Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93463
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor管希聖zh_TW
dc.contributor.advisorHsi-Sheng Goanen
dc.contributor.author黃禹超zh_TW
dc.contributor.authorYu-Chao Huangen
dc.date.accessioned2024-08-01T16:15:31Z-
dc.date.available2024-08-02-
dc.date.copyright2024-08-01-
dc.date.issued2024-
dc.date.submitted2024-07-29-
dc.identifier.citation[1] R. Acharya, I. Aleiner, R. Allen, T. I. Andersen, M. Ansmann, F. Arute, K. Arya, A. Asfaw, J. Atalaya, R. Babbush, et al. Suppressing quantum errors by scaling a surface code logical qubit. Nature, 614(7949):676–681, 2023.
[2] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, B. Shillingford, and N. de Freitas. Learning to learn by gradient descent by gradient descent, 2016.
[3] A. Arrasmith, Z. Holmes, M. Cerezo, and P. J. Coles. Equivalence of quantum barren plateaus to cost concentration and narrow gorges. Quantum Science and Technology, 7(4):045015, 2022.
[4] J. M. Arrazola, O. Di Matteo, N. Quesada, S. Jahangiri, A. Delgado, and N. Killoran. Universal quantum circuits for quantum chemistry. Quantum, 6:742, 2022.
[5] U. Azad. Pennylane quantum chemistry datasets, 2023.
[6] R. Barends, L. Lamata, J. Kelly, L. García-Álvarez, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank, J. Y. Mutus, et al. Digital quantum simulation of fermionic models with a superconducting circuit. Nature communications, 6(1): 7654, 2015.
[7] P. K. Barkoutsos, J. F. Gonthier, I. Sokolov, N. Moll, G. Salis, A. Fuhrer, M. Ganzhorn, D. J. Egger, M. Troyer, A. Mezzacapo, et al. Quantum algorithms for electronic structure calculations: Particle-hole hamiltonian and optimized wavefunction expansions. Physical Review A, 98(2):022322, 2018.
[8] K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S. Alperin-Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke, et al. Noisy intermediatescale quantum (nisq) algorithms (2021). arXiv preprint arXiv:2101.08448, 2021.
[9] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd. Quantum machine learning. Nature, 549(7671):195–202, 2017.
[10] L. Bittel and M. Kliesch. Training variational quantum algorithms is np-hard. Phys. Rev. Lett., 127:120502, Sep 2021. doi: 10.1103/PhysRevLett.127.120502. URL https://link.aps.org/doi/10.1103/PhysRevLett.127.120502.
[11] K. Blekos, D. Brand, A. Ceschini, C.-H. Chou, R.-H. Li, K. Pandya, and A. Summer. A review on quantum approximate optimization algorithm and its variants. Physics Reports, 1068:1–66, June 2024. ISSN 0370-1573. doi: 10.1016/j.physrep.2024.03. 002. URL http://dx.doi.org/10.1016/j.physrep.2024.03.002.
[12] J. Bowles, S. Ahmed, and M. Schuld. Better than classical? the subtle art of benchmarking quantum machine learning models, 2024.
[13] H. Bruus and K. Flensberg. Many-body quantum theory in condensed matter physics: an introduction. OUP Oxford, 2004.
[14] Y. Cao, T. Chen, Z. Wang, and Y. Shen. Learning to optimize in swarms. Advances in neural information processing systems, 32, 2019.
[15] M. Case. A beginner's guide to the general number field sieve. Oregon State University, ECE575 Data Security and Cryptography Project, 2003.
[16] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J. Coles. Variational quantum algorithms. Nature Reviews Physics, 3(9):625–644, Aug. 2021. ISSN 2522- 5820. doi: 10.1038/s42254-021-00348-9. URL http://dx.doi.org/10.1038/ s42254-021-00348-9.
[17] M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles. Cost function dependent barren plateaus in shallow parametrized quantum circuits. Nature Communications, 12(1), Mar. 2021. ISSN 2041-1723. doi: 10.1038/s41467-021-21728-w. URL http://dx.doi.org/10.1038/s41467-021-21728-w.
[18] T. Chen, W. Zhang, J. Zhou, S. Chang, S. Liu, L. Amini, and Z. Wang. Training stronger baselines for learning to optimize, 2020.
[19] X. Chen, C. Liang, D. Huang, E. Real, K. Wang, Y. Liu, H. Pham, X. Dong, T. Luong, C.-J. Hsieh, Y. Lu, and Q. V. Le. Symbolic discovery of optimization algorithms, 2023.
[20] A. J. Daley, I. Bloch, C. Kokail, S. Flannigan, N. Pearson, M. Troyer, and P. Zoller. Practical quantum advantage in quantum simulation. Nature, 607(7920):667–676, 2022.
[21] Y. Du, T. Huang, S. You, M.-H. Hsieh, and D. Tao. Quantum circuit architecture search for variational quantum algorithms. npj Quantum Information, 8(1), May 2022. ISSN 2056-6387. doi: 10.1038/s41534-022-00570-y. URL http://dx. doi.org/10.1038/s41534-022-00570-y.
[22] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. Journal of machine learning research, 12(7), 2011.
[23] E. Farhi, J. Goldstone, and S. Gutmann. A quantum approximate optimization algorithm, 2014.
[24] E. Farhi, J. Goldstone, S. Gutmann, and L. Zhou. The quantum approximate optimization algorithm and the sherrington-kirkpatrick model at infinite size. Quantum, 6:759, July 2022. ISSN 2521-327X. doi: 10.22331/q-2022-07-07-759. URL http://dx.doi.org/10.22331/q-2022-07-07-759.
[25] R. P. Feynman. Simulating physics with computers. In Feynman and computation, pages 133–153. CRC Press, 2018.
[26] J. Gacon, C. Zoufal, G. Carleo, and S. Woerner. Simultaneous perturbation stochastic approximation of the quantum fisher information. Quantum, 5:567, Oct. 2021. ISSN 2521-327X. doi: 10.22331/q-2021-10-20-567. URL http://dx.doi.org/10. 22331/q-2021-10-20-567.
[27] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of the ACM (JACM), 42(6):1115–1145, 1995.
[28] E. Grant, L. Wossnig, M. Ostaszewski, and M. Benedetti. An initialization strategy for addressing barren plateaus in parametrized quantum circuits. Quantum, 3:214, Dec. 2019. ISSN 2521-327X. doi: 10.22331/q-2019-12-09-214. URL http://dx. doi.org/10.22331/q-2019-12-09-214.
[29] H. R. Grimsley, G. S. Barron, E. Barnes, S. E. Economou, and N. J. Mayhall. Adap-tive, problem-tailored variational quantum eigensolver mitigates rough parameter landscapes and barren plateaus. npj Quantum Information, 9(1):19, 2023.
[30] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219, 1996.
[31] A. W. Harrow and A. Montanaro. Quantum computational supremacy. Nature, 549 (7671):203–209, 2017.
[32] V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M. Chow, and J. M. Gambetta. Supervised learning with quantum-enhanced feature spaces. Nature, 567(7747):209 – 212, Mar. 2019. ISSN 1476-4687. doi: 10.1038/ s41586-019-0980-2. URL http://dx.doi.org/10.1038/s41586-019-0980-2.
[33] X. He, K. Zhao, and X. Chu. Automl: A survey of the state-of-the-art. Knowledge- Based Systems, 212:106622, Jan. 2021. ISSN 0950-7051. doi: 10.1016/j.knosys. 2020.106622. URL http://dx.doi.org/10.1016/j.knosys.2020.106622.
[34] M. Henderson, S. Shakya, S. Pradhan, and T. Cook. Quanvolutional neural networks: Powering image recognition with quantum circuits, 2019.
[35] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators. Neural networks, 2(5):359–366, 1989.
[36] J. Hu, J. Li, Y. Lin, H. Long, X.-S. Xu, Z. Su, W. Zhang, Y. Zhu, and M.-H. Yung. Benchmarking variational quantum eigensolvers for quantum chemistry. arXiv preprint arXiv:2211.12775, 2022.
[37] Y. Huang, Q. Li, X. Hou, R. Wu, M.-H. Yung, A. Bayat, and X. Wang. Robust resource-efficient quantum variational ansatz through an evolutionary algorithm. Physical Review A, 105(5), May 2022. ISSN 2469-9934. doi: 10.1103/physreva. 105.052414. URL http://dx.doi.org/10.1103/PhysRevA.105.052414.
[38] M. Ippoliti, K. Kechedzhi, R. Moessner, S. Sondhi, and V. Khemani. Many-body physics in the nisq era: Quantum programming a discrete time crystal. PRX Quantum, 2:030346, Sep 2021. doi: 10.1103/PRXQuantum.2.030346. URL https: //link.aps.org/doi/10.1103/PRXQuantum.2.030346.
[39] N. Jain, B. Coyle, E. Kashefi, and N. Kumar. Graph neural network initialisation of quantum approximate optimisation. Quantum, 6:861, Nov. 2022. ISSN 2521-327X.
[40] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549(7671):242–246, Sept. 2017. ISSN 1476-4687. doi: 10.1038/nature23879. URL http://dx.doi.org/10.1038/nature23879.
[41] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2017.
[42] B. Koczor and S. C. Benjamin. Quantum analytic descent. Physical Review Research, 4(2), Apr. 2022. ISSN 2643-1564. doi: 10.1103/physrevresearch.4.023017. URL http://dx.doi.org/10.1103/PhysRevResearch.4.023017.
[43] A. Kulshrestha, X. Liu, H. Ushijima-Mwesigwa, and I. Safro. Learning to optimize quantum neural network without gradients, 2023.
[44] X. Lee, Y. Saito, D. Cai, and N. Asai. Parameters fixing strategy for quantum approximate optimization algorithm. In 2021 IEEE International Conference on Quantum Computing and Engineering (QCE). IEEE, Oct. 2021.
[45] X. Liu, G. Liu, J. Huang, H.-K. Zhang, and X. Wang. Mitigating barren plateaus of variational quantum eigensolvers, 2022.
[46] O. Lockwood. Optimizing quantum variational circuits with deep reinforcement learning, 2022.
[47] A. P. Lund, M. J. Bremner, and T. C. Ralph. Quantum sampling problems, bosonsampling and quantum supremacy. npj Quantum Information, 3(1):15, 2017.
[48] A. B. Magann, K. M. Rudinger, M. D. Grace, and M. Sarovar. Feedback-based quantum optimization. Physical Review Letters, 129(25), Dec. 2022. ISSN 1079- 7114. doi: 10.1103/physrevlett.129.250502. URL http://dx.doi.org/10.1103/ PhysRevLett.129.250502.
[49] A. Mari, T. R. Bromley, J. Izaac, M. Schuld, and N. Killoran. Transfer learning in hybrid classical-quantum neural networks. Quantum, 4:340, Oct. 2020. ISSN 2521- 327X. doi: 10.22331/q-2020-10-09-340. URL http://dx.doi.org/10.22331/ q-2020-10-09-340.
[50] S. Marsh and J. B. Wang. Combinatorial optimization via highly efficient quantum walks. Phys. Rev. Res., 2:023302, Jun 2020. doi: 10.1103/PhysRevResearch. 2.023302. URL https://link.aps.org/doi/10.1103/PhysRevResearch.2. 023302.
[51] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and X. Yuan. Quantumcomputational chemistry. Reviews of Modern Physics, 92(1), Mar. 2020. ISSN 1539- 0756. doi: 10.1103/revmodphys.92.015003. URL http://dx.doi.org/10.1103/ RevModPhys.92.015003.
[52] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven. Barren plateaus in quantum neural network training landscapes. Nature communications, 9 (1):4812, 2018.
[53] L. Metz, N. Maheswaranathan, J. Nixon, C. D. Freeman, and J. Sohl-Dickstein. Understanding and correcting pathologies in the training of learned optimizers, 2019.
[54] L. Metz, C. D. Freeman, J. Harrison, N. Maheswaranathan, and J. Sohl-Dickstein. Practical tradeoffs between memory, compute, and performance in learned optimizers. In Conference on Lifelong Learning Agents, pages 142–164. PMLR, 2022.
[55] L. Metz, J. Harrison, C. D. Freeman, A. Merchant, L. Beyer, J. Bradbury, N. Agrawal, B. Poole, I. Mordatch, A. Roberts, and J. Sohl-Dickstein. Velo: Training versatile learned optimizers by scaling up, 2022.
[56] G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme. Quantum algorithms for fermionic simulations. Physical Review A, 64(2):022319, 2001.
[57] P. J. O'Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, et al. Scalable quantum simulation of molecular energies. Physical Review X, 6(3):031007, 2016.
[58] D. Panchenko. The sherrington-kirkpatrick model: an overview. Journal of Statistical Physics, 149:362–383, 2012.
[59] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru- Guzik, and J. L. O'Brien. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5(1), July 2014. ISSN 2041-1723. doi: 10. 1038/ncomms5213. URL http://dx.doi.org/10.1038/ncomms5213.
[60] K. Poland, K. Beer, and T. J. Osborne. No free lunch for quantum machine learning, 2020.
[61] J. Preskill. Reliable quantum computers. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1969):385–410, Jan. 1998. ISSN 1471-2946. doi: 10.1098/rspa.1998.0167. URL http://dx.doi. org/10.1098/rspa.1998.0167.
[62] J. Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79, 2018.
[63] A. Pérez-Salinas, A. Cervera-Lierta, E. Gil-Fuster, and J. I. Latorre. Data reuploading for a universal quantum classifier. Quantum, 4:226, Feb. 2020. ISSN 2521-327X. doi: 10.22331/q-2020-02-06-226. URL http://dx.doi.org/10. 22331/q-2020-02-06-226.
[64] E. Real, C. Liang, D. R. So, and Q. V. Le. Automl-zero: Evolving machine learning algorithms from scratch, 2020.
[65] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. nature, 323(6088):533–536, 1986.
[66] F. Sauvage, S. Sim, A. A. Kunitsa, W. A. Simon, M. Mauri, and A. Perdomo-Ortiz. Flip: A flexible initializer for arbitrarily-sized parametrized quantum circuits, 2021.
[67] M. Schuld and N. Killoran. Is quantum advantage the right goal for quantum machine learning? PRX Quantum, 3(3), July 2022. ISSN 2691-3399. doi: 10. 1103/prxquantum.3.030101. URL http://dx.doi.org/10.1103/PRXQuantum. 3.030101.
[68] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran. Evaluating analytic gradients on quantum hardware. Physical Review A, 99(3):032331, 2019.
[69] M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe. Circuit-centric quantum classifiers. Physical Review A, 101(3), Mar. 2020. ISSN 2469-9934. doi: 10.1103/physreva.101.032308. URL http://dx.doi.org/10.1103/PhysRevA. 101.032308.
[70] D. Sherrington and S. Kirkpatrick. Solvable model of a spin-glass. Physical review letters, 35(26):1792, 1975.
[71] P. W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th annual symposium on foundations of computer science, pages 124–134. Ieee, 1994.
[72] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, Oct. 1997. ISSN 1095-7111.
[73] J. Stokes, J. Izaac, N. Killoran, and G. Carleo. Quantum natural gradient. Quantum, 4:269, May 2020. ISSN 2521-327X. doi: 10.22331/q-2020-05-25-269. URL http: //dx.doi.org/10.22331/q-2020-05-25-269.
[74] J. Sun, L. Cheng, and W. Li. Toward chemical accuracy with shallow quantumcircuits: A clifford-based hamiltonian engineering approach. Journal of Chemical Theory and Computation, 20(2):695–707, 2024.
[75] Y. Sun, Z. Wu, Y. Ma, and V. Tresp. Quantum architecture search with unsupervised representation learning, 2024.
[76] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant, L. Wossnig, I. Rungger, G. H. Booth, and J. Tennyson. The variational quantum eigensolver: A review of methods and best practices. Physics Reports, 986:1–128, Nov. 2022. ISSN 0370- 1573. doi: 10.1016/j.physrep.2022.08.003. URL http://dx.doi.org/10.1016/ j.physrep.2022.08.003.
[77] G. Verdon, M. Broughton, J. R. McClean, K. J. Sung, R. Babbush, Z. Jiang, H. Neven, and M. Mohseni. Learning to learn with quantum neural networks via classical neural networks, 2019.
[78] O. Wichrowska, N. Maheswaranathan, M. W. Hoffman, S. G. Colmenarejo, M. Denil, N. Freitas, and J. Sohl-Dickstein. Learned optimizers that scale and generalize. In International conference on machine learning, pages 3751–3760. PMLR, 2017.
[79] M. Wilson, S. Stromswold, F. Wudarski, S. Hadfield, N. M. Tubman, and E. Rieffel. Optimizing quantum heuristics with meta-learning, 2019.
[80] K. Zhang, L. Liu, M.-H. Hsieh, and D. Tao. Escaping from the barren plateau via gaussian initializations in deep variational quantum circuits. Advances in Neural Information Processing Systems, 35:18612–18627, 2022.
[81] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin. Quantum approximate optimization algorithm: Performance, mechanism, and implementation onnear-term devices. Physical Review X, 10(2), June 2020. ISSN 2160-3308. doi: 10.1103/physrevx.10.021067. URL http://dx.doi.org/10.1103/PhysRevX. 10.021067.
[82] C. Zoufal, A. Lucchi, and S. Woerner. Variational quantum boltzmann machines. Quantum Machine Intelligence, 3(1), Feb. 2021. ISSN 2524- 4914. doi: 10.1007/s42484-020-00033-7. URL http://dx.doi.org/10.1007/ s42484-020-00033-7.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93463-
dc.description.abstract量子電腦基於量子力學原理,如疊加和糾纏,提供了一種不同的計算範式。例如,Shor算法用於大數質因數分解和物理系統量子模擬等算法在時間和空間複雜度方面都表現出優於經典計算機的性能。在容錯量子計算機出現之前,變分量子算法(variational quantum algorithms, VQAs)作為噪聲中等規模量子(noisy intermediate-scale quantum, NISQ)機器中的重要算法。研究表明,VQAs能夠進行通用計算,包括量子機器學習、量子化學、解決大規模線性代數問題和組合優化等應用。

一個VQA由一個參數化的量子電路(PQC)組成,並使用古典計算機來優化基於量子計算機輸出的成本函數。優化VQA問題通常是一個NP難問題,需要精心選擇的初始化程序和優化器。傳統上,優化VQAs依賴於手工設計的算法,如一階方法梯度下降或二階方法BFGS算法。此外,手工設計的優化器需要仔細選擇初始參數並進行全局搜索以適應不同的優化問題。為了解決這一問題,Learn to Optimize (L2O) 使用一個小型神經網絡來替代手工設計的優化器,學習針對類似任務分布的最佳優化策略。這個方法利用神經網絡作為通用函數逼近器。以前的文獻顯示基於純古典學習優化器已經證明了它們在類似訓練集的有限案例中作為參數初始化器的性能。

在我們的工作中,我們提出了L2O-g†,一個quantum-aware學習優化器,在優化過程中動態調整參數空間優化和分布空間優化之間的平衡。 L2O-g† 利用富比尼-斯圖迪度量張量(Fubini-Study Metric Tensor, g†)和長短期記憶(LSTM),一種機器學習模型,在參數空間和分布空間優化之間動態調整平衡,自動適應問題的結構。我們從理論上推導出一個受到lookahead優化器啟發的更新方程,通過使用富比尼-斯圖迪度量張量表示的參數空間分布,在快速收斂和泛化之間取得平衡。具體來說,一個可學習的向量在參數空間和分布空間優化之間協調作用。

在實驗上,我們對一系列VQA問題進行了全面的實驗,包括變分量子特徵求解器(VQE)、量子近似優化算法(QAOA)和量子機器學習(QML)任務。我們的結果表明,L2O-g† 不僅在沒有任何超參數調優的情況下優於當前的最先進手工設計優化器(SOTA),而且在分布外泛化能力上也優於以前的L2O優化器,我們僅用一個通用PQC實例訓練L2O-g† 就實現了這一點。我們新提出的quantum-aware學習優化器L2O-g† 在應對VQAs的挑戰中展現了顯著的進步,使其成為NISQ時代的一個有價值的工具。實現代碼和數據可在以下網址獲取:https://github.com/Physics-Morris/L2O-g。
zh_TW
dc.description.abstractQuantum computers provide a different paradigm of computing based on quantum mechanical principles such as superposition and entanglement. Algorithms like Shor’s algorithm for factoring large numbers and quantum simulations of physical systems have demonstrated superior time and space complexity compared to classical computers. Before the advent of fault-tolerant quantum computers, variational quantum algorithms (VQAs) emerged as crucial algorithms in noisy intermediate-scale quantum (NISQ) machines. VQAs are capable of universal computing, including applications such as quantum machine learning, quantum chemistry, solving large-scale linear algebra problems, and combinatorial optimization. A VQA consists of a parameterized quantum circuit (PQC) and uses a classical computer to optimize the cost function based on the output of the quantum computer. Optimizing VQA problems is generally an NP-hard problem, requiring well-chosen initialization procedures and optimizers. Conventionally, optimizing VQAs relies on hand-designed algorithms such as first-order method gradient descent or second-order method BFGS algorithm. Additionally, a hand-designed optimizer requires a careful choice of initial parameters and a global search for hyperparameters for different optimization problems. To address this issue, learning to optimize (L2O) uses a small neural network to replace the handcrafted optimizer, learning the optimal optimization strategy tailored for a similar distribution of tasks. This approach leverages the intuition of a neural network as a universal function approximator. Several previous works using purely classical learned optimizers have demonstrated their ability to serve as parameter initializers on limited cases similar to their training sets.

In this work, we propose L2O-g†, a quantum-aware learned optimizer that dynamically adjusts the balance between parameter space optimization and distribution space optimization during the optimization process. L2O-g† leverages the Fubini-Study metric tensor (g†) and Long Short-Term Memory (LSTM), a machine learning model to dynamically adjust the balance between parameter space and distribution space optimization, adapting automatically to the problem's structure. The quantum-aware learned optimizer L2O-g† is designed specifically for optimizing PQCs to address the generalization problem for using purely classical learned optimizers. We theoretically derive the update equation inspired by the lookahead optimizer to incorporate quantum geometry of the optimization landscape in the learned optimizer by using the parameter space distribution represented by the Fubini-Study metric tensor to balance fast convergence and generalization. Specifically, a learnable vector balances the parameter space and distribution space optimization acting coordinate-wise on the parameters.

Empirically, we conducted comprehensive experiments across a range of VQA problems, including variational quantum eigensolver (VQE), quantum approximate optimization algorithm (QAOA), and quantum machine learning (QML) tasks. Our results demonstrate that L2O-g† not only outperforms the current state-of-the-art (SOTA) hand-designed optimizer without any hyperparameter tuning but also shows strong out-of-distribution generalization compared to previous L2O optimizers. We achieve this by training L2O-g† on just a single generic PQC instance. Our novel quantum-aware learned optimizer, L2O-g†, presents an advancement in addressing the challenges of VQAs, making it a valuable tool in the NISQ era. The implementation and data are available at: https://github.com/Physics-Morris/L2O-g.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-01T16:15:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-01T16:15:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要II
Abstract IV
Contents VII
List of Figures XI
List of Tables XIX
Denotation XXI
1 Introduction 1
1.0.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.0.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.0.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Quantum Computing 6
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Variational Quantum Algorithms (VQAs) . . . . . . . . . . . . . . 9
2.3 Variational Quantum Eigensolver (VQE) . . . . . . . . . . . . . . 11
2.4 Quantum Approximate Optimization Algorithm (QAOA) . . . . . . 17
2.5 Variational Quantum Classifier (VQC) . . . . . . . . . . . . . . . 23
3 Related Work 25
3.0.1 Learning to Optimize Neural Networks . . . . . . . . . . . . . . 25
3.0.2 Learning to Optimize Parameterized Quantum Circuits . . . . . . 26
4 Methodology 27
4.1 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Theoretical Motivation . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 L2O-g† Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5 Experiments 35
5.1 A Toy Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Random Circuit I . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Random Circuit II . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4 Application I: VQE for Chemistry . . . . . . . . . . . . . . . . . . 49
5.5 Application II: QAOA - MaxCut . . . . . . . . . . . . . . . . . . 53
5.6 Application III: QAOA - Sherrington-Kirkpatrick Model . . . . . . 56
5.7 Application IV: Data Reupload Circuit . . . . . . . . . . . . . . . 59
5.8 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6 Discussion 67
7 Conclusion 69
7.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
References 71
Appendix A — Table of Notations 83
Appendix B — Experimental Details 84
B.1 Hyperparameter Spcae . . . . . . . . . . . . . . . . . . . . . . . . 84
B.2 Random Quanatum Circuit . . . . . . . . . . . . . . . . . . . . . 84
B.3 Version Information . . . . . . . . . . . . . . . . . . . . . . . . . 86
Appendix C — Theoretical Details 87
C.1 Proof regarding the Pauli ZZ Operator . . . . . . . . . . . . . . . . 87
C.2 Mirror Descent Framework . . . . . . . . . . . . . . . . . . . . . 88
C.3 Proof regarding MaxCut Problem on Erdős-Rényi Graph = Sherrington-Kirkpatrick Model (average) . . . . . . . . . . . . . . . . . . . . . 89
-
dc.language.isoen-
dc.subject學習優化器zh_TW
dc.subject變分量子算法zh_TW
dc.subjectLearned Optimizeren
dc.subjectVariational Quantum Algorithmen
dc.titleL2O-g†: 利用機器學習結合富比尼–施圖迪度量優化參數化量子電路zh_TW
dc.titleL2O-g†: Learning to Optimize Parametrized Quantum Circuits with Fubini–Study Metric Tensoren
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭皓中;張慶瑞;江振瑞zh_TW
dc.contributor.oralexamcommitteeHao-Chung Cheng;Ching Ray Chang ;Jehn-Ruey Jiangen
dc.subject.keyword學習優化器,變分量子算法,zh_TW
dc.subject.keywordLearned Optimizer,Variational Quantum Algorithm,en
dc.relation.page90-
dc.identifier.doi10.6342/NTU202401869-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-31-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf42.25 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved