Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93468
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳育任zh_TW
dc.contributor.advisorYuh-Renn Wuen
dc.contributor.author鄭淵龍zh_TW
dc.contributor.authorYuan-Lung Chengen
dc.date.accessioned2024-08-01T16:17:07Z-
dc.date.available2024-08-02-
dc.date.copyright2024-08-01-
dc.date.issued2024-
dc.date.submitted2024-07-29-
dc.identifier.citation[1] J. C. Slater, Phys. Rev. 34, 1293 (1929), URL https://doi.org/10.1103/PhysRev.34.1293.
[2] J. C. Slater, Phys. Rev. 38, 1109 (1931), URL https://doi.org/10.1103/PhysRev.38.1109.
[3] E. U. Condon, Phys. Rev. 36, 1121 (1930), URL https://doi.org/10.1103/PhysRev.36.1121.
[4] T.-K. Hsiao, C. van Diepen, U. Mukhopadhyay, W. W. C. Reichl, and L. Vandersypen, Phys. Rev. Applied 13, 054018 (2020), URL https://doi.org/10.1103/PhysRevApplied.13.054018.
[5] B. Stefan, Z. Tobias, A. Till, K. Tillmann, S. Matthias, T. Alex, and V. Peter, IEEE 54, 2137 (2007), URL https://doi.org/10.1109/TED.2007.902871.
[6] N. Erik and P. M. Richard, Phys. Rev. B (2010), URL https://doi.org/10.48550/arXiv.1006.2735.
[7] W. Xin, Y. Shuo, and S. D. Sarma, Phys. Rev. B 84, 115301 (2011), URL https://doi.org/10.1103/PhysRevB.84.115301.
[8] T. Hensgens, T. Fujita, L. Janssen, X. Li, C. J. V. Diepen, C. Reichl, W. Wegscheider, S. D. Sarma, and L. M. K. Vandersypen, Nature 548, 70(2017), URL https://www.nature.com/articles/nature23022.
[9] C. Volk, A. M. J. Zwerver, U. Mukhopadhyay, P. T. Eendebak, C. J. van Diepen,J. P. Dehollain, T. Hensgens, T. Fujita, C. Reichl, W. Wegscheider, et al.,Nature 29, 8 (2019), URL https://doi.org/10.1038/s41534-019-0146-y.
[10] M. Uditendu, P. D. Juan, R. Christian, W. Werner, and M. K. V. Lieven,Phys. Rev. Applied 112, 183505 (2018), URL https://doi.org/10.1063/1.5025928.
[11] d. S. Rogerio, H. Xuedong, and S. S. Das, Phys. Rev. Applied 64, 042307 (2001), URL https://doi.org/10.1103/PhysRevX.10.031006.
[12] Q. Haifeng, P. K. Yadav, D. Kuangyin, F. Saeed, C. G. Geoffrey, J. M. Michael, B. Edwin, and M. N. John, Phys. Rev. X 10, 031006 (2020), URL https://doi.org/10.1103/PhysRevX.10.031006.
[13] S. A. Jafari, Arxiv (2008), URL https://doi.org/10.48550/arXiv.0807.4878.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93468-
dc.description.abstract近年半導體科技的不斷進步,元件隨著摩爾定律,開始越做越小,使得量子物理效應變得越來越明顯,並在模擬和製程設計方面對現行的測量技術提出了挑戰,因此量子點有望取代現有的半導體技術,並成為成為下一個世代的半導體核心技術。隨著量子點陣列製造設計的複雜性不斷增加,需要開發一個有效率控制閘極的方式,但在開發前,需要透過理論模擬去了解元件特性及如何控制量子點,因此在此論文主要研究由與 TSRI 合作所設計和製造的 Si-MOS 四量子點元件的理論模擬。從理論上利用數值模擬和解析解,可以讓我們對研究中的量子點元件在實驗中提高量子點元件的操控性能和穩定性。具體來說,在我們的模擬中,我們調整實際閘極電壓值並繪製電荷穩定性圖。我們也分析了虛擬閘的概念和應用,旨在促進量子點元件的調製過程。透過採用物理閘極電壓的特定線性組合組成的虛擬閘極,可以消除閘極電壓之間的串擾,從而提高閘極調諧過程的效能和精確度,提高Si-MOS量子點元件的可控性,並有望在未來促進台灣對於器件製造和量子點量子位操縱的發展。zh_TW
dc.description.abstractIn recent years, with the continuous advancement of semiconductor technology, devices have become increasingly smaller in accordance with Moore's Law. This has made quantum physical effects more prominent and has posed challenges to current measurement techniques in simulation and process design. Quantum dots have been proposed as a promising physical system for implementing a practical quantum computer. As the complexity of quantum dot array fabrication and design continues to increase, it is necessary to develop an efficient method for controlling gate electrodes. However, before development, it is essential to understand the characteristics of the devices and how to control the quantum dots through theoretical simulations. Therefore, this thesis primarily focuses on the theoretical simulation of Si-MOS quadruple quantum dot devices designed and fabricated in collaboration with TSRI. Through numerical simulations and analytical solutions, we aim to enhance the control performance and stability of the quantum dot devices under study in experiments. Specifically, in our simulations, we adjust the actual gate voltage values and plot the charge stability diagram. We also analyze the concept and application of virtual gates, aiming to facilitate the modulation process of quantum dot devices. By employing virtual gates composed of specific linear combinations of physical gate voltages, we can eliminate the crosstalk between gate voltages, thereby enhancing the effectiveness and precision of the gate tuning process and improving the controllability of Si-MOS quantum dot devices, and hopefully promote Taiwan's development in device fabrication and quantum dot qubit manipulation in the future.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-01T16:17:07Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-01T16:17:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 I
Acknowledgments II
摘要 III
Abstract IV
List of Figures VII
1 Introduction 1
2 Device Modeling 3
2.1 Simulation Process 3
2.2 Simulation Methods 4
2.2.1 Schr¨odinger – Possion solver 4
2.2.2 Configuration Interaction 5
2.2.3 Tunnel Coupling 7
3 Device Structures 10
3.1 Quadruple Quantum Dot Device 10
3.2 Simulated Result of the Device 12
3.3 Charge stability diagram 14
4 Virtual Gates 16
4.1 Introduction of Virtual Plunger Gates 17
4.1.1 Eliminating cross-talk using virtual
gates 17
4.1.2 Definite virtual plunger gates 18
4.2 Introduction of Virtual Barrier Gate 27
4.2.1 Determine the relation of barrier gate and tunnel coupling 28
4.2.2 Definite the virtual barrier gates 31
5 Result and Discussion 33
5.1 Data Normalization Procedure 33
5.2 Orthogonal control of tunnel couplings 34
5.2.1 Without plunger gate correction 34
5.2.2 With plunger gate correction 40
6 Conclusions 44
A Comparison of the simulation data obtained by low and high grid resolutions 46
B Material Parameters 49
Bibliography 50
-
dc.language.isoen-
dc.subject矽量子點zh_TW
dc.subject隧道耦合zh_TW
dc.subject虛擬柵極zh_TW
dc.subject電荷穩定性圖zh_TW
dc.subjectCharge stability diagramen
dc.subjectSilicon-based quantum dotsen
dc.subjectTunnel couplingen
dc.subjectVirtual gatesen
dc.title矽基量子點隧道耦合的虛擬閘極控制模擬zh_TW
dc.titleSimulation of virtual gate control of tunnel coupling in silicon-based quantum dotsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.coadvisor管希聖zh_TW
dc.contributor.coadvisorHsi-Sheng Goanen
dc.contributor.oralexamcommittee吳肇欣;梁啟德zh_TW
dc.contributor.oralexamcommitteeChao-Hsin Wu;Chi-Te Liangen
dc.subject.keyword矽量子點,電荷穩定性圖,虛擬柵極,隧道耦合,zh_TW
dc.subject.keywordSilicon-based quantum dots,Charge stability diagram,Virtual gates,Tunnel coupling,en
dc.relation.page51-
dc.identifier.doi10.6342/NTU202402209-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-30-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved