Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93470
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童世煌zh_TW
dc.contributor.advisorShih-Huang Tungen
dc.contributor.author周祐賢zh_TW
dc.contributor.authorYu-Hsien Chouen
dc.date.accessioned2024-08-01T16:17:42Z-
dc.date.available2024-08-02-
dc.date.copyright2024-08-01-
dc.date.issued2024-
dc.date.submitted2024-07-22-
dc.identifier.citation1. Mamur, H., M.R.A. Bhuiyan, F. Korkmaz, and M. Nil, A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications. Renewable and Sustainable Energy Reviews, 2018. 82: p. 4159-4169.
2. Sajid, M., I. Hassan, and A. Rahman, An overview of cooling of thermoelectric devices. Renewable and Sustainable Energy Reviews, 2017. 78: p. 15-22.
3. Siddique, A.R.M., S. Mahmud, and B.V. Heyst, A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges. Renewable and Sustainable Energy Reviews, 2017. 73: p. 730-744.
4. Burmester, D., R. Rayudu, W. Seah, and D. Akinyele, A review of nanogrid topologies and technologies. Renewable and Sustainable Energy Reviews, 2017. 67: p. 760-775.
5. Schwall, M. and B. Balke, Phase separation as a key to a thermoelectric high efficiency. Physical Chemistry Chemical Physics, 2013. 15(6): p. 1868-1872.
6. Zhang, G., Q. Yu, W. Wang, and X. Li, Nanostructures for Thermoelectric Applications: Synthesis, Growth Mechanism, and Property Studies. Advanced Materials, 2010. 22(17): p. 1959-1962.
7. d’Angelo, M., C. Galassi, and N. Lecis Thermoelectric Materials and Applications: A Review. Energies, 2023. 16, DOI: 10.3390/en16176409.
8. Mamur, H. and R. Ahiska, Application of a DC–DC boost converter with maximum power point tracking for low power thermoelectric generators. Energy Conversion and Management, 2015. 97: p. 265-272.
9. Rausch, E., B. Balke, T. Deschauer, S. Ouardi, and C. Felser, Charge carrier concentration optimization of thermoelectric p-type half-Heusler compounds. APL Materials, 2015. 3(4): p. 041516.
10. Huen, P. and W.A. Daoud, Advances in hybrid solar photovoltaic and thermoelectric generators. Renewable and Sustainable Energy Reviews, 2017. 72: p. 1295-1302.
11. Hossain, M.S., T. Li, Y. Yu, J. Yong, J.-H. Bahk, and E. Skafidas, Recent advances in printable thermoelectric devices: materials, printing techniques, and applications. RSC Advances, 2020. 10(14): p. 8421-8434.
12. Wei, J., L. Yang, Z. Ma, P. Song, M. Zhang, J. Ma, F. Yang, and X. Wang, Review of current high-ZT thermoelectric materials. Journal of Materials Science, 2020. 55(27): p. 12642-12704.
13. Wu, Y., R. Zhai, T. Zhu, and X. Zhao, Enhancing room temperature thermoelectric performance of n-type polycrystalline bismuth-telluride-based alloys via Ag doping and hot deformation. Materials Today Physics, 2017. 2: p. 62-68.
14. Goldsmid, H.J., Bismuth telluride and its alloys as materials for thermoelectric generation. Materials, 2014. 7(4): p. 2577-2592.
15. Witting, I.T., F. Ricci, T.C. Chasapis, G. Hautier, and G.J. Snyder, The thermoelectric properties of n-type bismuth telluride: Bismuth selenide alloys Bi2Te3− xSex. Research, 2020.
16. Zhang, M., J. Cai, F. Gao, Z. Zhang, M. Li, Z. Chen, Y. Wang, D. Hu, X. Tan, G. Liu, S. Yue, and J. Jiang, Improved Thermoelectric Performance of p-Type PbTe by Entropy Engineering and Temperature-Dependent Precipitates. ACS Applied Materials & Interfaces, 2024. 16(1): p. 907-914.
17. Heremans, J.P., V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008. 321(5888): p. 554-557.
18. Pei, Y., A. LaLonde, S. Iwanaga, and G.J. Snyder, High thermoelectric figure of merit in heavy hole dominated PbTe. Energy & Environmental Science, 2011. 4(6): p. 2085-2089.
19. Zhang, X., Z. Bu, S. Lin, Z. Chen, W. Li, and Y. Pei, GeTe thermoelectrics. Joule, 2020. 4(5): p. 986-1003.
20. Bathula, S., M. Jayasimhadri, B. Gahtori, A. Kumar, A.K. Srivastava, and A. Dhar, Enhancement in thermoelectric performance of SiGe nanoalloys dispersed with SiC nanoparticles. Physical Chemistry Chemical Physics, 2017. 19(36): p. 25180-25185.
21. Awasthi, C., R. Meena, A. Kandasami, and S.S. Islam, Structural and thermoelectric properties of MoSe2/CNT nanocomposites. Journal of Physics and Chemistry of Solids, 2024. 184: p. 111726.
22. Baalousha, M., W. How, E. Valsami-Jones, and J.R. Lead, Chapter 1 - Overview of Environmental Nanoscience, in Frontiers of Nanoscience, J.R. Lead and E. Valsami-Jones, Editors. 2014, Elsevier. p. 1-54.
23. dos Santos, M.C., M.C. Maynart, L.R. Aveiro, E.C. da Paz, and V. dos Santos Pinheiro, Carbon-based materials: Recent advances, challenges, and perspectives. 2017.
24. Zhou, W., Q. Fan, Q. Zhang, L. Cai, K. Li, X. Gu, F. Yang, N. Zhang, Y. Wang, H. Liu, W. Zhou, and S. Xie, High-performance and compact-designed flexible thermoelectric modules enabled by a reticulate carbon nanotube architecture. Nature Communications, 2017. 8(1): p. 14886.
25. Fukumaru, T., T. Fujigaya, and N. Nakashima, Development of n-type cobaltocene-encapsulated carbon nanotubes with remarkable thermoelectric property. Scientific Reports, 2015. 5(1): p. 7951.
26. Nakano, M., Y. Nonoguchi, T. Nakashima, and T. Kawai, Flexible thermoelectric rubber polymer composites based on single-walled carbon nanotubes. Japanese Journal of Applied Physics, 2015. 54(4S): p. 04DN03.
27. Tzounis, L., M. Petousis, M. Liebscher, S. Grammatikos, and N. Vidakis, Three-Dimensional (3D) Conductive Network of CNT-Modified Short Jute Fiber-Reinforced Natural Rubber: Hierarchical CNT-Enabled Thermoelectric and Electrically Conductive Composite Interfaces. Materials, 2020. 13(11): p. 2668.
28. Li, Z.-W., Thermoelectric properties of carbon nanotube/silicone rubber composites. Journal of Experimental Nanoscience, 2017. 12(1): p. 188-196.
29. Wang, X., Y.-T. Huang, C. Liu, K. Mu, K.H. Li, S. Wang, Y. Yang, L. Wang, C.-H. Su, and S.-P. Feng, Direct thermal charging cell for converting low-grade heat to electricity. Nature communications, 2019. 10(1): p. 4151.
30. Rahimi, M., A.P. Straub, F. Zhang, X. Zhu, M. Elimelech, C.A. Gorski, and B.E. Logan, Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity. Energy & Environmental Science, 2018. 11(2): p. 276-285.
31. Liu, Y., H. Wang, P.C. Sherrell, L. Liu, Y. Wang, and J. Chen, Potentially wearable thermo‐electrochemical cells for body heat harvesting: From mechanism, materials, strategies to applications. Advanced Science, 2021. 8(13): p. 2100669.
32. Taheri, A., D.R. MacFarlane, C. Pozo‐Gonzalo, and J.M. Pringle, Quasi‐solid‐state electrolytes for low‐grade thermal energy harvesting using a cobalt redox couple. ChemSusChem, 2018. 11(16): p. 2788-2796.
33. Liu, Y., S. Zhang, Y. Zhou, M.A. Buckingham, L. Aldous, P.C. Sherrell, G.G. Wallace, G. Ryder, S. Faisal, and D.L. Officer, Advanced wearable thermocells for body heat harvesting. Advanced Energy Materials, 2020. 10(48): p. 2002539.
34. Jeon, J.G., H.J. Kim, G. Shin, Y. Han, J.H. Kim, J.H. Lee, J. Lee, H. Lim, S. Ha, and M. Bae, High‐Precision Ionic Thermocouples Fabricated Using Potassium Ferri/Ferrocyanide and Iron Perchlorate. Advanced Electronic Materials, 2022. 8(5): p. 2100693.
35. Gao, W., H. Meng, Y. Chen, and X. Liu, Quasi-solid n-type thermogalvanic thermocells with enhanced ionic conductivity for continuous low-grade heat harvesting. Applied Physics Letters, 2022. 121(20).
36. Duan, J., B. Yu, K. Liu, J. Li, P. Yang, W. Xie, G. Xue, R. Liu, H. Wang, and J. Zhou, PN conversion in thermogalvanic cells induced by thermo-sensitive nanogels for body heat harvesting. Nano Energy, 2019. 57: p. 473-479.
37. Wang, H., X. Zhuang, W. Xie, H. Jin, R. Liu, B. Yu, J. Duan, L. Huang, and J. Zhou, Thermosensitive-CsI3-crystal-driven high-power I−/I3− thermocells. Cell Reports Physical Science, 2022. 3(3).
38. Lee, C.-Y., Y.-T. Lin, S.-H. Hong, C.-H. Wang, U.S. Jeng, S.-H. Tung, and C.-L. Liu, Mixed Ionic–Electronic Conducting Hydrogels with Carboxylated Carbon Nanotubes for High Performance Wearable Thermoelectric Harvesters. ACS Applied Materials & Interfaces, 2023. 15(48): p. 56072-56083.
39. Mubarak, N.M., E.C. Abdullah, N.S. Jayakumar, and J.N. Sahu, An overview on methods for the production of carbon nanotubes. Journal of Industrial and Engineering Chemistry, 2014. 20(4): p. 1186-1197.
40. Ando, Y., X. Zhao, T. Sugai, and M. Kumar, Growing carbon nanotubes. Materials Today, 2004. 7(10): p. 22-29.
41. Thess, A., R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tománek, J.E. Fischer, and R.E. Smalley, Crystalline Ropes of Metallic Carbon Nanotubes. Science, 1996. 273(5274): p. 483-487.
42. Guo, T., P. Nikolaev, A. Thess, D.T. Colbert, and R.E. Smalley, Catalytic growth of single-walled manotubes by laser vaporization. Chemical Physics Letters, 1995. 243(1): p. 49-54.
43. Mubarak, N.M., F. Yusof, and M.F. Alkhatib, The production of carbon nanotubes using two-stage chemical vapor deposition and their potential use in protein purification. Chemical Engineering Journal, 2011. 168(1): p. 461-469.
44. Beg, S., M. Rahman, A. Jain, S. Saini, M.S. Hasnain, S. Swain, S. Imam, I. Kazmi, and S. Akhter, Chapter 4 - Emergence in the functionalized carbon nanotubes as smart nanocarriers for drug delivery applications, in Fullerens, Graphenes and Nanotubes, A.M. Grumezescu, Editor. 2018, William Andrew Publishing. p. 105-133.
45. Arai, S. Fabrication of Metal/Carbon Nanotube Composites by Electrochemical Deposition. Electrochem, 2021. 2, 563-589 DOI: 10.3390/electrochem2040036.
46. Kanoun, O., A. Bouhamed, R. Ramalingame, J.R. Bautista-Quijano, D. Rajendran, and A. Al-Hamry Review on Conductive Polymer/CNTs Nanocomposites Based Flexible and Stretchable Strain and Pressure Sensors. Sensors, 2021. 21, DOI: 10.3390/s21020341.
47. Shahpouri, E., S. Hassani, H. Yousefi-Mashhour, S. Aghababaeian, and M.M. Kalantarian, Insight into impact of carbon nanotubes on Li-ion cathode materials. Carbon Trends, 2023. 13: p. 100293.
48. Lee, J., Chapter 12 - Carbon Nanotube-Based Membranes for Water Purification, in Nanoscale Materials in Water Purification, S. Thomas, et al., Editors. 2019, Elsevier. p. 309-331.
49. Muchuweni, E., E.T. Mombeshora, B.S. Martincigh, and V.O. Nyamori, Recent Applications of Carbon Nanotubes in Organic Solar Cells. Frontiers in Chemistry, 2022. 9.
50. Baker, B.A., H. Zhang, T.G. Cha, and J.H. Choi, 9 - Carbon nanotube solar cells, in Carbon Nanotubes and Graphene for Photonic Applications, S. Yamashita, Y. Saito, and J.H. Choi, Editors. 2013, Woodhead Publishing. p. 241-269.
51. Wieland, L., H. Li, C. Rust, J. Chen, and B.S. Flavel, Carbon Nanotubes for Photovoltaics: From Lab to Industry. Advanced Energy Materials, 2021. 11(3): p. 2002880.
52. Landi, B.J., M.J. Ganter, C.D. Cress, R.A. DiLeo, and R.P. Raffaelle, Carbon nanotubes for lithium ion batteries. Energy & Environmental Science, 2009. 2(6): p. 638-654.
53. Long, G., W. Jin, F. Xia, Y. Wang, T. Bai, X. Chen, X. Liang, L.-M. Peng, and Y. Hu, Carbon nanotube-based flexible high-speed circuits with sub-nanosecond stage delays. Nature Communications, 2022. 13(1): p. 6734.
54. Cao, Z. and B. Wei, A perspective: carbon nanotube macro-films for energy storage. Energy & Environmental Science, 2013. 6(11): p. 3183-3201.
55. Liang, X., J. Xia, G. Dong, B. Tian, and l. Peng, Carbon Nanotube Thin Film Transistors for Flat Panel Display Application, in Single-Walled Carbon Nanotubes: Preparation, Properties and Applications, Y. Li and S. Maruyama, Editors. 2019, Springer International Publishing: Cham. p. 225-256.
56. Wu, Y., X. Zhao, Y. Shang, S. Chang, L. Dai, and A. Cao, Application-Driven Carbon Nanotube Functional Materials. ACS Nano, 2021. 15(5): p. 7946-7974.
57. Wang, J., J. Luo, S. Feng, H. Li, Y. Wan, and X. Zhang, Recent development of ionic liquid membranes. Green Energy & Environment, 2016. 1(1): p. 43-61.
58. Zhou, T., C. Gui, L. Sun, Y. Hu, H. Lyu, Z. Wang, Z. Song, and G. Yu, Energy Applications of Ionic Liquids: Recent Developments and Future Prospects. Chemical Reviews, 2023. 123(21): p. 12170-12253.
59. Shi, Y., N. Yang, J. Niu, S. Yang, and F. Wang, A Highly Durable Rubber-Derived Lithium-Conducting Elastomer for Lithium Metal Batteries. Advanced Science, 2022. 9(16): p. 2200553.
60. Kreyenschulte, H., S. Richter, T. Götze, D. Fischer, D. Steinhauser, M. Klüppel, and G. Heinrich, Interaction of 1-allyl-3-methyl-imidazolium chloride and carbon black and its influence on carbon black filled rubbers. Carbon, 2012. 50(10): p. 3649-3658.
61. Sankar Sivasankarapillai, V., A. Sundararajan, E. Chonnur Easwaran, M. Pourmadadi, A. Aslani, R. Dhanusuraman, A. Rahdar, and G.Z. Kyzas, Application of ionic liquids in rubber elastomers: Perspectives and challenges. Journal of Molecular Liquids, 2023. 382: p. 121846.
62. Hwang, S. and S.-H. Jeong, Stretchable carbon nanotube conductors and their applications. Korean Journal of Chemical Engineering, 2016. 33: p. 2771-2787.
63. Yamada, T., Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D.N. Futaba, and K. Hata, A stretchable carbon nanotube strain sensor for human-motion detection. Nature nanotechnology, 2011. 6(5): p. 296-301.
64. Hsiao, F.-R., I.-F. Wu, and Y.-C. Liao, Porous CNT/rubber composite for resistive pressure sensor. Journal of the Taiwan Institute of Chemical Engineers, 2019. 102: p. 387-393.
65. Song, P., J. Song, and Y. Zhang, Stretchable conductor based on carbon nanotube/carbon black silicone rubber nanocomposites with highly mechanical, electrical properties and strain sensitivity. Composites Part B: Engineering, 2020. 191: p. 107979.
66. Choi, S., S.I. Han, D. Jung, H.J. Hwang, C. Lim, S. Bae, O.K. Park, C.M. Tschabrunn, M. Lee, and S.Y. Bae, Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nature nanotechnology, 2018. 13(11): p. 1048-1056.
67. Lee, P., J. Lee, H. Lee, J. Yeo, S. Hong, K.H. Nam, D. Lee, S.S. Lee, and S.H. Ko, Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Advanced materials, 2012. 24(25): p. 3326-3332.
68. Wang, X., H. Hu, Y. Shen, X. Zhou, and Z. Zheng, Stretchable conductors with ultrahigh tensile strain and stable metallic conductance enabled by prestrained polyelectrolyte nanoplatforms. Advanced Materials, 2011. 27(23): p. 3090-3094.
69. Kayser, L.V. and D.J. Lipomi, Stretchable conductive polymers and composites based on PEDOT and PEDOT: PSS. Advanced Materials, 2019. 31(10): p. 1806133.
70. Wang, Y., C. Zhu, R. Pfattner, H. Yan, L. Jin, S. Chen, F. Molina-Lopez, F. Lissel, J. Liu, and N.I. Rabiah, A highly stretchable, transparent, and conductive polymer. Science advances, 2017. 3(3): p. e1602076.
71. Gao, Z., C. Yiu, Y. Liu, D. Li, L. Mei, Z. Zeng, and X. Yu, Stretchable transparent conductive elastomers for skin-integrated electronics. Journal of Materials Chemistry C, 2020. 8(43): p. 15105-15111.
72. Liu, H.-S., B.-C. Pan, and G.-S. Liou, Highly transparent AgNW/PDMS stretchable electrodes for elastomeric electrochromic devices. Nanoscale, 2017. 9(7): p. 2633-2639.
73. Lee, S., S. Shin, S. Lee, J. Seo, J. Lee, S. Son, H.J. Cho, H. Algadi, S. Al-Sayari, D.E. Kim, and T. Lee, Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics. Advanced Functional Materials, 2015. 25(21): p. 3114-3121.
74. Raman, S. and R.S. Arunagirinathan, Silver Nanowires in Stretchable Resistive Strain Sensors. Nanomaterials, 2022. 12(11): p. 1932.
75. Kang, Y., G. Wang, S. Zhao, J. Li, L. Di, Y. Feng, J. Yin, and J. Zhu, High‐Resolution Printable and Elastomeric Conductors from Strain‐Adaptive Assemblies of Metallic Nanoparticles with Low Aspect Ratios. Small, 2020. 16(50): p. 2004793.
76. Zhu, S., H. Sun, Y. Lu, S. Wang, Y. Yue, X. Xu, C. Mei, H. Xiao, Q. Fu, and J. Han, Inherently Conductive Poly(dimethylsiloxane) Elastomers Synergistically Mediated by Nanocellulose/Carbon Nanotube Nanohybrids toward Highly Sensitive, Stretchable, and Durable Strain Sensors. ACS Applied Materials & Interfaces, 2021. 13(49): p. 59142-59153.
77. Wang, F., C. Zhang, and X. Wan, Carbon nanotubes-coated conductive elastomer: electrical and near infrared light dual-stimulated shape memory, self-healing, and wearable sensing. Industrial & Engineering Chemistry Research, 2021. 60(7): p. 2954-2961.
78. Kong, J., Y. Tong, J. Sun, Y. Wei, W. Thitsartarn, C.C.Y. Jayven, J.K. Muiruri, S.Y. Wong, and C. He, Electrically conductive PDMS-grafted CNTs-reinforced silicone elastomer. Composites Science and Technology, 2018. 159: p. 208-215.
79. Wang, X., H. Wang, and B. Liu Carbon Nanotube-Based Organic Thermoelectric Materials for Energy Harvesting. Polymers, 2018. 10, DOI: 10.3390/polym10111196.
80. Liu, S., H. Li, J.C.C. Yeo, J. Kong, P. Anukunwithaya, and C. He, Solvent-optimized monolithic SWCNT-based thermoelectric generator for efficient electricity harvesting from body heat and sunlight. Carbon, 2023. 203: p. 111-119.
81. Tucknott, R. and S.N. Yaliraki, Aggregation properties of carbon nanotubes at interfaces. Chemical Physics, 2002. 281(2): p. 455-463.
82. Koh, B. and W. Cheng, Mechanisms of Carbon Nanotube Aggregation and the Reversion of Carbon Nanotube Aggregates in Aqueous Medium. Langmuir, 2014. 30(36): p. 10899-10909.
83. Seddon, K.R., Ionic Liquids for Clean Technology. Journal of Chemical Technology & Biotechnology, 1997. 68(4): p. 351-356.
84. Wasserscheid, P. and W. Keim, Ionic Liquids—New “Solutions” for Transition Metal Catalysis. Angewandte Chemie International Edition, 2000. 39(21): p. 3772-3789.
85. Bates, E.D., R.D. Mayton, I. Ntai, and J.H. Davis, CO2 Capture by a Task-Specific Ionic Liquid. Journal of the American Chemical Society, 2002. 124(6): p. 926-927.
86. Hameed, N., J.S. Church, N.V. Salim, T.L. Hanley, A. Amini, and B.L. Fox, Dispersing single-walled carbon nanotubes in ionic liquids: a quantitative analysis. RSC Advances, 2013. 3(43): p. 20034-20039.
87. Liu, W.-H., I.H. Huang, Y.-T. Wu, D.-H. Jiang, W.-Y. Ma, Y.-C. Liao, and S.-H. Tung, Ionic Liquids as Additives to Improve the Stretchability of Fluorine Rubber/Metal Filler Conductive Elastomers: a Miscibility Study. ACS Applied Polymer Materials, 2022. 4(10): p. 6871-6879.
88. 劉文賢, 離子液體對於氟橡膠/銀銅粉複合材料的機械性質及電性之影響, in 高分子科學與工程學研究所. 2019, 國立臺灣大學. p. 1-69.
89. Liu, T. and L. Ye, Synthesis and properties of fluorinated thermoplastic polyurethane elastomer. Journal of Fluorine Chemistry, 2010. 131(1): p. 36-41.
90. Seurer, B. and E.B. Coughlin, Fluoroelastomer Copolymers Incorporating Polyhedral Oligomeric Silsesquioxane. Macromolecular Chemistry and Physics, 2008. 209(19): p. 2040-2048.
91. Chiang, Y.-C., C.-C. Shih, S.-H. Tung, and W.-C. Chen, Blends of polythiophene nanowire/fluorine rubber with multiscale phase separation suitable for stretchable semiconductors. Polymer, 2018. 155: p. 146-151.
92. Liu, C.H., W.H. Tseng, C.Y. Cheng, C.I. Wu, P.T. Chou, and S.H. Tung, Effects of amorphous poly (3‐hexylthiophene) on active‐layer structure and solar cells performance. Journal of Polymer Science Part B: Polymer Physics, 2016. 54(10): p. 975-985.
93. Mun, S.C., M.J. Kim, M. Cobos, L. Gu, and C.W. Macosko, Strategies for interfacial localization of graphene/polyethylene‐based cocontinuous blends for electrical percolation. AIChE Journal, 2019. 65(6): p. e16579.
94. Lalire, T., C. Longuet, and A. Taguet, Electrical properties of graphene/multiphase polymer nanocomposites: A review. Carbon, 2024. 225: p. 119055.
95. Marsden, A.J., D. Papageorgiou, C. Valles, A. Liscio, V. Palermo, M. Bissett, R. Young, and I. Kinloch, Electrical percolation in graphene–polymer composites. 2D Materials, 2018. 5(3): p. 032003.
96. Yang, Q.-s., X.-q. He, X. Liu, F.-f. Leng, and Y.-W. Mai, The effective properties and local aggregation effect of CNT/SMP composites. Composites Part B: Engineering, 2012. 43(1): p. 33-38.
97. Mathieu, B., C. Anthony, A. Arnaud, and F. Lionel, CNT aggregation mechanisms probed by electrical and dielectric measurements. Journal of Materials Chemistry C, 2015. 3(22): p. 5769-5774.
98. Han, Y., X. Zhang, X. Yu, J. Zhao, S. Li, F. Liu, P. Gao, Y. Zhang, T. Zhao, and Q. Li, Bio-Inspired Aggregation Control of Carbon Nanotubes for Ultra-Strong Composites. Scientific Reports, 2015. 5(1): p. 11533.
99. Nakaramontri, Y., S. Pichaiyut, S. Wisunthorn, and C. Nakason, Hybrid carbon nanotubes and conductive carbon black in natural rubber composites to enhance electrical conductivity by reducing gaps separating carbon nanotube encapsulates. European Polymer Journal, 2017. 90: p. 467-484.
100. Koopmans, M., M.A.T. Leiviskä, J. Liu, J. Dong, L. Qiu, J.C. Hummelen, G. Portale, M.C. Heiber, and L.J.A. Koster, Electrical Conductivity of Doped Organic Semiconductors Limited by Carrier–Carrier Interactions. ACS Applied Materials & Interfaces, 2020. 12(50): p. 56222-56230.
101. Kang, Y.H., E.J. Bae, M.-H. Lee, M. Han, B.J. Kim, and S.Y. Cho, Highly Flexible and Durable Thermoelectric Power Generator Using CNT/PDMS Foam by Rapid Solvent Evaporation. Small, 2022. 18(5): p. 2106108.
102. Cho, C., K.L. Wallace, P. Tzeng, J.-H. Hsu, C. Yu, and J.C. Grunlan, Outstanding Low Temperature Thermoelectric Power Factor from Completely Organic Thin Films Enabled by Multidimensional Conjugated Nanomaterials. Advanced Energy Materials, 2016. 6(7): p. 1502168.
103. Wang, C., Y. Wang, Z. Xiong, C. Jiang, Y. Zhang, P. Fu, and F. Du, Electrochemical polymerization of polyaniline/single-walled carbon nanotube bilayer films with enhanced thermoelectric properties. Progress in Organic Coatings, 2024. 194: p. 108612.
104. Li, G., C. Chen, Z. Liu, Q. Sun, L. Liang, C. Du, and G. Chen, Distinguishing thermoelectric and photoelectric modes enables intelligent real-time detection of indoor electrical safety hazards. Materials Horizons, 2024. 11(7): p. 1679-1688.
105. Kumanek, B., G. Stando, P. Stando, K. Matuszek, K.Z. Milowska, M. Krzywiecki, M. Gryglas-Borysiewicz, Z. Ogorzałek, M.C. Payne, D. MacFarlane, and D. Janas, Enhancing thermoelectric properties of single-walled carbon nanotubes using halide compounds at room temperature and above. Scientific Reports, 2021. 11(1): p. 8649.
106. Ghosh, S., S.R.K.C.S. Yamijala, S.K. Pati, and C.N.R. Rao, The interaction of halogen molecules with SWNTs and graphene. RSC Advances, 2012. 2(3): p. 1181-1188.
107. Haidari, M.M., H. Kim, J.H. Kim, M. Park, H. Lee, and J.S. Choi, Doping effect in graphene-graphene oxide interlayer. Scientific Reports, 2020. 10(1): p. 8258.
108. Liu, L., S. Ryu, M.R. Tomasik, E. Stolyarova, N. Jung, M.S. Hybertsen, M.L. Steigerwald, L.E. Brus, and G.W. Flynn, Graphene Oxidation: Thickness-Dependent Etching and Strong Chemical Doping. Nano Letters, 2008. 8(7): p. 1965-1970.
109. Kawasaki, K., I. Harada, K. Akaike, Q. Wei, Y. Koshiba, S. Horike, and K. Ishida, Complex chemistry of carbon nanotubes toward efficient and stable p-type doping. Communications Materials, 2024. 5(1): p. 21.
110. Whitten, J.E., Ultraviolet photoelectron spectroscopy: Practical aspects and best practices. Applied Surface Science Advances, 2023. 13: p. 100384.
111. Baddorf, A.P., Identifying the secondary electron cutoff in ultraviolet photoemission spectra for work function measurements of non-ideal surfaces. Scientific Reports, 2023. 13(1): p. 13452.
112. Schultz, T., A unified secondary electron cut-off presentation and common mistakes in photoelectron spectroscopy. Electronic Structure, 2022. 4(4): p. 044002.
113. Huang, F., B. Cho, H.-S. Chung, S.B. Son, J.H. Kim, T.-S. Bae, H.J. Yun, J.I. Sohn, K.H. Oh, M.G. Hahm, J.H. Park, and W.-K. Hong, The influence of interfacial tensile strain on the charge transport characteristics of MoS2-based vertical heterojunction devices. Nanoscale, 2016. 8(40): p. 17598-17607.
114. Vyavhare, K. and P.B. Aswath, Tribological Properties of Novel Multi-Walled Carbon Nanotubes and Phosphorus Containing Ionic Liquid Hybrids in Grease. Frontiers in Mechanical Engineering, 2019. 5.
115. Xiao, H. and S. Liu, Ionic Liquids as Lubricants or Lubricant Additives, in Friction, Lubrication, and Wear Technology, G.E. Totten, Editor. 2017, ASM International. p. 0.
116. Zhang, S., J.G. Park, N. Nguyen, C. Jolowsky, A. Hao, and R. Liang, Ultra-high conductivity and metallic conduction mechanism of scale-up continuous carbon nanotube sheets by mechanical stretching and stable chemical doping. Carbon, 2017. 125: p. 649-658.
117. Downes, R., S. Wang, D. Haldane, A. Moench, and R. Liang, Strain-Induced Alignment Mechanisms of Carbon Nanotube Networks. Advanced Engineering Materials, 2015. 17(3): p. 349-358.
118. Cheng, Q., J. Bao, J. Park, Z. Liang, C. Zhang, and B. Wang, High Mechanical Performance Composite Conductor: Multi-Walled Carbon Nanotube Sheet/Bismaleimide Nanocomposites. Advanced Functional Materials, 2009. 19(20): p. 3219-3225.
119. Ye, C., W. Liu, Y. Chen, and L. Yu, Room-temperature ionic liquids: a novel versatile lubricant. Chemical Communications, 2001(21): p. 2244-2245.
120. Hong, G. and V. Patricia Iglesias, Ionic Liquids as High-Performance Lubricants and Lubricant Additives, in Ionic Liquids, S.M.S. Murshed, Editor. 2021, IntechOpen: Rijeka. p. Ch. 4.
121. Muroga, S., Y. Takahashi, Y. Hikima, S. Ata, M. Ohshima, T. Okazaki, and K. Hata, New evaluation method for the curing degree of rubber and its nanocomposites using ATR-FTIR spectroscopy. Polymer Testing, 2021. 93: p. 106993.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93470-
dc.description.abstract本研究使用氟橡膠作為基底,並添加單壁奈米碳管(SWCNT)、碳黑(CB)和離子液體(IL)來製備熱電複合材料。SWCNT具有優異的導電性,但在F-rubber基質中容易聚集。實驗結果表明,CB有效填充了SWCNT之間的間隙,形成導電網絡,增強了導電性。一種特殊的離子液體,1-ethyl-3-methylimidazolium trifluoromethanesulfonate [EMIM][TfO],被發現可以作為F-rubber的塑化劑,提供更好的拉伸性能,並有效地作為SWCNT的摻雜劑。附著在交聯氟橡膠基材上的F-rubber/SWCNT/CB/[EMIM][TfO]複合材料可以在50%的應變下重複拉伸,而不會導致性能顯著下降。此外,將氟橡膠、奈米銀線(AgNW)和另一種離子液體1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMIM][Tf2N]混合,製備了電導率超過10000 S/cm的高導電彈性體。使用F-rubber/AgNW/[EMIM][Tf2N]彈性體作為導線將六片熱電複合材料串聯在交聯氟橡膠基板上,形成全氟橡膠基底的柔性熱電發電機。在18 K的溫差下,它產生86 μW cm-2的功率密度,並且在彎曲半徑為5 mm的1,000次彎曲循環後仍保持原始功率密度的88%。這項研究開發了低成本、低毒性的柔性熱電材料,有潛力為穿戴式微型設備發電。zh_TW
dc.description.abstractIn this work, fluorine rubber (F-rubber) was used as the matrix and single-walled carbon nanotube (SWCNT), carbon black (CB), and ionic liquids were incorporated to prepare thermoelectric composites. SWCNT has excellent electrical conductivity but tends to aggregate in F-rubber matrix. The experimental results show that CB effectively fills the gaps between SWCNT, forming a conductive network and enhancing conductivity. A specific ionic liquid, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate [EMIM][TfO], has been found to act as a plasticizer for F-rubber, providing better tensile properties, and effectively serving as a dopant for SWCNT. The F-rubber/SWCNT/CB/[EMIM][TfO] composite attached to the cross-linked F-rubber substrate can be repeatedly stretched at a strain of 50% without causing a significant deterioration of performance. Furthermore, a high conductive elastomer of a conductivity above 10000 S/cm was prepared by mixing F-rubber, silver nanowire (AgNW), and another ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [EMIM][Tf2N]. Six pieces of the thermoelectric composites were connected in series on the cross-linked F-rubber substrate using the F-rubber/AgNW/[EMIM][Tf2N] elastomer as the conductive wires to create a full F-rubber-based flexible thermoelectric generator. Under a temperature difference of 18 K, it produces a power density of 86 μW cm-2 and maintains 88% of its original power density after 1,000 bending cycles with a bending radius of 5 mm. This study develops low-cost, low-toxicity flexible thermoelectric materials, potentially generating power for wearable microdevices.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-01T16:17:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-01T16:17:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試審定書 I
謝辭 II
Abstract III
中文摘要 V
目次 VI
圖次 VIII
表次 XIII
Chapter 1. Introduction 1
1-1 Introduction and literature review of thermoelectric materials 1
1-1-1 Introduction of thermoelectric materials 1
1-1-2 Common thermoelectric materials 3
1-2 Introduction and literature review of carbon nanotubes 13
1-2-1 Carbon nanotube manufacturing process 13
1-2-2 Different types of CNTs 15
1-2-3 Applications of CNTs 16
1-3 Introduction and literature review of ionic liquids 17
1-3-1 Introduction of ionic liquids 17
1-3-2 Application of ionic liquids in composite materials 19
1-4 Introduction and literature review of conductive elastomers 21
1-4-1 Introduction and development of stretchable conductive elastomers 21
1-4-2 Stretchable conductive elastomer materials 22
1-4-3 Common conductive filler 23
1-5 Research motivation and purpose 29
Chapter 2. Experimental methods and instruments 31
2-1 Experimental chemicals 31
2-2 Experimental steps 34
2-2-1 Preparation process of stretchable thermoelectric composites 34
2-2-2 Preparation process of cross-linked elastomer 36
2-2-3 Preparation process of conductive elastomers 38
2-2-4 Preparation process of TEG 39
2-3 Principles and parameter settings of experimental instruments 41
Chapter 3. Results and discussion 49
3.1 Miscibility between ILs and F-rubber 49
3.2 The impact of different processing methods on SWCNT dispersion 56
3.3 Thermoelectric properties of F-rubber/SWCNT/CB/ILs 60
3.4 The interaction between ILs and SWCNT 67
3.5 Calculation of energy level by UPS 70
3.6 Characterization of atomic environments by XPS 75
3.7 Tensile testing of thermoelectric composites 78
3.8 Effect of stretching on the electrical properties 85
3.9 Stretchable and recoverable thermoelectric composites 89
3.10 Conductive elastomers 93
3.11 Flexible thermoelectric generator 95
Chapter 4. Conclusions 98
Chapter 5. Reference 100
Appendix 111
-
dc.language.isoen-
dc.title氟橡膠/碳填材/離子液體複合材料用於柔性熱電發電機zh_TW
dc.titleFluorine Rubber/Carbon Fillers/Ionic Liquids Composites for Flexible Thermoelectric Generatoren
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉振良;廖英志;李文亞zh_TW
dc.contributor.oralexamcommitteeCheng-Liang Liu;Ying-Chih Liao;Wen-Ya Leeen
dc.subject.keyword熱電複合材料,氟橡膠,離子液體,單壁奈米碳管,拉伸導電彈性體,氟橡膠基底柔性熱電發電機,zh_TW
dc.subject.keywordThermoelectric composites,F-rubber,Ionic liquid,Single-walled carbon nanotubes,Stretchable conductive elastomer,F-rubber-based flexible TEG,en
dc.relation.page112-
dc.identifier.doi10.6342/NTU202402090-
dc.rights.note未授權-
dc.date.accepted2024-07-23-
dc.contributor.author-college工學院-
dc.contributor.author-dept高分子科學與工程學研究所-
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
5.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved