Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93424
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂良鴻zh_TW
dc.contributor.advisorLiang-Hung Luen
dc.contributor.author張文豪zh_TW
dc.contributor.authorWen-Hao Changen
dc.date.accessioned2024-07-31T16:15:35Z-
dc.date.available2024-08-01-
dc.date.copyright2024-07-31-
dc.date.issued2024-
dc.date.submitted2024-06-03-
dc.identifier.citation[1] L. Kong and B. Razavi, “A 2.4 GHz 4 mW Integer-N Inductorless RF Synthesizer,” IEEE Journal of Solid-State Circuits, vol. 51, no. 3, pp. 626–635, 2016.
[2] B. Razavi, Design of analog CMOS integrated circuits. Tsinghua University Press Co., Ltd., 2005.
[3] A. Grebene and H. Camenzind, “Phase locking as a new approach for tuned integrated circuits,” in 1969 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, vol. XII, 1969, pp. 100–101.
[4] A. Sharkia, S. Mirabbasi, and S. Shekhar, “A Type-I Sub-Sampling PLL With a 100 × 100 μm2 Footprint and 255-dB FOM,” IEEE Journal of Solid-State Circuits, vol. 53, no. 12, pp. 3553–3564, 2018.
[5] H. Rategh, H. Samavati, and T. Lee, “A CMOS frequency synthesizer with an injection-locked frequency divider for a 5-GHz wireless LAN receiver,” IEEE Journal of Solid-State Circuits, vol. 35, no. 5, pp. 80–787, 2000.
[6] P. Hanumolu, M. Brownlee, K. Mayaram, and U.-K. Moon, “Analysis of charge-pump phase-locked loops,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 51, no. 9, pp. 1665–1674, 2004.
[7] R. Gu, A.-L. Yee, Y. Xie, and W. Lee, “A 6.25GHz 1V LC-PLL in 0.13/spl mu/m CMOS,” in 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers, 2006, pp. 2442–2451.
[8] T. Wu, P. K. Hanumolu, K. Mayaram, and U.-K. Moon, “A 4.2 GHz PLL Frequency Synthesizer with an Adaptively Tuned Coarse Loop,” in 2007 IEEE Custom Integrated Circuits Conference, 2007, pp. 547–550.
[9] S. P. Bruss and R. R. Spencer, “A 5GHz CMOS PLL with low KVCO and extended fine-tuning range,” in 2008 IEEE Radio Frequency Integrated Circuits Symposium, 2008, pp. 669–672.
[10] B. C ̧ atlı, A. Nazemi, T. Ali, S. Fallahi, Y. Liu, J. Kim, M. Abdul-Latif, M. R. Ahmadi, H. Maarefi, A. Momtaz, and N. Kocaman, “A Sub-200 fs RMS jitter capacitor multiplier loop filter-based PLL in 28 nm CMOS for high-speed serial communication applications,” in Proceedings of the IEEE 2013 Custom Integrated Circuits Conference, 2013, pp. 1–4.
[11] F. Gardner, “Charge-Pump Phase-Lock Loops,” IEEE Transactions on Communications, vol. 28, no. 11, pp. 1849–1858, 1980.
[12] F. Song, Y. Zhao, B. Wu, L. Tang, L. Lin, and B. Razavi, “16.5 A Fractional-N Synthesizer with 110fsrms Jitter and a Reference Quadrupler for Wideband 802.11ax,” in 2019 IEEE International Solid-State Circuits Conference - (ISSCC), 2019, pp. 264–266.
[13] S.-Y. Cho, S. Kim, M.-S. Choo, J. Lee, H.-G. Ko, S. Jang, S.-H. Chu, W. Bae, Y. Kim, and D.-K. Jeong, “A 5-GHz subharmonically injection-locked all-digital PLL with complementary switched injection,” in ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC), 2015, pp. 384–387.
[14] B. Razavi, Design of CMOS phase-locked loops: from circuit level to architecture level. Cambridge University Press, 2020.
[15] S. Shekhar, Wideband frequency synthesizers. University of Washington, 2008.
[16] B. Razavi, “Principles of data conversion system design,” (No Title), 1994.
[17] Y. Sun, J. Li, Z. Zhang, M. Wang, N. Xu, H. Lv, W. Rhee, Y. Li, and Z. Wang, “A 2.74–5.37GHz boosted-gain type-I PLL with ¡152012 IEEE Radio Frequency Integrated Circuits Symposium, 2012, pp. 181–184.
[18] A. Sharkia, S. Aniruddhan, S. Mirabbasi, and S. Shekhar, “A Compact, Voltage-Mode Type-I PLL With Gain-Boosted Saturated PFD and Synchronous Peak Tracking Loop Filter,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 1, pp. 43–53, 2019.
[19] R. K. Nandwana, T. Anand, S. Saxena, S.-J. Kim, M. Talegaonkar, A. Elkholy, W.-S. Choi, A. Elshazly, and P. K. Hanumolu, “A Calibration-Free Fractional-N Ring PLL Using Hybrid Phase/Current-Mode Phase Interpolation Method,” IEEE Journal of Solid-State Circuits, vol. 50, no. 4, pp. 882–895, 2015.
[20] A. Sai, T. Yamaji, and T. Itakura, “A 570fsrms integrated-jitter ring-VCO-based 1.21GHz PLL with hybrid loop,” 2011 IEEE International Solid-State Circuits Conference, pp. 98–100, 2011.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93424-
dc.description.abstract在當今的多頻多模通信系統中,一個體積小巧、靈活性高且具有高頻譜純度的時脈產生器是不可或缺的。由於其穩定性高、佔用空間小,第一類鎖相迴路(Type-I PLL) 近來已成為許多研究的焦點。然而,第一類鎖相迴路的鎖定範圍受到限制,這不僅使得其在實際應用中無法確保在製程、電壓、溫度變異下仍能成功鎖定,也限制了其作為寬調變範圍(tuning range)時脈產生器的應用。
本論文提出了一個頻帶選擇機制並設計了相應的頻帶選擇迴路。該迴路防止了第一類鎖相迴路脫鎖,並克服了鎖定範圍和參考突波之間的取捨。藉由頻帶選擇迴路的輔助,本論文實現了一個寬調變範圍的第一類鎖相迴路。該晶片採用TSMC 180-nm CMOS 製程實現,核心電路面積為0.12 mm2,操作電壓為1.8 V,輸出頻率範圍為840 - 2240 MHz,提供了超過90%的調變範圍。當輸入參考頻率為10 MHz,輸出頻率為2240 MHz 時,在1-MHz 頻率偏移的地方,相位雜訊為-91.7 dBc/Hz,參考突波為-50 dBc。在論文的最後,對該晶片進行了優化,計算出了最佳化的參數設計及系統頻率規劃。
此外,本文提出的頻帶選擇迴路易於適應不同的製程,並有望在未來與基於單元(cell-based)的設計流程結合,以簡化設計複雜性。
zh_TW
dc.description.abstractIn today’s multi-band and multi-mode communication systems, a compact, flexible, and high-spectral purity clock generator is indispensable. Due to its high stability and small footprint, the type-I PLL has recently become the focus of much research. However, the acquisition range of Type-I PLLs is limited. This not only prevents them from reliably locking under process, voltage, and temperature variations in real-world applications but also restricts their use as wide-tuning range clock generators.
This paper proposes a band-selecting mechanism and designs a corresponding band-selecting loop. The loop prevents the type-I PLL from unlocking and overcomes the trade-off between the acquisition range and the reference spur. With the assistance of the band-selecting loop, this paper realizes a wide tuning range type-I PLL. The chip is implemented in a TSMC 180-nm CMOS process, with a core circuit area of 0.12 mm2, operating at 1.8 V. The output frequency range is 840 - 2240 MHz, providing over 90% of the tuning range. At an input reference frequency of 10 MHz and an output frequency of 2240 MHz, the phase noise at 1 MHz frequency offset is −91.7 dBc/Hz, and the reference spur is −50 dBc. In the final section, the optimal parameter design and system frequency planning are calculated.
Furthermore, the band-selecting loop proposed in this paper is easily adaptable to different processes and is expected to be combined with cell-based design flow in the future to simplify the design complexity.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-31T16:15:35Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-31T16:15:35Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsApproval i
Acknowledgment iii
Chinese Abstract v
Abstract vii
List of Figures xi
List of Tables xv
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Introduction to Type-I PLL 5
2.1 Fundamentals of the Phase-Locked Loop . . . . . . . . . . . . . . . . . . 5
2.1.1 Voltage-Controlled Oscillators . . . . . . . . . . . . . . . . . . . 5
2.1.2 Phase Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Steady State Behavior . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Dynamic Behavior . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Transfer Function of Type-I PLL . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Limitation of Acquisition Range in Type-I PLL . . . . . . . . . . . . . . 20
3 Proposed PLL 25
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Overall Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Proposed Band-Selecting Loop . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.1 Band-Selecting Mechanism . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.3 Activation of Band-Selecting Loop . . . . . . . . . . . . . . . . . 40
3.3.4 The Whole Structure of Band-Selecting Loop . . . . . . . . . . . 41
3.4 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.1 Phase Detector and Master-Slave Sampling Filter . . . . . . . . . 44
3.4.2 Multi-Band Voltage Control Oscillator . . . . . . . . . . . . . . . 47
3.4.3 Multi-Modulus Divider . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.4 Band-Selecting Loop . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4 Experimental Results 61
4.1 Chip Photo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 Experiment Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5 Modified Design 71
5.1 Work Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Adjusted Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 Phase Noise Consideration . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4 Simulation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6 Conclusion 81
Reference 83
-
dc.language.isoen-
dc.subject第一類zh_TW
dc.subject寬調變範圍zh_TW
dc.subject鎖定範圍zh_TW
dc.subject鎖相迴路zh_TW
dc.subjectPhase-Locked Loopen
dc.subjectType-Ien
dc.subjectAcquisition Rangeen
dc.subjectWide-Tuning Rangeen
dc.title一個具有超寬輸出頻率範圍的CMOS 鎖相迴路zh_TW
dc.titleA CMOS Phase-Lock Loop with an Ultra-Wide Output Frequency Rangeen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林宗賢;蔡宗亨zh_TW
dc.contributor.oralexamcommitteeTsung-Hsien Lin;Tsung-Heng Tsaien
dc.subject.keyword鎖相迴路,第一類,鎖定範圍,寬調變範圍,zh_TW
dc.subject.keywordPhase-Locked Loop,Type-I,Acquisition Range,Wide-Tuning Range,en
dc.relation.page85-
dc.identifier.doi10.6342/NTU202400983-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-06-04-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf6.9 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved