80-88, Jan. 2012. [26] A. Basaligheh, P. Saffari, I. M. Filanovsky and K. Moez, "A 65–81 GHz CMOS Dual-Mode VCO Using High Quality Factor Transformer-Based Inductors," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 12, pp. 4533-4543, Dec. 2020. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93491 | - |
| dc.description.abstract | 本論文提出應用於毫米波頻段之八百億赫茲鎖相迴路,其主要功能是將輸出頻率鎖定在輸入參考信號的倍頻頻率上,並將輸出相位與輸入參考信號相位對齊,以提供可在晶片內實現的時脈。
本篇一共實作了兩個電路。第一顆晶片為一操作在毫米波頻段之九百億赫茲壓控振盪器,此晶片實作於台積電40奈米製程。採用模式切換雙核耦合之架構,利用電感互感的原理,透過切換開關來改變核心電路所看到的等效電感值,以實現切換頻段(粗調)的功能。在頻率細調方面,將電晶體作為可變電容,通過改變電壓來調整核心電路之等效電容值。晶片核心面積為0.021平方毫米,整體功耗為39.8毫瓦特,頻率可調整範圍為4.5 %,在一千萬赫茲頻率偏移處之相位雜訊為 -105.8 dBc/Hz,一千萬赫茲頻率偏移處之品質因數為 -169.4 dBc/Hz。 第二顆晶片實作八百億赫茲之鎖相迴路,此晶片實作於台積電40奈米製程。架構採用傳統第二型電荷泵浦鎖相迴路,其好處為操作較具韌性。除頻鏈的部分,除數為400,採用四級除以二的除頻電路串接兩級除以五的除頻電路,其中四級除以二的除頻電路為兩級注入鎖定除頻器、一級主樸式偶合閘除頻器以及一級真單相時脈除頻器,其架構設計受電路操作頻率的影響。晶片核心面積為0.4128平方毫米,整體功耗為38.3毫瓦特,在頻率偏移分別為一百萬赫茲和一千萬赫茲時,相位雜訊分別為-82 dBc/Hz和-107.2 dBc/Hz。抖動從一萬赫茲偏移處積分到一億赫茲偏移處為355飛秒,在品質因數方面, FoM @ 10MHz = -170 dBc/Hz及 FoM-jitter = -233.2。 | zh_TW |
| dc.description.abstract | This thesis proposes an 80-GHz phase-locked loop (PLL) designed for millimeter-wave application, aiming to lock the output frequency to a multiple of the input reference signal and align the output phase with the input signal, providing an on-chip clock.
In this thesis, two circuits have been implemented. The first chip is a 90-GHz voltage-controlled oscillator (VCO), fabricated in a TSMC 40-nm process. It employs a mode-switching dual-core-coupled architecture based on inductive coupling. For coarse tuning, switches are used to vary the effective inductance values. Fine-tuning is achieved by utilizing transistors as varactors to modify the effective capacitance values. The core area of this chip is 0.021 mm2, with a total power consumption of 39.8 mW. The frequency tuning range is 4.5 %. The phase noise at a 10 MHz offset is -105.8 dBc/Hz, and the figure of merit (FoM) at a 10 MHz offset is -169.4 dBc/Hz. The second one, also fabricated in a TSMC 40-nm process, implements an 80-GHz phase-locked loop (PLL) based on a conventional Type-II charge-pump PLL(CPPLL) architecture, known for its robust operation. It features a division factor of 400 and consists of four stages of divide-by-two circuits cascaded by two stages of divide-by-five circuits. The architecture is chosen based on the operating frequency of the circuit. The core area of this chip is 0.33 mm2 with a power consumption of 38.3 mW. The phase noise at 1 MHz and 10 MHz offset are -82 dBc/Hz and -107.2 dBc/Hz, respectively. The integrated jitter from 10 kHz to 100 MHz offset is 355 fs. The FoM @ 10MHz is -170 dBc/Hz, and the FoM-jitter is -233.2. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-05T16:11:13Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-05T16:11:13Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Table of Contents
論文口試委員會審定書 i 致謝 iii 摘要 v Abstract vii List of Figures xi List of Tables xv Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Thesis Overview 3 Chapter 2 Fundamental of Mm-Wave Phase-Locked Loop 5 2.1 Fundamentals of CPPLL and SSPLL 5 2.1.1 Charge-Pump PLL 5 2.1.2 Sub-Sampling PLL 7 2.2 Design Considerations and Techniques of Mm-Wave PLL 9 2.2.1 Design Considerations of High-Frequency PLL 9 2.2.2 Techniques for High-Frequency PLL 11 2.3 Design Considerations and Techniques of Mm-Wave VCO 15 2.3.1 Design Considerations of High-Frequency VCO 16 2.3.2 Techniques for High-Frequency VCO 16 Chapter 3 Design of a 90-GHz Mode-Switching Dual-Core-Coupled VCO 25 3.1 Circuit Implementation 25 3.2 Design Flows and Considerations 28 3.3 Layout Considerations 32 3.4 Simulation Results 33 3.5 Measurement Results 35 3.5.1 Die photo 35 3.5.2 Measurement Environment Setup 35 3.5.3 Measurement Results and Discussion 37 3.6 Summary 40 Chapter 4 Design of an 80-GHz Type-II PLL 42 4.1 System Architecture 42 4.1.1 Voltage-Controlled Oscillator (VCO) 43 4.1.2 Divide-by-2 Injection-Locked Frequency Dividers (ILFD) 45 4.1.3 Divide-by-2 Current-Mode-Logic Divider (CMLD) 47 4.1.4 Other Dividers 49 4.1.5 Low-Frequency Circuits 50 4.2 Design Flows and Layout Considerations 53 4.3 Simulation Results 61 4.4 Measurement Results 63 4.4.1 Die Photo 63 4.4.2 Printed Circuit Board (PCB) for Probing 64 4.4.3 Measurement Environment Setup 66 4.4.4 Measurement Results and Discussion 67 4.5 Summary 74 Chapter 5 Conclusions and Future Works 76 5.1 Conclusions 76 5.2 Future Works 77 References 81 | - |
| dc.language.iso | en | - |
| dc.subject | 毫米波 | zh_TW |
| dc.subject | 第二型鎖相迴路 | zh_TW |
| dc.subject | 電荷泵浦鎖相迴路 | zh_TW |
| dc.subject | 模式切換 | zh_TW |
| dc.subject | 壓控振盪器 | zh_TW |
| dc.subject | 雙核耦合 | zh_TW |
| dc.subject | Charge-Pump PLL (CPPLL) | en |
| dc.subject | Type-II Phase-Locked Loop (PLL) | en |
| dc.subject | Dual-Core-Coupled | en |
| dc.subject | Mode-Switching | en |
| dc.subject | Voltage-Controlled Oscillator (VCO) | en |
| dc.subject | Mm-Wave | en |
| dc.title | 應用於毫米波頻段之八百億赫茲鎖相迴路 | zh_TW |
| dc.title | An 80-GHz Phase-Locked Loop for Millimeter-Wave Application | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李泰成;劉深淵;許雲翔 | zh_TW |
| dc.contributor.oralexamcommittee | Tai-Cheng Lee;Shen-Iuan Liu;Yun-Shiang Shu | en |
| dc.subject.keyword | 毫米波,壓控振盪器,模式切換,雙核耦合,第二型鎖相迴路,電荷泵浦鎖相迴路, | zh_TW |
| dc.subject.keyword | Mm-Wave,Voltage-Controlled Oscillator (VCO),Mode-Switching,Dual-Core-Coupled,Type-II Phase-Locked Loop (PLL),Charge-Pump PLL (CPPLL), | en |
| dc.relation.page | 84 | - |
| dc.identifier.doi | 10.6342/NTU202401801 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-07-17 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| dc.date.embargo-lift | 2029-07-15 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 4.66 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
