Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93438
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor駱尚廉zh_TW
dc.contributor.advisorShang-Lien Loen
dc.contributor.author徐承揚zh_TW
dc.contributor.authorCheng-Yang Hsuen
dc.date.accessioned2024-07-31T16:19:45Z-
dc.date.available2024-08-01-
dc.date.copyright2024-07-31-
dc.date.issued2024-
dc.date.submitted2024-07-23-
dc.identifier.citation英文文獻
Aghigh, A., Alizadeh, V., Wong, H. Y., Islam, M. S., Amin, N., & Zaman, M. (2015). Recent advances in utilization of graphene for filtration and desalination of water: A review. Desalination, 365, 389-397.
Alalm, M. G., & Boffito, D. C. (2022). Mechanisms and pathways of PFAS degradation by advanced oxidation and reduction processes: A critical review. Chemical Engineering Journal, 138352.
Appleman, T. D., Dickenson, E. R., Bellona, C., & Higgins, C. P. (2013). Nanofiltration and granular activated carbon treatment of perfluoroalkyl acids. Journal of hazardous materials, 260, 740-746.
Barry, V., Winquist, A., & Steenland, K. (2013). Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant. Environmental health perspectives, 121(11-12), 1313-1318.
Bell, E. M., De Guise, S., McCutcheon, J. R., Lei, Y., Levin, M., Li, B., Rusling, J. F., Lawrence, D. A., Cavallari, J. M., & O'Connell, C. (2021). Exposure, health effects, sensing, and remediation of the emerging PFAS contaminants–Scientific challenges and potential research directions. Science of The Total Environment, 780, 146399.
Bhatnagar, A., Hogland, W., Marques, M., & Sillanpää, M. (2013). An overview of the modification methods of activated carbon for its water treatment applications. Chemical Engineering Journal, 219, 499-511.
Buck, R. C., Franklin, J., Berger, U., Conder, J. M., Cousins, I. T., De Voogt, P., Jensen, A. A., Kannan, K., Mabury, S. A., & van Leeuwen, S. P. (2011). Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integrated environmental assessment and management, 7(4), 513-541.
Buckley, T., Karanam, K., Xu, X., Shukla, P., Firouzi, M., & Rudolph, V. (2022). Effect of mono-and di-valent cations on PFAS removal from water using foam fractionation–A modelling and experimental study. Separation and Purification Technology, 286, 120508.
Buckley, T., Vuong, T., Karanam, K., Vo, P. H., Shukla, P., Firouzi, M., & Rudolph, V. (2023). Using foam fractionation to estimate PFAS air-water interface adsorption behaviour at ng/L and µg/L concentrations. Water Research, 239, 120028.
Buhrke, T., Kibellus, A., & Lampen, A. (2013). In vitro toxicological characterization of perfluorinated carboxylic acids with different carbon chain lengths. Toxicology letters, 218(2), 97-104.
Chelcea, I. C., Ahrens, L., Örn, S., Mucs, D., & Andersson, P. L. (2020). Investigating the OECD database of per-and polyfluoroalkyl substances–chemical variation and applicability of current fate models. Environmental Chemistry, 17(7), 498-508.
Cheng, J., Vecitis, C. D., Park, H., Mader, B. T., & Hoffmann, M. R. (2008). Sonochemical degradation of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in landfill groundwater: environmental matrix effects. Environmental science & technology, 42(21), 8057-8063.
Cyganowski, P., Polowczyk, I., Morales, D. V., Urbano, B. F., Rivas, B. L., Bryjak, M., & Kabay, N. (2018). Synthetic strong base anion exchange resins: synthesis and sorption of Mo (VI) and V (V). Polymer Bulletin, 75, 729-746.
De Silva, A. O., Spencer, C., Scott, B. F., Backus, S., & Muir, D. C. (2011). Detection of a cyclic perfluorinated acid, perfluoroethylcyclohexane sulfonate, in the Great Lakes of North America. Environmental science & technology, 45(19), 8060-8066.
Deng, S., Yu, Q., Huang, J., & Yu, G. (2010). Removal of perfluorooctane sulfonate from wastewater by anion exchange resins: Effects of resin properties and solution chemistry. Water Research, 44(18), 5188-5195.
Dixit, F., Dutta, R., Barbeau, B., Berube, P., & Mohseni, M. (2021). PFAS removal by ion exchange resins: A review. Chemosphere, 272, 129777.
Du, Z., Deng, S., Bei, Y., Huang, Q., Wang, B., Huang, J., & Yu, G. (2014). Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—A review. Journal of hazardous materials, 274, 443-454.
Du, Z., Deng, S., Chen, Y., Wang, B., Huang, J., Wang, Y., & Yu, G. (2015). Removal of perfluorinated carboxylates from washing wastewater of perfluorooctanesulfonyl fluoride using activated carbons and resins. Journal of hazardous materials, 286, 136-143.
Gagliano, E., Sgroi, M., Falciglia, P. P., Vagliasindi, F. G., & Roccaro, P. (2020). Removal of poly-and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration. Water Research, 171, 115381.
Ganjoo, R., Sharma, S., Kumar, A., & Daouda, M. (2023). Activated carbon: Fundamentals, classification, and properties.
Ge, D., & Chu, X.-Q. (2022). Multiple-fold CF bond functionalization for the synthesis of (hetero) cyclic compounds: fluorine as a detachable chemical handle. Organic Chemistry Frontiers.
Ghosh, S., Dhole, K., Tripathy, M., Kumar, R., & Sharma, R. (2015). FTIR spectroscopy in the characterization of the mixture of nuclear grade cation and anion exchange resins. Journal of Radioanalytical and Nuclear Chemistry, 304, 917-923.
Grandjean, P., Timmermann, C. A. G., Kruse, M., Nielsen, F., Vinholt, P. J., Boding, L., Heilmann, C., & Mølbak, K. (2020). Severity of COVID-19 at elevated exposure to perfluorinated alkylates. PLoS One, 15(12), e0244815.
Guo, H., Zhang, H., Sheng, N., Wang, J., Chen, J., & Dai, J. (2021). Perfluorooctanoic acid (PFOA) exposure induces splenic atrophy via overactivation of macrophages in male mice. Journal of hazardous materials, 407, 124862.
Hsu, J.-Y., Hsu, J.-F., Ho, H.-H., Chiang, C.-F., & Liao, P.-C. (2013). Background levels of persistent organic pollutants in humans from Taiwan: perfluorooctane sulfonate and perfluorooctanoic acid. Chemosphere, 93(3), 532-537.
Jian, J.-M., Guo, Y., Zeng, L., Liang-Ying, L., Lu, X., Wang, F., & Zeng, E. Y. (2017). Global distribution of perfluorochemicals (PFCs) in potential human exposure source–a review. Environment international, 108, 51-62.
Jin, L., Zhang, P., Shao, T., & Zhao, S. (2014). Ferric ion mediated photodecomposition of aqueous perfluorooctane sulfonate (PFOS) under UV irradiation and its mechanism. Journal of hazardous materials, 271, 9-15.
Kang, J. S., Ahn, T.-G., & Park, J.-W. (2019). Perfluorooctanoic acid (PFOA) and perfluooctane sulfonate (PFOS) induce different modes of action in reproduction to Japanese medaka (Oryzias latipes). Journal of hazardous materials, 368, 97-103.
Kannan, K., Corsolini, S., Falandysz, J., Fillmann, G., Kumar, K. S., Loganathan, B. G., Mohd, M. A., Olivero, J., Wouwe, N. V., & Yang, J. H. (2004). Perfluorooctanesulfonate and related fluorochemicals in human blood from several countries. Environmental science & technology, 38(17), 4489-4495.
Kansara, N., Bhati, L., Narang, M., & Vaishnavi, R. (2016). Wastewater treatment by ion exchange method: a review of past and recent researches. ESAIJ (Environmental Science, An Indian Journal), 12(4), 143-150.
Krafft, M. P., & Riess, J. G. (2015). Selected physicochemical aspects of poly-and perfluoroalkylated substances relevant to performance, environment and sustainability—Part one. Chemosphere, 129, 4-19.
Krahnstöver, T., & Wintgens, T. (2018). Separating powdered activated carbon (PAC) from wastewater–Technical process options and assessment of removal efficiency. Journal of Environmental Chemical Engineering, 6(5), 5744-5762.
Kurwadkar, S., Dane, J., Kanel, S. R., Nadagouda, M. N., Cawdrey, R. W., Ambade, B., Struckhoff, G. C., & Wilkin, R. (2022). Per-and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution. Science of The Total Environment, 809, 151003.
Kwak, J. I., Lee, T.-Y., Seo, H., Kim, D., Kim, D., Cui, R., & An, Y.-J. (2020). Ecological risk assessment for perfluorooctanoic acid in soil using a species sensitivity approach. Journal of hazardous materials, 382, 121150.
Lau, C., Anitole, K., Hodes, C., Lai, D., Pfahles-Hutchens, A., & Seed, J. (2007). Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicological sciences, 99(2), 366-394.
Lee, Y.-C., Chen, M.-J., Huang, C.-P., Kuo, J., & Lo, S.-L. (2016). Efficient sonochemical degradation of perfluorooctanoic acid using periodate. Ultrasonics Sonochemistry, 31, 499-505.
Lee, Y.-C., Wang, P.-Y., Lo, S.-L., & Huang, C. (2017). Recovery of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from dilute water solution by foam flotation. Separation and Purification Technology, 173, 280-285.
Li, Y.-F., Chien, W.-Y., Liu, Y.-J., Lee, Y.-C., Lo, S.-L., & Hu, C.-Y. (2021). Perfluorooctanoic acid (PFOA) removal by flotation with cationic surfactants. Chemosphere, 266, 128949.
Lin, J.-C., Hu, C.-Y., & Lo, S.-L. (2016). Effect of surfactants on the degradation of perfluorooctanoic acid (PFOA) by ultrasonic (US) treatment. Ultrasonics Sonochemistry, 28, 130-135.
Lin, Y.-C., Lai, W. W.-P., Tung, H.-h., & Lin, A. Y.-C. (2015). Occurrence of pharmaceuticals, hormones, and perfluorinated compounds in groundwater in Taiwan. Environmental monitoring and assessment, 187, 1-19.
Lindstrom, A. B., Strynar, M. J., & Libelo, E. L. (2011). Polyfluorinated compounds: past, present, and future. Environmental science & technology, 45(19), 7954-7961.
Lu, D., Sha, S., Luo, J., Huang, Z., & Jackie, X. Z. (2020). Treatment train approaches for the remediation of per-and polyfluoroalkyl substances (PFAS): A critical review. Journal of hazardous materials, 386, 121963.
Lv, G., & Sun, X. (2021). The molecular-level understanding of the uptake of PFOS and its alternatives (6: 2 Cl-PFESA and OBS) into phospholipid bilayers. Journal of hazardous materials, 417, 125991.
Malaeb, L., & Ayoub, G. M. (2011). Reverse osmosis technology for water treatment: State of the art review. Desalination, 267(1), 1-8.
Manojkumar, Y., Pilli, S., Rao, P. V., & Tyagi, R. D. (2023). Sources, occurrence and toxic effects of emerging per-and polyfluoroalkyl substances (PFAS). Neurotoxicology and Teratology, 97, 107174.
McCleaf, P., Kjellgren, Y., & Ahrens, L. (2021). Foam fractionation removal of multiple per‐and polyfluoroalkyl substances from landfill leachate. AWWA Water Science, 3(5), e1238.
Moradi, M., & Yamini, Y. (2012). Surfactant roles in modern sample preparation techniques: a review. Journal of Separation Science, 35(18), 2319-2340.
Noguera-Oviedo, K., & Aga, D. S. (2016). Lessons learned from more than two decades of research on emerging contaminants in the environment. Journal of hazardous materials, 316, 242-251.
Oliaei, F., Kriens, D., Weber, R., & Watson, A. (2013). PFOS and PFC releases and associated pollution from a PFC production plant in Minnesota (USA). Environmental Science and Pollution Research, 20, 1977-1992.
Pauletto, P. S., & Bandosz, T. J. (2022). Activated carbon versus metal-organic frameworks: A review of their PFAS adsorption performance. Journal of hazardous materials, 425, 127810.
Picó, Y., Farré, M., Llorca, M., & Barceló, D. (2011). Perfluorinated compounds in food: a global perspective. Critical reviews in food science and nutrition, 51(7), 605-625.
Podder, A., Sadmani, A. A., Reinhart, D., Chang, N.-B., & Goel, R. (2021). Per and poly-fluoroalkyl substances (PFAS) as a contaminant of emerging concern in surface water: a transboundary review of their occurrences and toxicity effects. Journal of hazardous materials, 419, 126361.
Posner, S. (2012). Perfluorinated compounds: occurrence and uses in products. Polyfluorinated chemicals and transformation products, 25-39.
Ross, I., McDonough, J., Miles, J., Storch, P., Thelakkat Kochunarayanan, P., Kalve, E., Hurst, J., S. Dasgupta, S., & Burdick, J. (2018). A review of emerging technologies for remediation of PFASs. Remediation Journal, 28(2), 101-126.
Shao, T., Zhang, P., Jin, L., & Li, Z. (2013). Photocatalytic decomposition of perfluorooctanoic acid in pure water and sewage water by nanostructured gallium oxide. Applied Catalysis B: Environmental, 142, 654-661.
Silva, R. A., Hawboldt, K., & Zhang, Y. (2018). Application of resins with functional groups in the separation of metal ions/species–a review. Mineral Processing and Extractive Metallurgy Review, 39(6), 395-413.
Smith, S. J., Lewis, J., Wiberg, K., Wall, E., & Ahrens, L. (2023). Foam fractionation for removal of per-and polyfluoroalkyl substances: Towards closing the mass balance. Science of The Total Environment, 871, 162050.
Socrates, G. (2004). Infrared and Raman characteristic group frequencies: tables and charts. John Wiley & Sons.
Soriano, A. l., Gorri, D., & Urtiaga, A. (2019). Selection of high flux membrane for the effective removal of short-chain perfluorocarboxylic acids. Industrial & Engineering Chemistry Research, 58(8), 3329-3338.
Tang, C. Y., Fu, Q. S., Criddle, C. S., & Leckie, J. O. (2007). Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater. Environmental science & technology, 41(6), 2008-2014.
Wanninayake, D. M. (2021). Comparison of currently available PFAS remediation technologies in water: A review. Journal of Environmental Management, 283, 111977.
Wilhelm, M., Bergmann, S., & Dieter, H. H. (2010). Occurrence of perfluorinated compounds (PFCs) in drinking water of North Rhine-Westphalia, Germany and new approach to assess drinking water contamination by shorter-chained C4–C7 PFCs. International journal of hygiene and environmental health, 213(3), 224-232.
Wu, C., Klemes, M. J., Trang, B., Dichtel, W. R., & Helbling, D. E. (2020). Exploring the factors that influence the adsorption of anionic PFAS on conventional and emerging adsorbents in aquatic matrices. Water Research, 182, 115950.
Xu, C., Yin, S., Liu, Y., Chen, F., Zhong, Z., Li, F., Liu, K., & Liu, W. (2019). Prenatal exposure to chlorinated polyfluoroalkyl ether sulfonic acids and perfluoroalkyl acids: Potential role of maternal determinants and associations with birth outcomes. Journal of hazardous materials, 380, 120867.
Yadav, S., Ibrar, I., Al-Juboori, R. A., Singh, L., Ganbat, N., Kazwini, T., Karbassiyazdi, E., Samal, A. K., Subbiah, S., & Altaee, A. (2022). Updated review on emerging technologies for PFAS contaminated water treatment. Chemical Engineering Research and Design, 182, 667-700.
Zeidabadi, F. A., Esfahani, E. B., & Mohseni, M. (2023). Effects of Water Matrix on Per-and Poly-fluoroalkyl Substances (PFAS) Treatment: Physical-separation and Degradation Processes–A review. Journal of Hazardous Materials Advances, 100322.
Zhao, C., Zhang, J., He, G., Wang, T., Hou, D., & Luan, Z. (2013). Perfluorooctane sulfonate removal by nanofiltration membrane the role of calcium ions. Chemical Engineering Journal, 233, 224-232.
Ziaee, F., Ziaee, M., & Taseidifar, M. (2021). Synthesis and application of a green surfactant for the treatment of water containing PFAS/hazardous metal ions. Journal of hazardous materials, 407, 124800.
Zushi, Y., Hogarh, J. N., & Masunaga, S. (2012). Progress and perspective of perfluorinated compound risk assessment and management in various countries and institutes. Clean Technologies and Environmental Policy, 14, 9-20.
中文文獻
李岳峰. (2022). 以電混凝浮除法去除全氟辛酸之研究 (Publication Number 2022年) 國立臺灣大學]. AiritiLibrary.
楊友瑞. (2023). 改性活性碳去除短碳鏈全氟丁酸之研究 (Publication Number 2023年) 國立臺灣大學]. AiritiLibrary.
劉元涵. (2021). 以UV/亞硫酸鹽光催化還原全氟丁烷磺酸之研究 (Publication Number 2021年) 國立臺灣大學]. AiritiLibrary.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93438-
dc.description.abstract全氟化合物(Perfluorinated chemicals, PFCs)為生活及工業製程常見之化學物質。長碳鏈 PFCs 在過去被廣泛使用,但隨著其毒性及持久性被揭露,各國逐漸禁止使用,短碳鏈 PFCs 則取代而代之,如全氟丁烷磺酸(Perfluorobutanesulfonic Acid, PFBS)。但仍有研究指出短碳鏈 PFCs 亦具毒性及持久性,因此研究短碳鏈 PFCs 之去除有其重要性。
本研究利用離子交換樹脂(IRA402)去除水中 PFBS。對離子交換樹脂進行界達電位、表面結構、元素組成、化學鍵及官能基分析,並探討 PFBS 初始濃度、離子交換樹脂添加量、攪拌速率、水溶液 pH 值等對去除效果之影響,找出較佳之實驗參數。在這些參數條件下,添加陽離子界面活性劑(DTAB、TBAB)及陰離子界面活性劑(SDS),探討界面活性劑對離子交換效果之影響。研究結果顯示,實驗參數為 PFBS 初始濃度25 ppm、水溶液 pH 3、常溫、攪拌速度為400 rpm、離子交換樹脂添加量為2 g/L 時,添加1mM TBAB 效果最佳,30分鐘即達到100%去除率,較未添加界面活性劑者縮短10分鐘,交換量為12.94 mg/g;5分鐘時,去除率可提升20.86%;在不同 PFBS 初始濃度下,添加 TBAB 均可提升交換速率。在PFBS 初始濃度100 ppm,其他實驗參數不變之情況下,添加1mM SDS 會產生反應時間較長且具去除率較差之負面影響。經反應動力模式模擬之結果顯示,實驗符合擬一階反應動力模式。
zh_TW
dc.description.abstractPerfluorinated chemicals (PFCs) are common substances used in daily life and industrial processes. Long-chain PFCs were widely used in the past, but as their toxicity and persistence have been revealed, many countries have gradually banned their use and replaced them with short-chain PFCs, such as Perfluorobutanesulfonic Acid (PFBS). However, studies have indicated that short-chain PFCs also exhibit toxicity and persistence, making the study of the removal of short-chain PFCs important.
This study utilizes ion exchange resin (IRA402) to remove PFBS from water. The zeta potential, surface structure, elemental composition, chemical bonds, and functional groups of the ion exchange resin were analyzed, and the effects of PFBS initial concentration, ion exchange resin dosage, stirring rate, and solution pH on the removal efficiency were investigated to determine the optimal experimental parameters. Under these conditions, cationic surfactants (DTAB, TBAB) and anionic surfactants (SDS) were added to explore the effect of surfactant on the ion exchange efficiency. The results showed that with an initial PFBS concentration of 25 ppm, solution pH of 3, room temperature, stirring speed of 400 rpm, and ion exchange resin dosage of 2 g/L, the addition of 1 mM TBAB resulted in the best performance, achieving a 100% removal rate within 30 minutes, 10 minutes shorter than without surfactant addition, with an exchange capacity of 12.94 mg/g. The removal rate could be increased by 20.86% within 5 minutes. The addition of TBAB improved the exchange rate across different initial PFBS concentrations. At an initial PFBS concentration of 100 ppm, with other experimental parameters unchanged, the addition of 1 mM SDS had a negative impact, leading to longer reaction time and lower removal rate. The reaction kinetics modeling results indicated that experiments followed the pseudo-first-order reaction kinetics model.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-31T16:19:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-31T16:19:45Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 iii
ABSTRACT iv
目次 vi
圖次 viii
表次 x
第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的 1
1.3 研究內容 2
第二章 文獻回顧 3
2.1 全氟化合物 3
2.2 常見的氟化合物處理技術 11
2.3 離子交換樹脂 22
2.4 界面活性劑 25
第三章 材料與方法 28
3.1 實驗內容與架構 28
3.2 實驗設計 30
3.3 實驗藥品 31
3.4 實驗設備與儀器 32
3.5 分析儀器 32
第四章 結果與討論 38
4.1 背景實驗 38
4.1.1 器材吸附實驗 38
4.1.2 空白背景實驗 39
4.2 離子交換樹脂表面特徵分析 40
4.2.1 界達電位分析 40
4.2.2 掃描式電子顯微鏡分析 40
4.2.3 化學鍵及官能基分析 45
4.3 實驗參數 48
4.3.1 全氟丁烷磺酸初始濃度對實驗之影響 48
4.3.2 離子交換樹脂添加量對實驗之影響 49
4.3.3 磁石轉速對實驗之影響 51
4.3.4 pH 值對實驗之影響 52
4.4 添加界面活性劑之實驗 53
4.4.1 添加陽離子界面活性劑 DTAB 之實驗 54
4.4.2 添加陽離子界面活性劑 TBAB 之實驗 55
4.4.3 添加陰離子界面活性劑 SDS 之實驗 56
4.4.4 添加不同界面活性劑的比較 57
4.5 反應動力模式 60
第五章 結論與建議 64
5.1 結論 64
5.2 建議 64
參考文獻 66
附錄 76
-
dc.language.isozh_TW-
dc.title以離子交換樹脂與界面活性劑去除全氟丁烷磺酸之研究zh_TW
dc.titleRemoval of Perfluorobutanesulfonic Acid by Ion Exchange Resin with Surfactanten
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林進榮;胡景堯zh_TW
dc.contributor.oralexamcommitteeChin-Jung Lin;Ching-Yao Huen
dc.subject.keyword全氟丁烷磺酸,離子交換,界面活性劑,zh_TW
dc.subject.keywordperfluorobutanesulfonic acid,ion exchange,surfactant,en
dc.relation.page84-
dc.identifier.doi10.6342/NTU202402013-
dc.rights.note未授權-
dc.date.accepted2024-07-26-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
3.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved