請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93419完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 管希聖 | zh_TW |
| dc.contributor.advisor | Hsi-Sheng Goan | en |
| dc.contributor.author | 邱偉恩 | zh_TW |
| dc.contributor.author | Wei-En Chiu | en |
| dc.date.accessioned | 2024-07-31T16:14:06Z | - |
| dc.date.available | 2024-09-24 | - |
| dc.date.copyright | 2024-07-31 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-26 | - |
| dc.identifier.citation | [1] A. Bermeister, D. Keith, and D. Culcer. Charge noise, spin-orbit coupling, and dephasing of single-spin qubits. Applied Physics Letters, 105(19), Nov. 2014.
[2] R. Blume-Kohout, M. P. da Silva, E. Nielsen, T. Proctor, K. Rudinger, M. Sarovar, and K. Young. A taxonomy of small markovian errors. Physical Review X, 3:020335, May 2022. [3] R. Blume-Kohout, J. K. Gamble, E. Nielsen, K. Rudinger, J. Mizrahi, K. Fortier, and P. Maunz. Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography. Nature Communications, 8(1), Feb. 2017. [4] J. P. Bonilla Ataides, D. K. Tuckett, S. D. Bartlett, S. T. Flammia, and B. J. Brown. The xzzx surface code. Nature Communications, 12(1):2172, Apr 2021. [5] M. Borhani, V. N. Golovach, and D. Loss. Spin decay in a quantum dot coupled to a quantum point contact. Physical Review B, 73:155311, Apr 2006. [6] M. Ciorga, A. S. Sachrajda, P. Hawrylak, C. Gould, P. Zawadzki, S. Jullian, Y. Feng, and Z. Wasilewski. Addition spectrum of a lateral dot from coulomb and spin-blockade spectroscopy. Physical Review B, 61:R16315–R16318, Jun 2000.61 [7] L. Cywiński, R. M. Lutchyn, C. P. Nave, and S. Das Sarma. How to enhance dephasing time in superconducting qubits. Physical Review B, 77:174509, May 2008. [8] Łukasz. Cywiński. Spatial correlations of charge noise captured. Nature Physics, 19(12):1751–1752, Oct. 2023. [9] G. Dresselhaus. Spin-orbit coupling effects in zinc blende structures. Physical Review, 100:580–586, Oct 1955. [10] R. Eitan, M. Mundt, and D. J. Tannor. Optimal control with accelerated convergence: Combining the krotov and quasi-newton methods. Physical Review A, 83:053426, May 2011. [11] T. Evans, W. Huang, J. Yoneda, R. Harper, T. Tanttu, K. Chan, F. Hudson, K. Itoh, A. Saraiva, C. Yang, A. Dzurak, and S. Bartlett. Fast bayesian tomography of a two-qubit gate set in silicon. Physical Review Applied, 17:024068, Feb 2022. [12] R. Ferdous, E. Kawakami, P. Scarlino, M. P. Nowak, D. R. Ward, D. E. Savage, M. G. Lagally, S. N. Coppersmith, M. Friesen, M. A. Eriksson, L. M. K. Vandersypen, and R. Rahman. Valley dependent anisotropic spin splitting in silicon quantum dots. npj Quantum Information, 4(1), June 2018. [13] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland. Surface codes: Towards practical large-scale quantum computation. Physical Review A, 86:032324, Sep 2012. [14] A. G. Fowler, A. C. Whiteside, and L. C. L. Hollenberg. Towards practical classical processing for the surface code. Physical Review Letters, 108:180501, May 2012.62 [15] E. Fradkin. Field Theories of Condensed Matter Physics. Cambridge University Press, Feb. 2013. [16] J. Ghosh, A. Galiautdinov, Z. Zhou, A. N. Korotkov, J. M. Martinis, and M. R.Geller. High-fidelity controlled-𝜎𝑍 gate for resonator-based superconducting quantum computers. Physical Review A, 87:022309, Feb 2013. [17] W. Gilbert, T. Tanttu, W. H. Lim, M. Feng, J. Y. Huang, J. D. Cifuentes, S. Serrano, P. Y. Mai, R. C. C. Leon, C. C. Escott, K. M. Itoh, N. V. Abrosimov, H.-J. Pohl, M. L. W. Thewalt, F. E. Hudson, A. Morello, A. Laucht, C. H. Yang, A. Saraiva, and A. S. Dzurak. On-demand electrical control of spin qubits. Nature Nanotechnology., 18(2):131–136, Feb. 2023. [18] V. N. Golovach, M. Borhani, and D. Loss. Electric-dipole-induced spin resonance in quantum dots. Physical Review B, 74:165319, Oct 2006. [19] V. N. Golovach, A. Khaetskii, and D. Loss. Phonon-induced decay of the electron spin in quantum dots. Physical Review Letters, 93:016601, Jun 2004. [20] D. Greenbaum. Introduction to quantum gate set tomography, 2015. [21] M. Gullans, M. Caranti, A. Mills, and J. Petta. Compressed gate characterization for quantum devices with time-correlated noise. Physical Review X, 5:010306, Jan 2024. [22] M. J. Gullans and J. R. Petta. Protocol for a resonantly driven three-qubit toffoli gate with silicon spin qubits. Physical Review B, 100:085419, Aug 2019. [23] I. Hansen, A. E. Seedhouse, K. W. Chan, F. E. Hudson, K. M. Itoh, A. Laucht, A. Saraiva, C. H. Yang, and A. S. Dzurak. Implementation of an advanced dressing protocol for global qubit control in silicon. Applied Physics Reviews, 9(3), Sept. 2022. [24] I. Hansen, A. E. Seedhouse, A. Saraiva, A. Laucht, A. S. Dzurak, and C. H. Yang. Pulse engineering of a global field for robust and universal quantum computation. Physical Review A, 104:062415, Dec 2021. [25] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen. Spins in few-electron quantum dots. Reviews of Modern Physics, 79:1217–1265, Oct 2007. [26] R. U. Haq and K. Singh. A systematic method for schrieffer-wolff transformation and its generalizations, 2020. [27] J. Helsen, I. Roth, E. Onorati, A. Werner, and J. Eisert. General framework for randomized benchmarking. Physical Review X, 3:020357, Jun 2022. [28] M. H. D. Hermann Grabert. Single Charge Tunneling. Springer US, 1992. [29] M. Horodecki, P. Horodecki, and R. Horodecki. General teleportation channel, singlet fraction, and quasidistillation. Physical Review A, 60:1888–1898, Sep 1999. [30] C.-H. Huang and H.-S. Goan. Robust quantum gates for stochastic time-varying noise. Physical Review A, 95:062325, Jun 2017. [31] C.-H. Huang, C.-H. Yang, C.-C. Chen, A. S. Dzurak, and H.-S. Goan. High-fidelity and robust two-qubit gates for quantum-dot spin qubits in silicon. Physical Review A, 99:042310, Apr 2019. [32] J. Y. Huang, R. Y. Su, W. H. Lim, M. Feng, B. van Straaten, B. Severin, W. Gilbert, N. Dumoulin Stuyck, T. Tanttu, S. Serrano, J. D. Cifuentes, I. Hansen, A. E. Seedhouse, E. Vahapoglu, R. C. C. Leon, N. V. Abrosimov, H.-J. Pohl, M. L. W. Thewalt, F. E. Hudson, C. C. Escott, N. Ares, S. D. Bartlett, A. Morello, A. Saraiva, A. Laucht, A. S. Dzurak, and C. H. Yang. High-fidelity spin qubit operation and algorithmic initialization above 1 k. Nature, 627(8005):772–777, Mar. 2024. [33] P. Huang and X. Hu. Electron spin relaxation due to charge noise. Physical Review B, 89:195302, May 2014. [34] W. Huang, C. H. Yang, K. W. Chan, T. Tanttu, B. Hensen, R. C. C. Leon, M. A. Fogarty, J. C. C. Hwang, F. E. Hudson, K. M. Itoh, A. Morello, A. Laucht, and A. S. Dzurak. Fidelity benchmarks for two-qubit gates in silicon. Nature, 569(7757):532– 536, May 2019. [35] B. Hwang and H.-S. Goan. Optimal control for non-markovian open quantum systems. Physical Review A, 85:032321, Mar 2012. [36] G. Ithier, E. Collin, P. Joyez, P. J. Meeson, D. Vion, D. Esteve, F. Chiarello, A. Shnirman, Y. Makhlin, J. Schriefl, and G. Schön. Decoherence in a superconducting quantum bit circuit. Physical Review B, 72:134519, Oct 2005. [37] C. Karlewski and M. Marthaler. Time-local master equation connecting the born and markov approximations. Physical Review B, 90:104302, Sep 2014. [38] D. Keith, S. K. Gorman, Y. He, L. Kranz, and M. Y. Simmons. Impact of charge noise on electron exchange interactions in semiconductors. npj Quantum Information, 8(1), Feb. 2022. [39] A. V. Khaetskii, D. Loss, and L. Glazman. Electron spin decoherence in quantum dots due to interaction with nuclei. Physical Review Letters, 88:186802, Apr 2002.65 [40] A. V. Khaetskii and Y. V. Nazarov. Spin-flip transitions between zeeman sublevels in semiconductor quantum dots. Physical Review B, 64:125316, Sep 2001. [41] A. Kitaev. Fault-tolerant quantum computation by anyons. Annals of Physics, 303(1):2–30, 2003. [42] Z.-T. Li, C.-C. Zheng, F.-X. Meng, H. Zeng, T. Luan, Z.-C. Zhang, and X.-T. Yu. Non-markovian quantum gate set tomography. Quantum Science and Technology, 9(3):035027, May 2024. [43] D. Loss and D. P. DiVincenzo. Quantum computation with quantum dots. Physical Review A, 57:120–126, Jan 1998. [44] G. S. Lydia L. Sohn, Leo P. Kouwenhoven. Mesoscopic Electron Transport. Springer Netherlands, 1997. [45] E. Magesan, R. Blume-Kohout, and J. Emerson. Gate fidelity fluctuations and quantum process invariants. Physical Review A, 84:012309, Jul 2011. [46] D. Maldonado-Mundo, P. Öhberg, B. W. Lovett, and E. Andersson. Investigating the generality of time-local master equations. Physical Review A, 86:042107, Oct 2012. [47] I. I. Maximov, Z. Tošner, and N. C. Nielsen. Optimal control design of nmr and dynamic nuclear polarization experiments using monotonically convergent algorithms. The Journal of Chemical Physics, 128(18), May 2008. [48] D. C. McKay, C. J. Wood, S. Sheldon, J. M. Chow, and J. M. Gambetta. Efficient 𝑧 gates for quantum computing. Physical Review A, 96:022330, Aug 2017. 66 [49] S. T. Merkel, J. M. Gambetta, J. A. Smolin, S. Poletto, A. D. Córcoles, B. R. Johnson, C. A. Ryan, and M. Steffen. Self-consistent quantum process tomography. Physical Review A, 87:062119, Jun 2013. [50] T. Meunier, V. E. Calado, and L. M. K. Vandersypen. Efficient controlled-phase gate for single-spin qubits in quantum dots. Physical Review B, 83:121403, Mar 2011. [51] A. R. Mills, C. R. Guinn, M. J. Gullans, A. J. Sigillito, M. M. Feldman, E. Nielsen, and J. R. Petta. Two-qubit silicon quantum processor with operation fidelity exceeding 99 Science Advances, 8(14), Apr. 2022. [52] E. Nielsen, J. K. Gamble, K. Rudinger, T. Scholten, K. Young, and R. Blume-Kohout. Gate set tomography. Quantum, 5:557, Oct. 2021. [53] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010. [54] S. Niu and A. Todri-Sanial. Effects of dynamical decoupling and pulse-level optimizations on ibm quantum computers. IEEE Transactions on Quantum Engineering, 3:1–10, 2022. [55] A. Noiri, K. Takeda, T. Nakajima, T. Kobayashi, A. Sammak, G. Scappucci, and S. Tarucha. Fast universal quantum gate above the fault-tolerance threshold in silicon. Nature, 601(7893):338–342, Jan. 2022. [56] E. Paladino, Y. M. Galperin, G. Falci, and B. L. Altshuler. 1/f noise: Implications for solid-state quantum information. Reviews of Modern Physics, 86:361–418, Apr 2014.67 [57] G. A. Paz-Silva, L. M. Norris, and L. Viola. Multiqubit spectroscopy of gaussian quantum noise. Physical Review A, 95:022121, Feb 2017. [58] S. G. J. Philips, M. T. Mądzik, S. V. Amitonov, S. L. de Snoo, M. Russ, N. Kalhor, C. Volk, W. I. L. Lawrie, D. Brousse, L. Tryputen, B. P. Wuetz, A. Sammak, M. Veldhorst, G. Scappucci, and L. M. K. Vandersypen. Universal control of a six-qubit quantum processor in silicon. Nature, 609(7929):919–924, Sept. 2022. [59] M. Pioro-Ladrière, T. Obata, Y. Tokura, Y.-S. Shin, T. Kubo, K. Yoshida, T. Taniyama, and S. Tarucha. Electrically driven single-electron spin resonance in a slanting zeeman field. Nature Physics, 4(10):776–779, Aug. 2008. [60] M. Pioro-Ladrière, Y. Tokura, T. Obata, T. Kubo, and S. Tarucha. Micromagnets for coherent control of spin-charge qubit in lateral quantum dots. Applied Physics Letters, 90(2), Jan. 2007. [61] M. Rimbach-Russ, S. G. J. Philips, X. Xue, and L. M. K. Vandersypen. Simple framework for systematic high-fidelity gate operations, 2022. [62] R. Ruskov, M. Veldhorst, A. S. Dzurak, and C. Tahan. Electron 𝑔-factor of valley states in realistic silicon quantum dots. Physical Review B, 98:245424, Dec 2018. [63] M. Russ, D. M. Zajac, A. J. Sigillito, F. Borjans, J. M. Taylor, J. R. Petta, and G. Burkard. High-fidelity quantum gates in si/sige double quantum dots. Physical Review B, 97:085421, Feb 2018. [64] J. Schriefl, Y. Makhlin, A. Shnirman, and G. Schön. Decoherence from ensembles of two-level fluctuators. New Journal of Physics, 8(1):1, jan 2006. [65] A. E. Seedhouse, I. Hansen, A. Laucht, C. H. Yang, A. S. Dzurak, and A. Saraiva. Quantum computation protocol for dressed spins in a global field. Physical Review B, 104:235411, Dec 2021. [66] A. E. Seedhouse, N. D. Stuyck, S. Serrano, T. Tanttu, W. Gilbert, J. Y. Huang, F. E. Hudson, K. M. Itoh, A. Laucht, W. H. Lim, C. H. Yang, A. S. Dzurak, and A. Saraiva. Spatio temporal correlations of noise in mos spin qubits, 2023. [67] P. Shor. Fault-tolerant quantum computation. In Proceedings of 37th Conference on Foundations of Computer Science, pages 56–65, 1996. [68] R. Y. Su, J. Y. Huang, N. D. Stuyck, M. K. Feng, W. Gilbert, T. J. Evans, W. H. Lim, F. E. Hudson, K. W. Chan, W. Huang, K. M. Itoh, R. Harper, S. D. Bartlett, C. H. Yang, A. Laucht, A. Saraiva, T. Tanttu, and A. S. Dzurak. Characterizing non-markovian quantum process by fast bayesian tomography, 2023. [69] M. Tadokoro, T. Nakajima, T. Kobayashi, K. Takeda, A. Noiri, K. Tomari, J. Yoneda, S. Tarucha, and T. Kodera. Designs for a two-dimensional si quantum dot array with spin qubit addressability. Scientific Reports, 11(1), Sept. 2021. [70] T. Tanttu, B. Hensen, K. W. Chan, C. H. Yang, W. W. Huang, M. Fogarty, F. Hudson, K. Itoh, D. Culcer, A. Laucht, A. Morello, and A. Dzurak. Controlling spin-orbit interactions in silicon quantum dots using magnetic field direction. Physical Review X, 9:021028, May 2019. [71] Y. Tokura, W. G. van der Wiel, T. Obata, and S. Tarucha. Coherent single electron spin control in a slanting zeeman field. Physical Review Letters, 96:047202, Jan 2006. [72] M. Veldhorst, J. C. C. Hwang, C. H. Yang, A. W. Leenstra, B. de Ronde, J. P. Dehollain, J. T. Muhonen, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nature Nanotechnology, 9(12):981–985, Oct. 2014. [73] M. Veldhorst, C. H. Yang, J. C. C. Hwang, W. Huang, J. P. Dehollain, J. T. Muhonen, S. Simmons, A. Laucht, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak. A two-qubit logic gate in silicon. Nature, 526(7573):410–414, Oct. 2015. [74] D. S. Wang, A. G. Fowler, and L. C. L. Hollenberg. Surface code quantum computing with error rates over 1 Physical Review A, 83:020302, Feb 2011. [75] G. A. L. White, C. D. Hill, F. A. Pollock, L. C. L. Hollenberg, and K. Modi. Demonstration of non-markovian process characterisation and control on a quantum processor. Nature Communications, 11(1), Dec. 2020. [76] R. Winkler. Spin—Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems. Springer Berlin Heidelberg, 2003. [77] Y.-H. Wu, L. C. Camenzind, A. Noiri, K. Takeda, T. Nakajima, T. Kobayashi, C.-Y. Chang, A. Sammak, G. Scappucci, H.-S. Goan, and S. Tarucha. Hamiltonian phase error in resonantly driven cnot gate above the fault-tolerant threshold. npj Quantum Information, 10(1), Jan. 2024. [78] X. Xue, M. Russ, N. Samkharadze, B. Undseth, A. Sammak, G. Scappucci, and L. M. K. Vandersypen. Quantum logic with spin qubits crossing the surface code threshold. Nature, 601(7893):343–347, Jan. 2022. [79] X. Xue, M. Russ, N. Samkharadze, B. Undseth, A. Sammak, G. Scappucci, and L. M. K. Vandersypen. Quantum logic with spin qubits crossing the surface code threshold. Nature, 601(7893):343–347, Jan. 2022. [80] C. H. Yang, K. W. Chan, R. Harper, W. Huang, T. Evans, J. C. C. Hwang, B. Hensen, A. Laucht, T. Tanttu, F. E. Hudson, S. T. Flammia, K. M. Itoh, A. Morello, S. D. Bartlett, and A. S. Dzurak. Silicon qubit fidelities approaching incoherent noise limits via pulse engineering. Nature Electronics, 2(4):151–158, Apr. 2019. [81] Y.-C. Yang, S. N. Coppersmith, and M. Friesen. Achieving high-fidelity single-qubit gates in a strongly driven charge qubit with 1/f charge noise. npj Quantum Information, 5(1), Jan. 2019. [82] J. Yoneda, J. S. Rojas-Arias, P. Stano, K. Takeda, A. Noiri, T. Nakajima, D. Loss, and S. Tarucha. Noise-correlation spectrum for a pair of spin qubits in silicon. Nature Physics, 19(12):1793–1798, Oct. 2023. [83] J. Yoneda, K. Takeda, T. Otsuka, T. Nakajima, M. R. Delbecq, G. Allison, T. Honda, T. Kodera, S. Oda, Y. Hoshi, N. Usami, K. M. Itoh, and S. Tarucha. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9 Nature Nanotechnology, 13(2):102–106, Dec. 2017. [84] D. M. Zajac, A. J. Sigillito, M. Russ, F. Borjans, J. M. Taylor, G. Burkard, and J. R. Petta. Resonantly driven cnot gate for electron spins. Science, 359(6374):439–442, 2018. [85] F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Simmons, L. C. L. Hollenberg, G. Klimeck, S. Rogge, S. N. Coppersmith, and M. A. Eriksson. Silicon quantum electronics. Reviews of Modern Physics, 85:961–1019, Jul 2013. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93419 | - |
| dc.description.abstract | 無論是超導量子位元或是矽基量子點中的自旋量子位元,固態元件中的量子位元總是受到電荷雜訊的影響。傳統上我們將這些電荷雜訊當作二能階波動子群體,這導致系統的哈米爾頓量有隨機失諧頻率的雜訊。已經有針對這些隨機失諧雜訊的理論模型並且解釋固態系統中這些雜訊來源。然而當我們使用斷層掃描方法時,我們會發現除了原先的哈米爾頓工程錯誤產生器以外還有隨機包立錯誤產生器。我們在這篇文章中從與環境電荷雜訊分布耦合的量子位元來建立自旋玻色子模型。我們依然可以正確預測量子位元去相干的 𝑇∗2 時間,並成功預測隨機包立錯誤產生器。除此之外,我們也使用克羅托夫演算法來優化我們的量子閥操作並將全去相干雜訊的不保真度從 0.017% 降低到 0.0023%,低於了容錯量子計算的門檻。 | zh_TW |
| dc.description.abstract | Regardless of superconductor qubits or spin qubits in silicon quantum dots, qubits in solid state devices suffer from charge noise. Traditionally, this charge noise is modeled coming from a 2-level fluctuator ensemble, leading to random detuning noise on the system Hamiltonian. There have been some theoretic models corresponding with this random detuning noise and explaining the noise source in solid state devices. However, when we start using the tomography method, we then observe that there is another stochastic Pauli error generator besides the original Hamiltonian engineering error generators. Here, we start with qubits in a silicon-based quantum-dot system coupled with an environmental charge noise distribution to construct a spin-boson model. Employing this spin-boson model, we can still predict the 𝑇 ∗2 time relating to qubit decoherence correctly and also simulate the stochastic Pauli error generator successfully. Moreover, we also use the Kirov algorithm to optimize our gate operation and suppress the infidelity of full incoherent noise from 0.017% to 0.0023% below the surface code error threshold required for fault-tolerant quantum computing. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-31T16:14:06Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-31T16:14:06Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee . . . . . . . . i
Acknowledgements . . . . . . . . . . . . . ii 摘要. . . . . . . . . iii Abstract. . . . . . . . . . . . . . . . . . iv Contents. . . .. . . . . . . . . vi List of Figures. . . . . . . . . . . . . . viii Chapter 1 Introduction. . . .. . . . . . . . . . . 1 1.1 Introduction . . . . . . . 1 Chapter 2 Si-based quantum dot quantum computer basis . . . 4 2.1 Silicon-based quantum dot . .. .. . . . 4 2.2 Rabi oscillation . . . . . . . . 8 2.3 Electric dipole spin resonance . . . . . . . 10 2.4 Controlled rotation . . . . .. . . . . . . . 13 2.5 Controlled phase gate . . . . . . . . . . . . . . . 16 Chapter 3 Charge noise on gate set tomography . .. . . 19 3.1 Overview . . . .. . . 19 3.2 Two level fluctor ensemble and 1/f charge noise . . . . . . 21 3.3 Gate set tomography . . . . . . 23 3.4 Error generator and analysis . . . . . . . 25 Chapter 4 Stochastic spin Boson model . . . . . 33 4.1 Electron phonon interaction . . . . . . . 33 4.2 Semi-classical approximation . . . . . . . 36 4.3 Time local master equation . . . . . . . . 39 Chapter 5 Optimal control . . .. . . . 45 5.1 Infidelity and error definition . . . . . . 45 5.2 Single qubit optimal control . . . . . 46 Chapter 6 Results . . . . . . .. . . . . 51 6.1 Decoherence time simulation . . . . . 51 6.2 Optimal control simulation . . . . . 56 Chapter 7 Conclusion . . .. . . . 59 References . . . . . . . . . . . . 61 Appendix A — Qubit Hamiltonian engineering . . . . . 72 A.1 Unitary transformation . . . . . 72 A.2 EDSR perturbative theory . . . . 75 A.3 Controlled phase gate . . . . . 80 Appendix B — Pauli transfer formalism 83 | - |
| dc.language.iso | en | - |
| dc.title | 矽基量子點中利用門組斷層掃描的隨機電荷雜訊模型 | zh_TW |
| dc.title | Stochastic Charge Noise Model Characterization in Silicon Quantum Dots By Gate Set Tomography | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王喬萱;吳育任 | zh_TW |
| dc.contributor.oralexamcommittee | Chiao-Hsuan Wang;Yuh-Renn Wu | en |
| dc.subject.keyword | 量子點,電荷雜訊,錯誤產生器,去相干,門組斷層掃描, | zh_TW |
| dc.subject.keyword | quantum dot,charge noise,error generator,decoherence,gate set tomography, | en |
| dc.relation.page | 97 | - |
| dc.identifier.doi | 10.6342/NTU202402109 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-07-27 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 3.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
