Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93423
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林致廷zh_TW
dc.contributor.advisorChih-Ting Linen
dc.contributor.author羅紹耘zh_TW
dc.contributor.authorShao-Yun Luoen
dc.date.accessioned2024-07-31T16:15:18Z-
dc.date.available2024-08-01-
dc.date.copyright2024-07-31-
dc.date.issued2024-
dc.date.submitted2024-07-19-
dc.identifier.citation[1] Weisstein, Eric W., “Four-Color Theorem,” from MathWorld--A Wolfram Web Resource, available in https://mathworld.wolfram.com/Four-ColorTheorem.html
[2] Weisstein, Eric W., “Fourier Series,” from MathWorld--A Wolfram Web Resource, available in https://mathworld.wolfram.com/FourierSeries.html
[3] Vladimir Dobrushkin, “MATHEMATICA TUTORIAL for the Second Course. Part V: Legendre Expansion,” available in https://www.cfm.brown.edu/people/dobrush/am34/Mathematica/ch5/legendre.html
[4] Weisstein, Eric W., “Wavelet Transform,” from MathWorld--A Wolfram Web Resource, available in https://mathworld.wolfram.com/WaveletTransform.html
[5] N. Ahmed, T. Natarajan and K. R. Rao, “Discrete Cosine Transform,” in IEEE Transactions on Computers, vol. C-23, no. 1, pp. 90-93, Jan. 1974
[6] Weisstein, Eric W., “Fourier Sine Transform,” from MathWorld--A Wolfram Web Resource, available in https://mathworld.wolfram.com/FourierSineTransform.html
[7] 酒井善則,吉田俊之,影像壓縮技術,全華科技圖書,台北市,2004
[8] Bosse Lincoln, “Karhunen Lòeve Transform (KLT),” available in https://ccrma.stanford.edu/~bosse/proj/node29.html
[9] 林恕安, “JPEG VS JPEG2000,” available in https://djj.ee.ntu.edu.tw/JPEG_JPEG200.pdf
[10] 吳俊賢, “心電圖判讀,” available in https://wwwv.tsgh.ndmctsgh.edu.tw/files/web/192/file_up/10012/7819/B46-%E5%BF%83%E9%9B%BB%E5%9C%96%E5%88%A4%E8%AE%80.pdf
[11] Junsang Park, Junho An, Jinkook Kim, Sunghoon Jung, Yeongjoon Gil, Yoojin Jang, Kwanglo Lee, Il-young Oh, “Study on the use of standard 12-lead ECG data for rhythm-type ECG classification problems,” Computer Methods and Programs in Biomedicine, Volume 214,2022
[12] CardiacDirect, “12-LEAD ECG PLACEMENT GUIDE,” available in https://www.cardiacdirect.com/12-lead-ecg-placement-guide/#:~:text=Placing%20the%20Leads%20In%20a%2012-lead%20ECG%2C%20there,place%20the%20precordial%20leads%20on%20the%20patient%E2%80%99s%20chest.
[13] ECG learning center, “1. The Standard 12 Lead ECG ,” available in https://ecg.utah.edu/lesson/1#spacialorientation
[14] Putri Madona, Rahmat Ilias Basti, Muhammad Mahrus Zain, “PQRST wave detection on ECG signals,” Gaceta Sanitaria , Volume 35, Supplement 2,2021
[15] PhysioNet, “PhysioBank ATM,” available in https://archive.physionet.org/cgi-bin/atm/ATM
[16] Siuly Siuly, Yan Li, Yanchun Zhang, EEG Signal Analysis and Classification, Springer, 2016
[17] Itsusync, “DIFFERENT TYPES OF BRAIN WAVES: DELTA, THETA, ALPHA, BETA, GAMMA,” available in https://itsusync.com/different-types-of-brain-waves-delta-theta-alpha-beta-gamma-ezp-9
[18] Danny Oude Bos, “EEG-based emotion recognition,” The influence of visual and auditory stimuli 56.3, pp. 1-17, 2006.
[19] J. R. Cox, F. M. Nolle, H. A. Fozzard and G. C. Oliver, “AZTEC, a Preprocessing Program for Real-Time ECG Rhythm Analysis,” IEEE Transactions on Biomedical Engineering, vol. BME-15, no. 2, pp. 128-129, Apr. 1968
[20] Anjum, Muzaffar Saba, and Monisha Chakraborty, “ECG data compression using turning point algorithm,” International Journal of Innovative Research in Engineering & Multidisciplinary Physical Sciences 2, 2014.
[21] J. P. Abenstein and W. J. Tompkins, “A New Data-Reduction Algorithm for Real-Time ECG Analysis,” IEEE Transactions on Biomedical Engineering, vol. BME-29, no. 1, pp. 43-48, Jan. 1982.
[22] M. Ishijima, S. -B. Shin, G. H. Hostetter and J. Sklansky, “Scan-Along Polygonal Approximation for Data Compression of Electrocardiograms,” IEEE Transactions on Biomedical Engineering, vol. BME-30, no. 11, pp. 723-729, Nov. 1983.
[23] S. M. S. Jalaleddine, C. G. Hutchens, R. D. Strattan and W. A. Coberly, "ECG data compression techniques-a unified approach," in IEEE Transactions on Biomedical Engineering, vol. 37, no. 4, pp. 329-343, April 1990.
[24] M. Pallavi and H. M. Chandrashekar, "Study and analysis of ECG compression algorithms," 2016 International Conference on Communication and Signal Processing (ICCSP), pp. 2028-2032, Melmaruvathur, India, 2016.
[25] Singh, Butta, Amandeep Kaur, and Jugraj Singh, “A review of ECG data compression techniques,” International journal of computer applications 116.11 ,2015.
[26] S. B. Kale and D. H. Gawali, “Review of ECG compression techniques and implementations,” 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), pp. 623-627, Jalgaon, India, 2016.
[27] Cerna, Michael, and Audrey F. Harvey, “The fundamentals of FFT-based signal analysis and measurement,” Application Note 041, National Instruments, 2000.
[28] I. Daubechies, “The wavelet transform, time-frequency localization and signal analysis,” in IEEE Transactions on Information Theory, vol. 36, no. 5, pp. 961-1005, Sept. 1990.
[29] Gabor, Dennis, “Theory of communication. Part 1: The analysis of information,” Journal of the Institution of Electrical Engineers-part III: radio and communication engineering 93.26, pp.429~441, 1946.
[30] H. Hazawa, H. Yamada and H. Mori, “Impact of Signal Correlation in 2D Imaging with Khatri-Rao Product Expansion Array,” 2020 International Symposium on Antennas and Propagation (ISAP), pp. 449-450, Osaka, Japan, 2021
[31] Y. Wongsawat, S. Oraintara, T. Tanaka and K. R. Rao, “Lossless multi-channel EEG compression,” 2006 IEEE International Symposium on Circuits and Systems, pp. 1611~1614, Kos, Greece, 2006.
[32] P. J. Durka and K. J. Blinowska, “A unified time-frequency parametrization of EEGs,” in IEEE Engineering in Medicine and Biology Magazine, vol. 20, no. 5, pp. 47-53, Sept. ~Oct. 2001.
[33] N. Memon, Xuan Kong and J. Cinkler, “Context-based lossless and near-lossless compression of EEG signals,” in IEEE Transactions on Information Technology in Biomedicine, vol. 3, no. 3, pp. 231-238, Sept. 1999.
[34] Cárdenas-Barrera, J. L., Lorenzo-Ginori, J. V. and Rodríguez-Valdivia E. “A wavelet-packets based algorithm for EEG signal compression,” Medical Informatics and the Internet in Medicine, 29(1), pp. 15–27, 2004.
[35] Gurve, Dharmendra, Denis Delisle-Rodriguez, Teodiano Bastos-Filho, and Sridhar Krishnan, “Trends in Compressive Sensing for EEG Signal Processing Applications,” Sensors 20, no. 13: 3703, 2020.
[36] Weisstein, Eric W., “Gibbs Phenomenon,” from MathWorld--A Wolfram Web Resource, available in https://mathworld.wolfram.com/GibbsPhenomenon.html
[37] Weisstein, Eric W., “Legendre Differential Equation,” from MathWorld--A Wolfram Web Resource, available in https://mathworld.wolfram.com/LegendreDifferentialEquation.html
[38] Weisstein, Eric W., “Legendre Polynomial,” from MathWorld--A Wolfram Web Resource, available in https://mathworld.wolfram.com/LegendrePolynomial.html
[39] 繆紹綱,數位影像處理-活用Matlab,第二版,全華圖書,新北市,2011
[40] Bhattacharyya, Abhijit, Lokesh Singh, and Ram Bilas Pachori, “Fourier–Bessel series expansion based empirical wavelet transform for analysis of non-stationary signals,” Digital Signal Processing 78, pp. 185-196, 2018.
[41] M. -P. Hosseini, A. Hosseini and K. Ahi, “A Review on Machine Learning for EEG Signal Processing in Bioengineering,” in IEEE Reviews in Biomedical Engineering, vol. 14, pp. 204-218, 2021
[42] Li, Y., Geng, B. & Tang, B. “Simplified coded dispersion entropy: a nonlinear metric for signal analysis,” Nonlinear Dyn 111, pp. 9327–9344, 2023.
[43] N. Ahmed, P. J. Milne and S. G. Harris, “Electrocardiographic Data Compression Via Orthogonal Transforms,” in IEEE Transactions on Biomedical Engineering, vol. BME-22, no. 6, pp. 484-487, Nov. 1975.
[44] D. Gurve, B. S. Saini and I. Saini, “An improved lossless ECG data compression using ASCII character encoding,” 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 758-764, Chennai, India, 2016.
[45] L. V. Batista, L. C. Carvalho and E. U. K. Melcher, “Compression of ECG signals based on optimum quantization of discrete cosine transform coefficients and Golomb-Rice coding,” Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol.3, pp. 2647-2650, Cancun, Mexico, 2003.
[46] Koski, Antti, “Lossless ECG encoding,” Computer methods and programs in biomedicine 52.1, pp. 23-33, 1997.
[47] J. Qian, P. Tiwari, S. P. Gochhayat and H. M. Pandey, “A Noble Double-Dictionary-Based ECG Compression Technique for IoTH,” in IEEE Internet of Things Journal, vol. 7, no. 10, pp. 10160-10170, Oct. 2020.
[48] Chandra, S., Ambalika Sharma, and Girish Kumar Singh, “A comparative analysis of performance of several wavelet based ECG data compression methodologies,” Irbm 42.4, pp. 227-244, 2021.
[49] D. H. Mugler, S. Clary and Yan Wu, “Discrete Hermite expansion of digital signals: applications to ECG signals,” Proceedings of 2002 IEEE 10th Digital Signal Processing Workshop, 2002 and the 2nd Signal Processing Education Workshop., pp. 262-267, Pine Mountain, GA, USA, 2002.
[50] N. K. Sawant and S. Patidar, “Diagnosis of Cardiac Abnormalities Applying Scattering Transform and Fourier-Bessel Expansion on ECG Signals,” 2021 Computing in Cardiology (CinC), pp. 1-4, Brno, Czech Republic, 2021.
[51] L. F. Polania, R. E. Carrillo, M. Blanco-Velasco and K. E. Barner, “Compressed sensing based method for ECG compression,” 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 761-764, Prague, Czech Republic, 2011.
[52] Jha, C. K., and M. H. Kolekar, “Empirical mode decomposition and wavelet transform based ECG data compression scheme," Irbm 42.1, pp. 65-72, 2021.
[53] Rodrigues, N. M., et al., “ECG signal compression based on Dc equalization and complexity sorting,” IEEE transactions on bio-medical engineering 55.7, pp. 1923-1926, 2008.
[54] Liu, Xinwen, et al., “Deep learning in ECG diagnosis: A review,” Knowledge-Based Systems 227, pp. 107~187, 2021.
[55] Ramasamy, Karthikeyan, Kiruthika Balakrishnan, and Durgadevi Velusamy, “Detection of cardiac arrhythmias from ECG signals using FBSE and Jaya optimized ensemble random subspace K-nearest neighbor algorithm,” Biomedical Signal Processing and Control 76, 2022.
[56] S. Aviyente, “Compressed Sensing Framework for EEG Compression,” 2007 IEEE/SP 14th Workshop on Statistical Signal Processing, Madison, WI, USA, pp. 181-184, 2007.
[57] G. Antoniol and P. Tonella, “EEG data compression techniques,” in IEEE Transactions on Biomedical Engineering, vol. 44, no. 2, pp. 105-114, Feb. 1997.
[58] Anuragi, Arti, Dilip Singh Sisodia, and Ram Bilas Pachori, “EEG-based cross-subject emotion recognition using Fourier-Bessel series expansion based empirical wavelet transform and NCA feature selection method,” Information Sciences 610, pp. 508-524, 2022.
[59] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec based on set partitioning in hierarchical trees,” in IEEE Transactions on Circuits and Systems for Video Technology, vol. 6, no. 3, pp. 243-250, June 1996.
[60] Srinivasan, K., Justin Dauwels, and M. Ramasubba Reddy, “A two-dimensional approach for lossless EEG compression,” Biomedical signal processing and control 6.4, pp. 387-394, 2011.
[61] S. G. Mallat and Z. Zhang. “Matching pursuits with time-frequency dictionaries,” IEEE Trans. Signal Processing, vol. 41, issue 12, pp. 3397-3415, 1993.
[62] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, "Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition," in IEEE Proc. Asilomar Conf. Signals, Systems and Computers, pp. 40-44, Nov. 1993.
[63] Yi-Min Yang, “Algorithm for building variable bandwidth with Fourier series,” Jan. 2022.
[64] Yu-Tsen Chang, “Compact ECG signal compression based on Fourier series,” Jul. 2023.
[65] Kuei-Chen Chen, “Efficient Piecewise Continuous Signal Basis Expansion by Precision Calculation,” Jan. 2024.
[66] A. Haar, “Zur theorie der orthogonalen funktionensysteme ,” Math. Annal., vol. 69, pp. 331-371, 1910.
[67] Ingrid Daubechies: Ten Lectures on Wavelets, SIAM 1992.
[68] Mathful, “Linear Interpolation: Definition, Formula, & Example,” available in https://mathful.com/hub/linear-interpolation
[69] J. Scott Tyo, Andrey S. Alenin, Field Guide to Linear Systems in Optics, Bellingham: SPIE, 2015.
[70] Jian-Jiun Ding, Advanced Digital Signal Processing class note, the Department of Electrical Engineering, National Taiwan University (NTU), Taipei, Taiwan, 2007.
[71] Weisstein, Eric W, “Cumulative Sum,” from MathWorld--A Wolfram Web Resource, available in https://mathworld.wolfram.com/CumulativeSum.html
[72] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Processing, vol. 13, no. 4, pp. 600−612, Apr. 2004.
[73] Investing.com, available in https://hk.investing.com/
[74] 鉅亨網, available in https://www.cnyes.com/forex
[75] 台中捷運, “運量資訊,” available in https://www.tmrt.com.tw/about/information-disclosure
[76] 台北捷運, “全系統旅運量統計,” available in https://www.metro.taipei/cp.aspx?n=FF31501BEBDD0136
[77] 桃園捷運, “統計資料,” available in https://www.tymetro.com.tw/tymetro-new/tw/_pages/about/statistics.html
[78] 高雄捷運, “統計資料,” available in https://corp.krtc.com.tw/News/statistics?id=1
[79] 高雄捷運, “統計資料,” available in https://corp.krtc.com.tw/News/statistics?id=2
[80] 交通部高速公路局, “百萬車公里統計,” available in https://www.freeway.gov.tw/Publish.aspx?cnid=1656
[81] 中央氣象署, “氣候資料服務系統,” available in https://codis.cwa.gov.tw/StationData?target=station
[82] Index of /~phao/IP/Images, available in http://www.eecs.qmul.ac.uk/~phao/IP/Images/
[83] 公主連結遊戲截圖
[84] アニメ「ぼっち・ざ・ろっく!」公式, available in https://twitter.com/BTR_anime/header_photo
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93423-
dc.description.abstract在訊號分析的領域中,高頻區的分析時常會遇到比較大的誤差,例如吉布斯現象。為了嘗試解決這些問題,本論文先提出了精準計算的概念,在有限項傅立葉級數中加入額外的修正項輔助分析訊號高頻區,並成功降低吉布斯現象,讓分析結果能夠更加正確。基於精準計算中區分訊號高低頻的想法,本論文透過自定義的方法將包含心電圖與腦電圖在內的一維訊號分為高頻區與低頻區,再分別透過離散餘弦轉換與勒壤德多項式展開的組合進行訊號分解,與其他方法進行壓縮效果的比較,發現當一維訊號的高頻區與低頻區之間的區分明顯且交雜不多時,本論文所提出的運算方法能夠在一維訊號壓縮中有卓越的表現,但在高低頻混雜的訊號就比較難以展現理想的結果。
接著,本論文亦將相關結果擴展到二維影像處理中,比較自定義方法與其他方法的壓縮效果,並嘗試將壓縮後的影像重建為新影像,同樣發現當圖片的高頻區與低頻區之間的區分明顯且交雜不多時,圖片的壓縮與重建效果非常理想。若圖片的高低頻混雜比較明顯,重建的圖片就會出現比較明顯的失真。
zh_TW
dc.description.abstractIn the field of signal analyzing, the error often become significant in high frequency parts, such as Gibbs phenomenon. In order to solve the problem, the thesis advances the conception of precision calculation, adding extra correction items to support the analyzation of the high frequency parts of the signals, which reduces Gibbs phenomenon successfully. Based on the conception of separating the signal’s high frequency parts and low frequency parts in precision calculation, the thesis divides 1D signals, including ECG and EEG, into high frequency parts and low frequency parts by self-defined methods. Afterwards, we decompose the signal through the combination of discrete Fourier transform(DCT) and Legendre polynomial expansion respectively, then compare the compression efficiency of the proposed methods with other methods. We find out that the proposed methods work perfectly when the signal’s high frequency parts and low frequency parts are separated clearly without severe hybridization. However, the methods fail to show ideal outcome in severe hybridization ones. Moreover, we expand our proposed methods to 2D image compression, compare the compression efficiency of the proposed methods with other methods, then attempt to recover the new images from the compressed ones. Similar to 1D signals, when the signal’s high frequency parts and low frequency parts are separated clearly without severe hybridization, the recovery of the image shows ideal result, and distortions will be observed in severe hybridization images.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-31T16:15:18Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-31T16:15:18Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES ix
LIST OF TABLES xv
Chapter 1 Introduction 1
1.1 Signal Analyzing 1
1.2 ECG 1
1.3 EEG 4
Chapter 2 Signal Analysis and Compression Review 6
2.1 Classical Signal Analysis 6
2.1.1 Fourier Series 6
2.1.2 Legendre Polynomial Expansion 6
2.1.3 Discrete Cosine Transform(DCT) 7
2.1.4 Discrete Sine Transform(DST) 8
2.2 Newer Signal Analysis Methods 10
2.3 Classic Methods of ECG Compression 10
2.3.1 AZTEC[19] 10
2.3.2 TP[20] 11
2.3.3 CORTES[21] 11
2.3.4 SAPA-2[22] 12
2.4 Other ECG Compression Methods 13
2.5 EEG compression methods 13
2.6 Compressed Sensing 13
2.6.1 Matching Pursuit 13
2.6.2 Orthogonal Matching Pursuit 15
Chapter 3 Proposed Methods 16
3.1 Main Idea of Precision Calculation 16
3.1.1 Correction Basis 16
3.1.2 Trials of Precision Calculation 17
3.1.3 Precision Calculation’s Inspiration 19
3.2 Compared Compression Methods in 1D 20
3.2.1 Time Domain Expansion 20
3.2.2 Discrete Wavelet Transform 20
3.2.3 Linear Interpolation 21
3.2.4 Sinc Interpolation 21
3.2.5 Cubic B-spline 21
3.2.6 Cumulative Sum 22
3.2.7 Weighted Rank 22
3.3 Proposed Methods in 1D 23
3.3.1 Pre-processing 23
3.3.2 Piecewise Continuous Signal 24
3.3.3 Nearly Piecewise Continuous Signal 24
3.3.4 Less-variant Frequency Distribution Signal 25
3.3.5 Summary of the Methods 25
3.4 Compared Compression Methods in 2D 28
3.5 Proposed Method in 2D 28
3.5.1 Edge Detecting 29
3.5.2 Morphology 29
3.5.3 The Adapted-DCT 30
3.5.4 Image Recovery 32
3.5.5 Structural Similarity 32
Chapter 4 Experiment Results in 1D Cases 33
4.1 Financial Signals 33
4.1.1 Stock(TAIEX) 33
4.1.2 Stock(Dow Jones) 34
4.1.3 Stock(Nikkei) 35
4.1.4 Stock(DAX) 36
4.1.5 Stock(TSMC) 37
4.1.6 Exchange Rate(USD) 38
4.1.7 Exchange Rate(EUR) 39
4.1.8 Exchange Rate(JPY) 40
4.1.9 Futures(Gold) 41
4.1.10 Futures(Oil) 42
4.1.11 Futures(Gas) 43
4.2 Traffic Signals 44
4.2.1 MRT(Taichung) 45
4.2.2 MRT(Taipei) 45
4.2.3 MRT(Taoyuan) 46
4.2.4 MRT(Kaohsiung) 47
4.2.5 Kaohsiung Light Rail 48
4.2.6 Highway(Northbound) 49
4.2.7 Highway(Southbound) 50
4.2.8 Highway(total) 51
4.3 Meteorological Signals 52
4.3.1 Air Pressure 52
4.3.2 Temperature 53
4.3.3 Humidity 54
4.4 ECG Signals 55
4.4.1 100m 55
4.4.2 101m 56
4.4.3 102m 57
4.4.4 103m 58
4.4.5 104m 59
4.4.6 The average rank of other ECG signals 60
4.5 EEG Signals 61
4.6 Briefly discussion of 1D Signals 64
4.7 Row and Column of Images 64
4.7.1 Baboon(column) 66
4.7.2 Baboon(row) 67
4.7.3 Barbara(column) 67
4.7.4 Barbara(row) 68
4.7.5 Cameraman(column) 68
4.7.6 Cameraman(row) 69
4.7.7 Goldhill(column) 69
4.7.8 Goldhill(row) 70
4.7.9 Peppers(column) 70
4.7.10 Peppers(row) 71
Chapter 5 Experiment Results in 2D Cases 72
5.1 Five Images with Given Conditions 72
5.2 Baboon Results with Different Conditions 80
5.3 Recovered Five Images 86
5.4 The Results of Other Images 88
5.4.1 Image 1(Graduation 1) 89
5.4.2 Image 2(Graduation 2) 91
5.4.3 Image 3(Mobile Game Character, MGC) 93
5.4.4 Image 4(Animation Poster, AP) 96
5.4.5 The Discussion of Other Images 98
Chapter 6 Conclusion and Future Works 99
REFERENCE 101
-
dc.language.isoen-
dc.subject離散餘弦轉換zh_TW
dc.subject訊號分析zh_TW
dc.subject影像處理zh_TW
dc.subject資料壓縮zh_TW
dc.subject心電圖zh_TW
dc.subject腦電圖zh_TW
dc.subject精準計算zh_TW
dc.subjectData Compressionen
dc.subjectSignal Analyzingen
dc.subjectImage Processingen
dc.subjectPrecision Calculationen
dc.subjectElectroencephalogram(EEG)en
dc.subjectElectrocardiography(ECG)en
dc.subjectDiscrete Fourier Transform(DCT)en
dc.title以精準計算想法輔助一維訊號與圖片的擴展與壓縮zh_TW
dc.titleOne-Dimensional Data and Image Expansion and Compression Using the Inspiration of Precision Calculationen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.coadvisor丁建均zh_TW
dc.contributor.coadvisorJian-Jiun Dingen
dc.contributor.oralexamcommittee簡鳳村;張榮吉zh_TW
dc.contributor.oralexamcommitteeFeng-Tsun Chien;Rong-Chi Changen
dc.subject.keyword離散餘弦轉換,訊號分析,影像處理,資料壓縮,心電圖,腦電圖,精準計算,zh_TW
dc.subject.keywordDiscrete Fourier Transform(DCT),Signal Analyzing,Image Processing,Data Compression,Electrocardiography(ECG),Electroencephalogram(EEG),Precision Calculation,en
dc.relation.page109-
dc.identifier.doi10.6342/NTU202401836-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-19-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf8.2 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved