Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93458
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor閔明源zh_TW
dc.contributor.advisorMing-Yuan Minen
dc.contributor.author吳秉軒zh_TW
dc.contributor.authorBing-Shiuan Wuen
dc.date.accessioned2024-08-01T16:13:56Z-
dc.date.available2024-08-02-
dc.date.copyright2024-08-01-
dc.date.issued2024-
dc.date.submitted2024-07-30-
dc.identifier.citationAdam, E. M., Johns, T., & Sur, M. (2022). Dynamic control of visually guided locomotion through corticosubthalamic projections. Cell Reports, 40(4), 111139. 10.1016/j.celrep.2022.111139
Aoki, S., Smith, J. B., Li, H., Yan, X., Igarashi, M., Coulon, P., Wickens, J. R., Ruigrok, T. J. H., & Jin, X. (2019). An open cortico-basal ganglia loop allows limbic control over motor output via the nigrothalamic pathway. eLife, 8, e49995. 10.7554/eLife.49995
Aron, A. R., Herz, D. M., Brown, P., Forstmann, B. U., & Zaghloul, K. (2016). Frontosubthalamic Circuits for Control of Action and Cognition. The Journal of Neuroscience, 36(45), 11489. 10.1523/JNEUROSCI.2348-16.2016
Benazzouz, A., Gross, C., Féger, J., Boraud, T., & Bioulac, B. (1993). Reversal of Rigidity and Improvement in Motor Performance by Subthalamic High-frequency Stimulation in MPTP-treated Monkeys. European Journal of Neuroscience, 5(4), 382-389. 10.1111/j.1460-9568.1993.tb00505.x
Bevan, M. D., Francis, C. M., & Bolam, J. P. (1995). The glutamate-enriched cortical and thalamic input to neurons in the subthalamic nucleus of the rat: Convergence with GABA-positive terminals. Journal of Comparative Neurology, 361(3), 491-511. 10.1002/cne.903610312
Callahan, J. W., Morales, J. C., Atherton, J. F., Wang, D., Kostic, S., & Bevan, M. D. (2024). Movement-related increases in subthalamic activity optimize locomotion. bioRxiv, 2023.2012.2007.570617. 10.1101/2023.12.07.570617
Charpier, S., Beurrier, C., & Paz, J. T. (2010). Chapter 15 - The Subthalamic Nucleus: From In Vitro to In Vivo Mechanisms. In H. Steiner & K. Y. Tseng (Eds.), Handbook of Behavioral Neuroscience (Vol. 20, pp. 259-273). Elsevier. 10.1016/B978-0-12-374767-9.00015-9
Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Foster, J. D., Nuyujukian, P., Ryu, S. I., & Shenoy, K. V. (2012). Neural population dynamics during reaching. Nature, 487(7405), 51-56. 10.1038/nature11129
Crompe, B. d. l., Aristieta, A., Leblois, A., Elsherbiny, S., Boraud, T., & Mallet, N. P. (2020). The globus pallidus orchestrates abnormal network dynamics in a model of Parkinsonism. Nature Communications, 11(1), 1570. 10.1038/s41467-020-15352-3
DeNardo, L. A., Liu, C. D., Allen, W. E., Adams, E. L., Friedmann, D., Fu, L., Guenthner, C. J., Tessier-Lavigne, M., & Luo, L. (2019). Temporal evolution of cortical ensembles promoting remote memory retrieval. Nat Neurosci, 22(3), 460-469. 10.1038/s41593-018-0318-7
Fan, J.-P., Zhang, X., Han, Y., Ji, Y., Gu, W.-X., Wu, H.-C., Zhou, C., & Xiao, C. (2023). Subthalamic neurons interact with nigral dopaminergic neurons to regulate movement in mice. Acta Physiologica, 237(3), e13917. 10.1111/apha.13917
Ferreira-Pinto, M. J., Kanodia, H., Falasconi, A., Sigrist, M., Esposito, M. S., & Arber, S. (2021). Functional diversity for body actions in the mesencephalic locomotor region. Cell, 184(17), 4564-4578.e4518. 10.1016/j.cell.2021.07.002
Fife, K. H., Gutierrez-Reed, N. A., Zell, V., Bailly, J., Lewis, C. M., Aron, A. R., & Hnasko, T. S. (2017). Causal role for the subthalamic nucleus in interrupting behavior. eLife, 6. 10.7554/eLife.27689
Foster, N. N., Barry, J., Korobkova, L., Garcia, L., Gao, L., Becerra, M., Sherafat, Y., Peng, B., Li, X., Choi, J.-H., Gou, L., Zingg, B., Azam, S., Lo, D., Khanjani, N., Zhang, B., Stanis, J., Bowman, I., Cotter, K., . . . Dong, H.-W. (2021). The mouse cortico–basal ganglia–thalamic network. Nature, 598(7879), 188-194. 10.1038/s41586-021-03993-3
French, I. T., & Muthusamy, K. A. (2018). A Review of the Pedunculopontine Nucleus in Parkinson's Disease [Review]. Frontiers in Aging Neuroscience, 10. 10.3389/fnagi.2018.00099
Friedman, A. D., & Yin, H. H. (2023). Selective Activation of Subthalamic Nucleus Output Quantitatively Scales Movements. The Journal of Neuroscience, 43(47), 7967. 10.1523/JNEUROSCI.0734-23.2023
Gallego, J. A., Perich, M. G., Naufel, S. N., Ethier, C., Solla, S. A., & Miller, L. E. (2018). Cortical population activity within a preserved neural manifold underlies multiple motor behaviors. Nature Communications, 9(1), 4233. 10.1038/s41467-018-06560-z
Gerfen, C. R., & Bolam, J. P. (2010). Chapter 1 - The Neuroanatomical Organization of the Basal Ganglia. In H. Steiner & K. Y. Tseng (Eds.), Handbook of Behavioral Neuroscience (Vol. 20, pp. 3-28). Elsevier. 10.1016/B978-0-12-374767-9.00001-9
Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M., & Deisseroth, K. (2009). Optical Deconstruction of Parkinsonian Neural Circuitry. Science, 324(5925), 354-359. 10.1126/science.1167093
Hama, H., Hioki, H., Namiki, K., Hoshida, T., Kurokawa, H., Ishidate, F., Kaneko, T., Akagi, T., Saito, T., Saido, T., & Miyawaki, A. (2015). ScaleS: an optical clearing palette for biological imaging. Nat Neurosci, 18(10), 1518-1529. 10.1038/nn.4107
Hasegawa, T., Chiken, S., Kobayashi, K., & Nambu, A. (2022). Subthalamic nucleus stabilizes movements by reducing neural spike variability in monkey basal ganglia. Nature Communications, 13(1), 2233. 10.1038/s41467-022-29750-2
Haynes, W. I., & Haber, S. N. (2013). The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for Basal Ganglia models and deep brain stimulation. J Neurosci, 33(11), 4804-4814. 10.1523/jneurosci.4674-12.2013
Iwamuro, H., Tachibana, Y., Ugawa, Y., Saito, N., & Nambu, A. (2017). Information processing from the motor cortices to the subthalamic nucleus and globus pallidus and their somatotopic organizations revealed electrophysiologically in monkeys. European Journal of Neuroscience, 46(11), 2684-2701. 10.1111/ejn.13738
Jeon, H., Lee, H., Kwon, D.-H., Kim, J., Tanaka-Yamamoto, K., Yook, J. S., Feng, L., Park, H. R., Lim, Y. H., Cho, Z.-H., Paek, S. H., & Kim, J. (2022). Topographic connectivity and cellular profiling reveal detailed input pathways and functionally distinct cell types in the subthalamic nucleus. Cell Reports, 38(9), 110439. 10.1016/j.celrep.2022.110439
Johansson, Y., & Ketzef, M. (2023). Sensory processing in external globus pallidus neurons. Cell Reports, 42(1), 111952. 10.1016/j.celrep.2022.111952
Karachi, C., Yelnik, J., Tandé, D., Tremblay, L., Hirsch, E. C., & François, C. (2005). The pallidosubthalamic projection: An anatomical substrate for nonmotor functions of the subthalamic nucleus in primates. Movement Disorders, 20(2), 172-180. 10.1002/mds.20302
Kim, H. J., Jeon, B. S., & Paek, S. H. (2015). Nonmotor Symptoms and Subthalamic Deep Brain Stimulation in Parkinson's Disease. J Mov Disord, 8(2), 83-91. 10.14802/jmd.15010
Klaus, A., Martins, G. J., Paixao, V. B., Zhou, P., Paninski, L., & Costa, R. M. (2017). The Spatiotemporal Organization of the Striatum Encodes Action Space. Neuron, 95(5), 1171-1180.e1177. 10.1016/j.neuron.2017.08.015
Kondabolu, K., Doig, N. M., Ayeko, O., Khan, B., Torres, A., Calvigioni, D., Meletis, K., Koós, T., & Magill, P. J. (2023). A Selective Projection from the Subthalamic Nucleus to Parvalbumin-Expressing Interneurons of the Striatum. eneuro, 10(7), ENEURO.0417-0421.2023. 10.1523/ENEURO.0417-21.2023
Lardeux, S., Pernaud, R., Paleressompoulle, D., & Baunez, C. (2009). Beyond the Reward Pathway: Coding Reward Magnitude and Error in the Rat Subthalamic Nucleus. Journal of Neurophysiology, 102(4), 2526-2537. 10.1152/jn.91009.2008
Lee, J., Wang, W., & Sabatini, B. L. (2020). Anatomically segregated basal ganglia pathways allow parallel behavioral modulation. Nature Neuroscience, 23(11), 1388-1398. 10.1038/s41593-020-00712-5
Lee, L.-H. N., Huang, C.-S., Wang, R.-W., Lai, H.-J., Chung, C.-C., Yang, Y.-C., & Kuo, C.-C. (2022). Deep brain stimulation rectifies the noisy cortex and irresponsive subthalamus to improve parkinsonian locomotor activities. npj Parkinson's Disease, 8(1), 77. 10.1038/s41531-022-00343-6
Li, Q., Ke, Y., Chan, Danny C. W., Qian, Z.-M., Yung, Ken K. L., Ko, H., Arbuthnott, Gordon W., & Yung, W.-H. (2012). Therapeutic Deep Brain Stimulation in Parkinsonian Rats Directly Influences Motor Cortex. Neuron, 76(5), 1030-1041. 10.1016/j.neuron.2012.09.032
Limousin, P., Krack, P., Pollak, P., Benazzouz, A., Ardouin, C., Hoffmann, D., & Benabid, A. L. (1998). Electrical stimulation of the subthalamic nucleus in advanced Parkinson's disease. N Engl J Med, 339(16), 1105-1111. 10.1056/nejm199810153391603
Luan, Y., Tang, D., Wu, H., Gu, W., Wu, Y., Cao, J.-L., Xiao, C., & Zhou, C. (2020). Reversal of hyperactive subthalamic circuits differentially mitigates pain hypersensitivity phenotypes in parkinsonian mice. Proceedings of the National Academy of Sciences, 117(18), 10045-10054. 10.1073/pnas.1916263117
Mallet, L., Schüpbach, M., N'Diaye, K., Remy, P., Bardinet, E., Czernecki, V., Welter, M.-L., Pelissolo, A., Ruberg, M., Agid, Y., & Yelnik, J. (2007). Stimulation of subterritories of the subthalamic nucleus reveals its role in the integration of the emotional and motor aspects of behavior. Proceedings of the National Academy of Sciences, 104(25), 10661-10666. 10.1073/pnas.0610849104
Mathai, A., & Smith, Y. (2011). The Corticostriatal and Corticosubthalamic Pathways: Two Entries, One Target. So What? [Review]. Frontiers in Systems Neuroscience, 5. 10.3389/fnsys.2011.00064
Mosher, C. P., Mamelak, A. N., Malekmohammadi, M., Pouratian, N., & Rutishauser, U. (2021). Distinct roles of dorsal and ventral subthalamic neurons in action selection and cancellation. Neuron, 109(5), 869-881.e866. 10.1016/j.neuron.2020.12.025
Nath, T., Mathis, A., Chen, A. C., Patel, A., Bethge, M., & Mathis, M. W. (2019). Using DeepLabCut for 3D markerless pose estimation across species and behaviors. Nature Protocols, 14(7), 2152-2176. 10.1038/s41596-019-0176-0
Nougaret, S., Baunez, C., & Ravel, S. (2022). Neurons in the Monkey's Subthalamic Nucleus Differentially Encode Motivation and Effort. The Journal of Neuroscience, 42(12), 2539. 10.1523/JNEUROSCI.0281-21.2021
Pachitariu, M., & Stringer, C. (2022). Cellpose 2.0: how to train your own model. Nature Methods, 19(12), 1634-1641. 10.1038/s41592-022-01663-4
Pachitariu, M., Stringer, C., Dipoppa, M., Schröder, S., Rossi, L. F., Dalgleish, H., Carandini, M., & Harris, K. D. (2017). Suite2p: beyond 10,000 neurons with standard two-photon microscopy. bioRxiv, 061507. 10.1101/061507
Pan, M.-K., Kuo, S.-H., Tai, C.-H., Liou, J.-Y., Pei, J.-C., Chang, C.-Y., Wang, Y.-M., Liu, W.-C., Wang, T.-R., Lai, W.-S., & Kuo, C.-C. (2016). Neuronal firing patterns outweigh circuitry oscillations in parkinsonian motor control. The Journal of Clinical Investigation, 126(12), 4516-4526. 10.1172/JCI88170
Parker, J. G., Marshall, J. D., Ahanonu, B., Wu, Y.-W., Kim, T. H., Grewe, B. F., Zhang, Y., Li, J. Z., Ding, J. B., Ehlers, M. D., & Schnitzer, M. J. (2018). Diametric neural ensemble dynamics in parkinsonian and dyskinetic states. Nature, 557(7704), 177-182. 10.1038/s41586-018-0090-6
Pasquereau, B., & Turner, R. S. (2017). A selective role for ventromedial subthalamic nucleus in inhibitory control. eLife, 6, e31627. 10.7554/eLife.31627
Polyakova, Z., Hatanaka, N., Chiken, S., & Nambu, A. (2024). Subthalamic Activity for Motor Execution and Cancelation in Monkeys. The Journal of Neuroscience, 44(12), e1911222024. 10.1523/JNEUROSCI.1911-22.2024
Prasad, A. A., & Wallén-Mackenzie, Å. (2024). Architecture of the subthalamic nucleus. Communications Biology, 7(1), 78. 10.1038/s42003-023-05691-4
Roseberry, T. K., Lee, A. M., Lalive, A. L., Wilbrecht, L., Bonci, A., & Kreitzer, A. C. (2016). Cell-Type-Specific Control of Brainstem Locomotor Circuits by Basal Ganglia. Cell, 164(3), 526-537. 10.1016/j.cell.2015.12.037
Schmidt, R., Leventhal, D. K., Mallet, N., Chen, F., & Berke, J. D. (2013). Canceling actions involves a race between basal ganglia pathways. Nat Neurosci, 16(8), 1118-1124. 10.1038/nn.3456
Schweizer, N., Pupe, S., Arvidsson, E., Nordenankar, K., Smith-Anttila, C. J. A., Mahmoudi, S., Andrén, A., Dumas, S., Rajagopalan, A., Lévesque, D., Leão, R. N., & Wallén-Mackenzie, Å. (2014). Limiting glutamate transmission in a Vglut2-expressing subpopulation of the subthalamic nucleus is sufficient to cause hyperlocomotion. Proceedings of the National Academy of Sciences, 111(21), 7837-7842. 10.1073/pnas.1323499111
Serra, G. P., Guillaumin, A., Vlcek, B., Delgado-Zabalza, L., Ricci, A., Rubino, E., Dumas, S., Baufreton, J., Georges, F., & Wallén-Mackenzie, Å. (2023). A role for the subthalamic nucleus in aversive learning. Cell Reports, 42(11), 113328. 10.1016/j.celrep.2023.113328
Tseng, Y. T., Zhao, B., Chen, S., Ye, J., Liu, J., Liang, L., Ding, H., Schaefke, B., Yang, Q., Wang, L., Wang, F., & Wang, L. (2022). The subthalamic corticotropin-releasing hormone neurons mediate adaptive REM-sleep responses to threat. Neuron, 110(7), 1223-1239.e1228. 10.1016/j.neuron.2021.12.033
Wang, Q., Ding, S. L., Li, Y., Royall, J., Feng, D., Lesnar, P., Graddis, N., Naeemi, M., Facer, B., Ho, A., Dolbeare, T., Blanchard, B., Dee, N., Wakeman, W., Hirokawa, K. E., Szafer, A., Sunkin, S. M., Oh, S. W., Bernard, A., . . . Ng, L. (2020). The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas. Cell, 181(4), 936-953.e920. 10.1016/j.cell.2020.04.007
Watson, G. D. R., Hughes, R. N., Petter, E. A., Fallon, I. P., Kim, N., Severino, F. P. U., & Yin, H. H. (2021). Thalamic projections to the subthalamic nucleus contribute to movement initiation and rescue of parkinsonian symptoms. Science Advances, 7(6), eabe9192. 10.1126/sciadv.abe9192
Weintraub, D. B., & Zaghloul, K. A. (2013). The role of the subthalamic nucleus in cognition. Reviews in the Neurosciences, 24(2), 125-138. 10.1515/revneuro-2012-0075
Yasoshima, Y., Kai, N., Yoshida, S., Shiosaka, S., Koyama, Y., Kayama, Y., & Kobayashi, K. (2005). Subthalamic Neurons Coordinate Basal Ganglia Function through Differential Neural Pathways. The Journal of Neuroscience, 25(34), 7743. 10.1523/JNEUROSCI.1904-05.2005
Yu, C., Cassar, I. R., Sambangi, J., & Grill, W. M. (2020). Frequency-Specific Optogenetic Deep Brain Stimulation of Subthalamic Nucleus Improves Parkinsonian Motor Behaviors. The Journal of Neuroscience, 40(22), 4323. 10.1523/JNEUROSCI.3071-19.2020
Zhang, Y., Roy, D. S., Zhu, Y., Chen, Y., Aida, T., Hou, Y., Shen, C., Lea, N. E., Schroeder, M. E., Skaggs, K. M., Sullivan, H. A., Fischer, K. B., Callaway, E. M., Wickersham, I. R., Dai, J., Li, X.-M., Lu, Z., & Feng, G. (2022). Targeting thalamic circuits rescues motor and mood deficits in PD mice. Nature, 607(7918), 321-329. 10.1038/s41586-022-04806-x
Zingg, B., Chou, X. L., Zhang, Z. G., Mesik, L., Liang, F., Tao, H. W., & Zhang, L. I. (2017). AAV-Mediated Anterograde Transsynaptic Tagging: Mapping Corticocollicular Input-Defined Neural Pathways for Defense Behaviors. Neuron, 93(1), 33-47. 10.1016/j.neuron.2016.11.045
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93458-
dc.description.abstract視丘下核(Subthalamic nucleus, STN)在基底核網絡中控制運動和認知功能扮演至關重要的角色,其神經活動與帕金森氏症等疾病關聯密切。STN的神經活動在臨床的重要性更是體現在對帕金森氏症病人的深腦刺激(Deep-brain stimulation, DBS)治療中。然而,對於單一STN神經元如何編碼不同行為狀態,目前的理解仍然有限。
本篇論文的目的在揭示STN的個別神經元活動以及其神經群體如何在不同情境下編碼行為。透過對小鼠進行活體的鈣離子影像的記錄,我們追蹤了個別STN神經元在多種行為狀況下的活動模式,其中包含自發性跑動和舔舐行為,以及獎勵驅動的反應。研究結果顯示,STN神經元對運動和獎勵驅動的行為反應各異,呈現出豐富的功能多樣性。絕大多數神經元在運動開始時活化,但細胞間的反應在較細微的時間動態上具有差異。而對於獎勵驅動的舔舐行為,它們的神經反應更加地截然不同,其中包含了抑制性及活化性的鈣離子活動。此外,我們發現單個STN神經元能夠表徵多種行為條件,且不同神經元多重表徵的樣式也不同。從神經群體動態學(Neural population dynamics)的角度看,我們發現STN反應中的兩個內在成分能夠分別和跑動速度與舔舐強度高度相關,暗示了這個腦區可能的基本計算原則。另外,透過跨突觸神經路徑的追蹤,我們發現了來自不同皮質區域的輸入在STN具有一定程度的重疊及匯聚,這呼應了單一神經元多樣的行為表徵。
這項研究挑戰了STN主要參與基本運動控制的傳統觀點,並強調它能整合和編碼複雜的行為信息。實驗中所觀察到STN在功能上的異質性顯示了這個核區的功能區域不應僅局限於運動和非運動訊息的空間劃分,實際上可能存在不同功能路徑的重疊與匯聚。這些新見解有望提高STN-DBS治療方法的精準度。
zh_TW
dc.description.abstractThe subthalamic nucleus (STN) plays a critical role in the modulation of motor and cognitive functions within the basal ganglia network, with its activity intricately linked to the pathophysiology of disorders such as Parkinson's disease (PD). This is especially relevant in the context of the widely applied STN deep brain stimulation (DBS) for treating PD patients. However, despite its clinical significance, our understanding of the functions of single STN neurons remains incomplete, particularly regarding how these neurons encode various behavioral states.
This thesis aims to elucidate the neural dynamics of the STN at the single-cell level and explore how its neuronal population dynamics encode different behaviors under varied contextual influences. Employing in vivo two-photon calcium imaging with the endoscopic lens in mice, we mapped the activity patterns of individual STN neurons to multiple behavioral conditions, including self-initiated locomotion, licking, and reward-driven responses.
Our findings reveal that STN neurons display a rich diversity in response to both motor and reward-driven behaviors, with different subgroups of neurons showing distinct temporal dynamics. Most neurons activate at the onset of movement, each exhibiting nuanced temporal patterns. In contrast, responses to reward-driven licking are uniquely distinct, displaying both inhibition and activation patterns. Furthermore, we demonstrate that individual STN neurons can represent multiple behavioral conditions, with mixed patterns of representation observed across different neurons. From a population dynamics perspective, low-dimensional components extracted from the STN responses were identified to represent locomotion speed and licking intensity, implying potential computational basic principles in this structure. Finally, anterograde transsynaptic labeling targeting the hyper-direct pathway of the basal ganglia illustrates the convergence and overlap of cortical inputs in the STN, which corresponds to the diverse behavioral representations of individual neurons.
The study challenges the traditional view that the STN is primarily involved in basic motor control, instead highlighting its capacity to integrate and encode complex sets of behavioral information. Moreover, the observed heterogeneity suggests that the STN's functional territories are not strictly segregated into motor and non-motor spatial domains as previously thought. Instead, there is likely overlap and convergence of distinct functional pathways. These insights have the potential to enhance the precision of STN-DBS targeting for treating Parkinson's disease.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-01T16:13:56Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-01T16:13:56Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
中文摘要 iv
Abstract v
Abbreviations 1
Chapter 1: Introduction 2
1.1 Circuitry configuration of STN 3
1.2 Heterogeneity of the STN 4
1.2.1 Topographically distributed afferents 4
1.2.2 Cell types 5
1.3 STN response to DBS 6
1.3.1 STN-DBS in PD 6
1.3.2 STN neuronal responses under DBS 7
1.4 Physiological function of the STN 8
1.4.1 General function of the STN in motor control 8
1.4.2 Functional heterogeneity in STN 9
1.5 Aims of the current study 10
Chapter 2: Materials and Methods 12
2.1 Animals 12
2.2 Stereotaxic surgeries 12
2.2.1 Viral injection 12
2.2.2 Implantation of GRIN lens 13
2.3 Unstructured behavior assay 14
2.3.1 Experimental setting 14
2.3.2 Behavioral data acquisition 14
2.3.3 Behavioral data analysis 15
2.4 Two-photon imaging 15
2.4.1 In vivo deep-brain imaging 15
2.4.2 Thick slice imaging for post hoc implant site verification and trans-synaptic tracing 16
2.5 Data analysis and statistics 17
2.5.1 Extraction of calcium dynamics and image preprocessing 17
2.5.2 Calcium response significance definition 17
2.5.3 Cross correlation between calcium activity and behavior variables 17
2.5.4 Calcium response clustering 18
2.5.5 Population dynamics 18
2.6 Transsynaptic labeling image analysis 19
2.6.1 Reconstruction of the 3D distribution of the labeled STN neurons 19
2.6.2 Projection along the ventromedial-dorsolateral axis of the STN 19
Chapter 3: Results 20
3.1 Single-cell STN calcium activity is recorded in head-fixed behaving mice 20
3.2 STN neurons are generally activated during locomotion 21
3.3 STN neurons display diverse types of activity in response to licking and random reward 23
3.4 Some STN activities in response to reward delivery are temporally decoupled to other coincident motor behaviors. 24
3.5 Cross-talking of response subtypes defined by different behaviors indicates multiple representations in single STN neurons. 26
3.6 Population dynamics reveal essential components of the diverse representations in the STN neurons 28
3.7 STN neurons receiving different cortical inputs are labeled and reconstructed in 3D anatomical space 31
3.8 Distinct cortical inputs are converged in single STN neurons and their spatial distribution is highly overlapped 32
Chapter 4: Discussion 34
4.1 In vivo deep-brain imaging enables characterization of real-time neuronal activities and the cell identities 34
4.2 The STN neurons are heterogeneous in their responses to a specific behavior 35
4.3 Single STN neurons are capable of representing various behavioral conditions 36
4.4 Neural dynamical system and the circuitry implications 39
4.5 Inputs from functional modalities are overlapped in the STN 41
4.6 Significance and perspectives 43
Figures 45
Figure 1. Experimental setup for single-cell calcium imaging in behaving mice. 45
Figure 2. Post-hoc validation for the imaged field. 46
Figure 3. The calcium activities of the STN neurons in response to locomotion initiation and their clusters. 47
Figure 4. The calcium activities of the STN neurons in response to locomotion termination and their clusters. 49
Figure 5. Single neuron examples of the behavior changes and the calcium responses under onsets of spontaneous and reward-driven licking. 50
Figure 6. The calcium activities of the STN neurons in response to spontaneous licking and their clusters. 51
Figure 7. The calcium activities of the STN neurons in response to reward-driven licking and their clusters. 52
Figure 8. Cross-talking of single-cell calcium responses across behaviors in the “go” response subspace. 53
Figure 9. Cross-talking of single-cell calcium responses across behaviors in the “reward-driven licking” response subspace. 54
Figure 10. Proportional distribution of the subtypes of each behavior and that in the clusters defined in the “reward-driven licking” condition. 55
Figure 11. Population dynamics of STN neurons under various behavioral conditions. 58
Figure 12. PC 1 encodes locomotion speed in a context-dependent manner 59
Figure 13. PC 2 encodes licking intensity 60
Figure 14. Reconstruction of 3D structure of the STN subjected to transsynaptic anterograde tracing. 61
Figure 15. Spatial distribution of the M1-, M2-, and convergently projected neurons in the STN. 63
Figure 16. Spatial distribution of the M1-, S1-, and convergently projected neurons in the STN. 64
Supplementary figures 65
Figure S1. Activity-labeling by TRAP reveals sub-populational manipulation in the STN under STN-DBS. 65
Figure S2 Criteria for significant responsive cells. 67
Figure S3. Hierarchical clustering of the cells under each behavioral condition was done on the PCA-extracted waveform features. 68
Figure S4. Population dynamics of the 80 recorded cells are dimensionally reduced to three PCs. 69
Figure S5. The process of calculating the normalized density of cells receiving different types of input. 70
References 71
-
dc.language.isoen-
dc.subject超直接路徑zh_TW
dc.subject群體動力學zh_TW
dc.subject跨突觸追蹤zh_TW
dc.subject鈣離子影像zh_TW
dc.subject梯度折射率透鏡zh_TW
dc.subject視丘下核zh_TW
dc.subject多重表徵zh_TW
dc.subjectPopulation dynamicsen
dc.subjectSubthalamic nucleusen
dc.subjectGRIN lensen
dc.subjectCalcium imagingen
dc.subjectMultiple representationsen
dc.subjectTranssynaptic tracingen
dc.subjectHyper-direct pathwayen
dc.title視丘下核單一神經元中多樣的行為表徵與皮質神經輸入的匯聚zh_TW
dc.titleMultiple behavioral representations and cortical input convergence in single neurons of the subthalamic nucleusen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.coadvisor吳玉威zh_TW
dc.contributor.coadvisorYu-Wei Wuen
dc.contributor.oralexamcommittee薛一蘋;劉福清;陳瓊珠zh_TW
dc.contributor.oralexamcommitteeYi-Ping Hsueh;Fu-Chin Liu;Chiung-Chu Chenen
dc.subject.keyword視丘下核,梯度折射率透鏡,鈣離子影像,多重表徵,群體動力學,跨突觸追蹤,超直接路徑,zh_TW
dc.subject.keywordSubthalamic nucleus,GRIN lens,Calcium imaging,Multiple representations,Population dynamics,Transsynaptic tracing,Hyper-direct pathway,en
dc.relation.page75-
dc.identifier.doi10.6342/NTU202402424-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-31-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生命科學系-
dc.date.embargo-lift2024-12-31-
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf5.46 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved