請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93472
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 童世煌 | zh_TW |
dc.contributor.advisor | Shih-Huang Tung | en |
dc.contributor.author | 高嘉榮 | zh_TW |
dc.contributor.author | Chia-Jung Kao | en |
dc.date.accessioned | 2024-08-01T16:18:18Z | - |
dc.date.available | 2024-08-02 | - |
dc.date.copyright | 2024-08-01 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-26 | - |
dc.identifier.citation | 1. Farbod, F., B. Pourabbas, and M. Sharif, Direct breath figure formation on PMMA and superhydrophobic surface using in situ perfluoro‐modified silica nanoparticles. Journal of Polymer Science Part B: Polymer Physics, 2013. 51(6): p. 441-451.
2. Wan, L.S., J.W. Li, B.B. Ke, and Z.K. Xu, Ordered microporous membranes templated by breath figures for size-selective separation. J Am Chem Soc, 2012. 134(1): p. 95-8. 3. Zhang, X., G. Sun, H. Liu, and X. Zhang, Fabrication of porous polymer coating layers with selective wettability on filter papers via the breath figure method and their applications in oil/water separation. RSC advances, 2021. 11(24): p. 14276-14284. 4. Dai, J., H. Zhao, X. Lin, S. Liu, T. Fei, and T. Zhang, Humidity Sensors Based on 3D Porous Polyelectrolytes via Breath Figure Method. Advanced Electronic Materials, 2019. 6(1). 5. Kong, L., R. Dong, H. Ma, and J. Hao, Au NP honeycomb-patterned films with controllable pore size and their surface-enhanced Raman scattering. Langmuir, 2013. 29(13): p. 4235-41. 6. Wu, X. and S. Wang, Regulating MC3T3-E1 cells on deformable poly(epsilon-caprolactone) honeycomb films prepared using a surfactant-free breath figure method in a water-miscible solvent. ACS Appl Mater Interfaces, 2012. 4(9): p. 4966-75. 7. Huang, C., X. Shen, X. Liu, Z. Chen, B. Shu, L. Wan, H. Liu, and J. He, Hybrid breath figure method: A new insight in Petri dishes for cell culture. Journal of Colloid and Interface Science, 2019. 541: p. 114-122. 8. Cao, T.T., H. Yabu, and D.S. Huh, Flower-like ordered porous array by combination of breath figure and layer-by-layer technique. Polymer, 2021. 233: p. 124206. 9. Kuiper, S., C. van Rijn, W. Nijdam, O. Raspe, H. van Wolferen, G. Krijnen, and M. Elwenspoek, Filtration of lager beer with microsieves: flux, permeate haze and in-line microscope observations. Journal of Membrane Science, 2002. 196(2): p. 159-170. 10. van Reis, R. and A. Zydney, Membrane separations in biotechnology. Current Opinion in Biotechnology, 2001. 12(2): p. 208-211. 11. Nishikawa, T., R. Ookura, J. Nishida, K. Arai, J. Hayashi, N. Kurono, T. Sawadaishi, M. Hara, and M. Shimomura, Fabrication of honeycomb film of an amphiphilic copolymer at the air− water interface. Langmuir, 2002. 18(15): p. 5734-5740. 12. Chen, F.T., K.P. Chang, Y.C. Liao, and S.H. Tung, Macroporous fibers electrospun from dual‐good solvent system. Journal of Polymer Science, 2023. 61(20): p. 2539-2548. 13. Aitken, J., Breath Figures. Proceedings of the Royal Society of Edinburgh, 1895. 20: p. 94-97. 14. Aitkek, J., Breath Figures. Nature, 1911. 86(2172): p. 516-517. 15. Beysens, D., The formation of dew. Atmospheric research, 1995. 39(1-3): p. 215-237. 16. Spurr, R.T. and J.G. Butlin, Breath Figures. Nature, 1957. 179(4571): p. 1187-1187. 17. Widawski, G., M. Rawiso, and B. François, Self-organized honeycomb morphology of star-polymer polystyrene films. Nature, 1994. 369(6479): p. 387-389. 18. Peng, J., Y. Han, Y. Yang, and B. Li, The influencing factors on the macroporous formation in polymer films by water droplet templating. Polymer, 2004. 45(2): p. 447-452. 19. Li, L., Y. Zhong, J. Li, C. Chen, A. Zhang, J. Xu, and Z. Ma, Thermally stable and solvent resistant honeycomb structured polystyrene films via photochemical cross-linking. Journal of Materials Chemistry, 2009. 19(39): p. 7222-7227. 20. Zhang, A., H. Bai, and L. Li, Breath Figure: A Nature-Inspired Preparation Method for Ordered Porous Films. Chem Rev, 2015. 115(18): p. 9801-68. 21. Zhao, B., J. Zhang, H. Wu, X. Wang, and C. Li, Fabrication of honeycomb ordered polycarbonate films using water droplets as template. Thin Solid Films, 2007. 515(7): p. 3629-3634. 22. Ferrari, E., P. Fabbri, and F. Pilati, Solvent and Substrate Contributions to the Formation of Breath Figure Patterns in Polystyrene Films. Langmuir, 2011. 27(5): p. 1874-1881. 23. Park, M.S. and J.K. Kim, Breath Figure Patterns Prepared by Spin Coating in a Dry Environment. Langmuir, 2004. 20(13): p. 5347-5352. 24. Nguyen, H.M., A.V. Mader, S. De, F. Basarir, and J. Vapaavuori, Controlling the Self‐Assembly of Hierarchical PS‐b‐P4VP Structures Prepared by Dip‐Coating and Emulsion Breath Figure Techniques. ChemistrySelect, 2023. 8(13): p. e202300797. 25. Vargas-Alfredo, N., A. Dorronsoro, A.L. Cortajarena, and J. Rodríguez-Hernández, Antimicrobial 3D Porous Scaffolds Prepared by Additive Manufacturing and Breath Figures. ACS Applied Materials & Interfaces, 2017. 9(42): p. 37454-37462. 26. Mansouri, J., E. Yapit, and V. Chen, Polysulfone filtration membranes with isoporous structures prepared by a combination of dip-coating and breath figure approach. Journal of Membrane Science, 2013. 444: p. 237-251. 27. Chiu, Y.-C., C.-C. Kuo, C.-J. Lin, and W.-C. Chen, Highly ordered luminescent microporous films prepared from crystalline conjugated rod-coil diblock copolymers of PF-b-PSA and their superhydrophobic characteristics. Soft Matter, 2011. 7(19): p. 9350-9358. 28. de Boer, B., U. Stalmach, H. Nijland, and G. Hadziioannou, Microporous honeycomb‐structured films of semiconducting block copolymers and their use as patterned templates. Advanced Materials, 2000. 12(21): p. 1581-1583. 29. Nepomnyashchy, A., A. Golovin, A. Tikhomirova, and V. Volpert, Nucleation and growth of droplets at a liquid-gas interface. Physical Review E, 2006. 74(2): p. 021605. 30. Maruyama, N., T. Koito, J. Nishida, T. Sawadaishi, X. Cieren, K. Ijiro, O. Karthaus, and M. Shimomura, Mesoscopic patterns of molecular aggregates on solid substrates. Thin Solid Films, 1998. 327-329: p. 854-856. 31. Dell’Aversana, P., J.R. Banavar, and J. Koplik, Suppression of coalescence by shear and temperature gradients. Physics of Fluids, 1996. 8(1): p. 15-28. 32. Dell’Aversana, P., V. Tontodonato, and L. Carotenuto, Suppression of coalescence and of wetting: The shape of the interstitial film. Physics of Fluids, 1997. 9(9): p. 2475-2485. 33. Dong, R., J. Yan, H. Ma, Y. Fang, and J. Hao, Dimensional Architecture of Ferrocenyl-Based Oligomer Honeycomb-Patterned Films: From Monolayer to Multilayer. Langmuir, 2011. 27(14): p. 9052-9056. 34. Ting, W.-H., C.-C. Chen, S.A. Dai, S.-Y. Suen, I.-K. Yang, Y.-L. Liu, F.M. Chen, and R.-J. Jeng, Superhydrophobic waxy-dendron-grafted polymer films via nanostructure manipulation. Journal of Materials Chemistry, 2009. 19(27): p. 4819-4828. 35. Wu, B.-H., L.-W. Wu, K. Gao, S.-H. Chen, Z.-K. Xu, and L.-S. Wan, Self-Assembly of Patterned Porous Films from Cyclic Polystyrenes via the Breath Figure Method. The Journal of Physical Chemistry C, 2018. 122(7): p. 3926-3933. 36. Nishikawa, T., J. Nishida, R. Ookura, S.-I. Nishimura, S. Wada, T. Karino, and M. Shimomura, Honeycomb-patterned thin films of amphiphilic polymers as cell culture substrates. Materials Science and Engineering: C, 1999. 8-9: p. 495-500. 37. Zhu, L.-W., Y. Ou, L.-S. Wan, and Z.-K. Xu, Polystyrenes with Hydrophilic End Groups: Synthesis, Characterization, and Effects on the Self-Assembly of Breath Figure Arrays. The Journal of Physical Chemistry B, 2014. 118(3): p. 845-854. 38. Xu, Y., B. Zhu, and Y. Xu, A study on formation of regular honeycomb pattern in polysulfone film. Polymer, 2005. 46(3): p. 713-717. 39. Beysens, D., A. Steyer, P. Guenoun, D. Fritter, and C. Knobler, How does dew form? Phase Transitions, 1991. 31(1-4): p. 219-246. 40. Tian, Y., Q. Jiao, H. Ding, Y. Shi, and B. Liu, The formation of honeycomb structure in polyphenylene oxide films. Polymer, 2006. 47(11): p. 3866-3873. 41. Cheng, C.X., Y. Tian, Y.Q. Shi, R.P. Tang, and F. Xi, Porous Polymer Films and Honeycomb Structures Based on Amphiphilic Dendronized Block Copolymers. Langmuir, 2005. 21(14): p. 6576-6581. 42. Zhao, X., Q. Cai, G. Shi, Y. Shi, and G. Chen, Formation of ordered microporous films with water as templates from poly (d, l‐lactic‐co‐glycolic acid) solution. Journal of applied polymer science, 2003. 90(7): p. 1846-1850. 43. Govor, L.V., I.A. Bashmakov, R. Kiebooms, V. Dyakonov, and J. Parisi, Self‐Organized Networks Based on Conjugated Polymers. Advanced Materials, 2001. 13(8): p. 588-591. 44. Tian, Y., S. Liu, H. Ding, L. Wang, B. Liu, and Y. Shi, Formation of deformed honeycomb-patterned films from fluorinated polyimide. Polymer, 2007. 48(8): p. 2338-2344. 45. Li, J., J. Peng, W. Huang, Y. Wu, J. Fu, Y. Cong, L. Xue, and Y. Han, Ordered honeycomb-structured gold nanoparticle films with changeable pore morphology: From circle to ellipse. Langmuir, 2005. 21(5): p. 2017-2021. 46. Chae Park, H., Y. Po Kim, H. Yong Kim, and Y. Soo Kang, Membrane formation by water vapor induced phase inversion. Journal of Membrane Science, 1999. 156(2): p. 169-178. 47. Menut, P., Y.S. Su, W. Chinpa, C. Pochat-Bohatier, A. Deratani, D.M. Wang, P. Huguet, C.Y. Kuo, J.Y. Lai, and C. Dupuy, A top surface liquid layer during membrane formation using vapor-induced phase separation (VIPS)—Evidence and mechanism of formation. Journal of Membrane Science, 2008. 310(1): p. 278-288. 48. Zhao, N., Q. Xie, L. Weng, S. Wang, X. Zhang, and J. Xu, Superhydrophobic Surface from Vapor-Induced Phase Separation of Copolymer Micellar Solution. Macromolecules, 2005. 38(22): p. 8996-8999. 49. Peng, Y., Y. Dong, H. Fan, P. Chen, Z. Li, and Q. Jiang, Preparation of polysulfone membranes via vapor-induced phase separation and simulation of direct-contact membrane distillation by measuring hydrophobic layer thickness. Desalination, 2013. 316: p. 53-66. 50. Wang, D.-M. and J.-Y. Lai, Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation. Current Opinion in Chemical Engineering, 2013. 2(2): p. 229-237. 51. Wang, D.-M., A. Venault, and J.-Y. Lai, Chapter 2 - Fundamentals of nonsolvent-induced phase separation, in Hollow Fiber Membranes, T.-S. Chung and Y. Feng, Editors. 2021, Elsevier. p. 13-56. 52. Kuo, C.-Y., H.-N. Lin, H.-A. Tsai, D.-M. Wang, and J.-Y. Lai, Fabrication of a high hydrophobic PVDF membrane via nonsolvent induced phase separation. Desalination, 2008. 233(1): p. 40-47. 53. Hansen, C.M., Hansen solubility parameters: a user's handbook. 2007: CRC press. 54. Guillen, G.R., Y. Pan, M. Li, and E.M.V. Hoek, Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review. Industrial & Engineering Chemistry Research, 2011. 50(7): p. 3798-3817. 55. Laity, P.R., P.M. Glover, and J.N. Hay, Composition and phase changes observed by magnetic resonance imaging during non-solvent induced coagulation of cellulose. Polymer, 2002. 43(22): p. 5827-5837. 56. Guillen, G.R., G.Z. Ramon, H.P. Kavehpour, R.B. Kaner, and E.M.V. Hoek, Direct microscopic observation of membrane formation by nonsolvent induced phase separation. Journal of Membrane Science, 2013. 431: p. 212-220. 57. Matsuyama, H., M. Teramoto, S. Kudari, and Y. Kitamura, Effect of diluents on membrane formation via thermally induced phase separation. Journal of applied polymer science, 2001. 82(1): p. 169-177. 58. Matsuyama, H., Y. Takida, T. Maki, and M. Teramoto, Preparation of porous membrane by combined use of thermally induced phase separation and immersion precipitation. Polymer, 2002. 43(19): p. 5243-5248. 59. Funk, C.V., P.L. Hanks, K.J. Kaczorowski, and D.R. Lloyd, Diluent crystal alignment in the formation of membranes via liquid–solid thermally induced phase separation. Journal of Porous Materials, 2009. 16: p. 453-458. 60. Matsuyama, H., M. Yuasa, Y. Kitamura, M. Teramoto, and D.R. Lloyd, Structure control of anisotropic and asymmetric polypropylene membrane prepared by thermally induced phase separation. Journal of Membrane Science, 2000. 179(1): p. 91-100. 61. Microfiltration, in Membrane Technology and Applications. 2004. p. 275-300. 62. Warkiani, M.E., L. Chen, C.-P. Lou, H.-B. Liu, R. Zhang, and H.-Q. Gong, Capturing and recovering of Cryptosporidium parvum oocysts with polymeric micro-fabricated filter. Journal of Membrane Science, 2011. 369(1): p. 560-568. 63. Apel, P., Track etching technique in membrane technology. Radiation Measurements, 2001. 34(1): p. 559-566. 64. Gironès, M., I.J. Akbarsyah, W. Nijdam, C.J.M. van Rijn, H.V. Jansen, R.G.H. Lammertink, and M. Wessling, Polymeric microsieves produced by phase separation micromolding. Journal of Membrane Science, 2006. 283(1): p. 411-424. 65. Peinemann, K.-V., V. Abetz, and P.F.W. Simon, Asymmetric superstructure formed in a block copolymer via phase separation. Nature Materials, 2007. 6(12): p. 992-996. 66. Phillip, W.A., B. O’Neill, M. Rodwogin, M.A. Hillmyer, and E.L. Cussler, Self-Assembled Block Copolymer Thin Films as Water Filtration Membranes. ACS Applied Materials & Interfaces, 2010. 2(3): p. 847-853. 67. Aynard, A., L. Pessoni, and L. Billon, Directed self-assembly in “breath figure” templating of block copolymers followed by soft hydrolysis-condensation: One step towards synthetic bio-inspired silica diatoms exoskeleton. Polymer, 2020. 210: p. 123047. 68. Poinern, G.E.J., N. Ali, and D. Fawcett, Progress in nano-engineered anodic aluminum oxide membrane development. Materials, 2011. 4(3): p. 487-526. 69. Wu, L.W., L.S. Wan, Y. Ou, L.W. Zhu, and Z.K. Xu, Fabrication of transferable perforated isoporous membranes on versatile solid substrates via the breath figure method. Advanced Materials Interfaces, 2015. 2(16): p. 1500285. 70. Du, C., A. Zhang, H. Bai, and L. Li, Robust Microsieves with Excellent Solvent Resistance: Cross-Linkage of Perforated Polymer Films with Honeycomb Structure. ACS Macro Letters, 2013. 2(1): p. 27-30. 71. Ma, H. and J. Hao, Evaporation‐Induced Ordered Honeycomb Structures of Gold Nanoparticles at the Air/Water Interface. Chemistry–A European Journal, 2010. 16(2): p. 655-660. 72. Ma, H., J. Cui, A. Song, and J. Hao, Fabrication of freestanding honeycomb films with through-pore structures via air/water interfacial self-assembly. Chemical Communications, 2011. 47(4): p. 1154-1156. 73. Wan, L.-S., J.-W. Li, B.-B. Ke, and Z.-K. Xu, Ordered Microporous Membranes Templated by Breath Figures for Size-Selective Separation. Journal of the American Chemical Society, 2012. 134(1): p. 95-98. 74. Ou, Y., C.-J. Lv, W. Yu, Z.-W. Mao, L.-S. Wan, and Z.-K. Xu, Fabrication of Perforated Isoporous Membranes via a Transfer-Free Strategy: Enabling High-Resolution Separation of Cells. ACS Applied Materials & Interfaces, 2014. 6(24): p. 22400-22407. 75. Kamei, J. and H. Yabu, One step fabrication of mesh-reinforced hierarchic perforated microporous honeycomb films with tunable filtering property. Soft Matter, 2017. 13(43): p. 7834-7839. 76. Yang, Y.B., W. Chai, L. Zhang, J. Wang, and J. You, A mini‐review of polymeric porous membranes with vertically penetrative pores. Journal of Polymer Science, 2024. 62(3): p. 492-507. 77. Nnadozie, C.F., J. Lin, and R. Govinden, Selective isolation of bacteria for metagenomic analysis: impact of membrane characteristics on bacterial filterability. Biotechnology Progress, 2015. 31(4): p. 853-866. 78. Yu, B., H. Cong, Z. Li, H. Yuan, Q. Peng, M. Chi, S. Yang, R. Yang, S. Ranil Wickramasinghe, and J. Tang, Fabrication of highly ordered porous membranes of cellulose triacetate on ice substrates using breath figure method. Journal of Polymer Science Part B: Polymer Physics, 2015. 53(8): p. 552-558. 79. Zhang, C., X. Wang, K. Min, D. Lee, C. Wei, H. Schulhauser, and H. Gao, Developing porous honeycomb films using miktoarm star copolymers and exploring their application in particle separation. Macromolecular rapid communications, 2014. 35(2): p. 221-227. 80. Ou, Y., D. Zhou, Z.-K. Xu, and L.-S. Wan, Surface modification of self-assembled isoporous polymer membranes for pressure-dependent high-resolution separation. Polymer Chemistry, 2019. 10(23): p. 3201-3209. 81. Cong, H., J. Wang, B. Yu, and J. Tang, Preparation of a highly permeable ordered porous microfiltration membrane of brominated poly (phenylene oxide) on an ice substrate by the breath figure method. Soft Matter, 2012. 8(34): p. 8835-8839. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93472 | - |
dc.description.abstract | 呼吸圖法 (Breath Figure, BF)是一種在固體基材上製備有序等孔薄膜的方法,然而一般BF法的薄膜其孔洞僅存在於表面,無法形成穿孔,要依賴特殊的基材才能達成穿孔,例如水或冰,來增強基材的親水性,但這也增加了製備的難度,且薄膜的厚度至多為 1~2 μm,缺乏足夠的機械性質,需要將薄膜轉移至另外的多孔支撐物方可進行過濾應用,額外轉移步驟對薄膜難免會造成破損。
本研究引入新的相分離機制-水溶性溶劑輔助呼吸圖法 (Water Miscible Solvent-assistant Breath Figure, WMSBF),使用苯乙烯-丙烯腈共聚物 (SAN),混合氯苯 (CB)、氯仿 (CF)與二甲基亞碸 (DMSO)為高分子溶液,將無基板線圈浸泡至溶液後拉出形成液膜,透過WMSBF機制,雙面揮發的過程中孔洞會在液膜兩表面成核並深入成長,最終合併形成巨孔穿透薄膜。我們有系統地研究影響成膜的條件,也探討實驗變因,例如:高分子濃度、溶劑比例、環境濕度、氣流速度等,如何影響薄膜的孔徑、孔隙率、厚度及穿孔性等,最後成功製備平均孔徑約 2.2 μm之高分子穿孔薄膜,厚度可以達到 4 μm,具優異的機械強度,並可輕易地從線圈取下成為獨立膜,能直接進行過濾應用。透水性實驗中該薄膜在重力條件的壓力下,水通量為120 L m-2 h-1,在酵母過濾實驗中,就算在高壓力下過濾薄膜也不會破損,酵母攔截率幾乎為100 %。 | zh_TW |
dc.description.abstract | Breath Figure (BF) is a method for preparing ordered isoporous membranes on solid substrates. However, by the BF method, pores generally only exist on the surface and cannot penetrate. For the perforation of the pores, it requires a special substrate, such as water or ice, to greatly enhance the hydrophilicity of the substrate, which adds the fabrication complication and difficulty. Furthermore, the thickness of the resulting membranes is at most 1~2 μm, lacking of sufficient mechanical properties. Therefore, the thin membranes are usually necessary to be transferred to another porous supports for filtration application. Additional transfer steps inevitably cause damage to the membrane.
In this study, we introduce a new phase separation mechanism - water miscible solvent-assistant Breath Figure (WMSBF) for preparing styrene-acrylonitrile copolymer (SAN) porous membranes using chlorobenzene (CB), chloroform (CF) and dimethyl sulfoxide (DMSO) as solvents. The membranes are cast through double-sided evaporation of polymer liquid films formed on a wire loop that is dipped up from the polymer solutions. Through the WMSBF mechanism, the pores are nucleated on the two surfaces of the liquid films during evaporation, then grow into the films, and eventually merge to form the perforated macroporous membrane. We systematically studied the conditions that affect membrane formation and investigated how the experimental parameters, such as polymer concentration, solvent ratio, relative humidity, and air flow rate, affect the pore size, porosity, thickness, and perforation of the film. Polymer perforated membranes with an average pore diameter of approximately 2.2 μm and a thickness above 4 μm were successfully prepared. The membranes are mechanically robust and can be easily removed from the wire loop in a free-standing form, capable of direct usage for filtration applications. In the water permeability experiment, the membrane has a water flux of 120 L m-2 h-1 in a pressure under gravity conditions. In the yeast removal tests, the filtration can be conducted at elevated pressure without damaging the membrane and the yeast rejection rate is almost 100%. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-01T16:18:18Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-01T16:18:18Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
謝辭 ii 中文摘要 iii 英文摘要 iv 圖次 ix 表次 xv 第一章 緒論 1 1.1 前言及研究動機 1 第二章 文獻回顧 2 2.1 相分離成孔機制-呼吸圖法 2 2.1.1 概述 2 2.1.2 製備方法 2 2.1.2.1 滴鑄 (Drop casting) 2 2.1.2.2 旋轉塗佈 (Spin Coating) 3 2.1.2.3 浸鍍 (Dip coating) 4 2.1.3 原理 4 2.1.4 影響參數 7 2.2 其他相分離機制 9 2.2.1 蒸氣誘導相分離法 (VIPS) 9 2.2.2 非溶劑誘導相分離法 (NIPS) 11 2.2.3 熱誘導相分離法 (TIPS) 13 2.2.4 水溶性溶劑輔助呼吸圖法 (WMSBF) 14 2.3 穿孔薄膜 17 2.3.1 製備方法 17 2.3.2 應用 21 第三章 實驗內容 23 3.1 實驗材料 23 3.1.1 高分子 23 3.1.2 溶劑 23 3.1.3 基材 25 3.2 浸鑄設備 25 3.3 過濾設備 26 3.4 實驗儀器及原理 26 3.4.1 場發射掃描式電子顯微鏡 (FE-SEM) 27 3.4.2 白金濺鍍機 28 3.4.3 粒徑分析儀 (DLS) 29 3.4.4 紫外-可見光光譜儀(UV-VIS) 29 3.5 實驗步驟 30 3.5.1 製備高分子溶液 31 3.5.2 浸鑄條件設定 31 3.5.3 製備高分子薄膜 31 3.5.4 觀測薄膜結構 31 3.5.5 純水通量測試 (重力) 32 3.5.6 酵母過濾測試 33 3.5.7 酵母殘留測定 33 第四章 實驗結果與討論 35 4.1 穿孔薄膜製備 35 4.1.1 實驗樣品命名 36 4.1.2 溶劑測試 37 4.2 尋找穿孔最佳條件 38 4.2.1 溶劑組合及比例 38 4.2.2 氣流速度 44 4.2.3 高分子濃度 46 4.2.4 環境濕度 51 4.2.5 外加水的影響 55 4.3 改善孔洞均一性 60 4.3.1 吹水氣方式 61 4.3.2 水氣氣流速度 63 4.3.3 Blowing distance影響 70 4.3.4 Working distance影響 73 4.4 過濾 77 4.4.1 薄膜命名 77 4.4.2 酵母過濾 79 第五章 結論 84 參考文獻 86 附錄 93 一、溶劑組合及比例 93 二、成膜性 102 三、孔徑分布 109 | - |
dc.language.iso | zh_TW | - |
dc.title | 藉由雙面揮發高分子液膜製備巨孔穿透薄膜 | zh_TW |
dc.title | Perforated Macroporous Membranes Cast through Double-Sided Evaporation of Polymer Liquid Films | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 邱方遒;胡蒨傑;陳錦文 | zh_TW |
dc.contributor.oralexamcommittee | Fang-Chyou Chiu;Chien-Chieh Hu ;Chin-Wen Chen | en |
dc.subject.keyword | 呼吸圖法,相分離法,分離膜,多孔材料,穿孔高分子薄膜,獨立式薄膜,酵母過濾, | zh_TW |
dc.subject.keyword | Breath Figure,Phase separation method,Separation membranes,Porous materials,Perforation polymer membranes,Free-standing membranes,Filtration of yeast cells, | en |
dc.relation.page | 113 | - |
dc.identifier.doi | 10.6342/NTU202402184 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-07-29 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 高分子科學與工程學研究所 | - |
顯示於系所單位: | 高分子科學與工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 7.76 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。