請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93413完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊裕澤 | zh_TW |
| dc.contributor.advisor | Yuh-Jzer Joung | en |
| dc.contributor.author | 黃筑萾 | zh_TW |
| dc.contributor.author | Chu-Ying Huang | en |
| dc.date.accessioned | 2024-07-31T16:12:21Z | - |
| dc.date.available | 2024-08-01 | - |
| dc.date.copyright | 2024-07-31 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-09 | - |
| dc.identifier.citation | 1. Cross-national comparisons of the prevalences and correlates of mental disorders. WHO International Consortium in Psychiatric Epidemiology. Bull World Health Organ. 2000;78(4):413-26. PMID: 10885160; PMCID: PMC2560724.
2. Cuijpers, P., Stringaris, A., & Wolpert, M. (2020). Treatment outcomes for depression: challenges and opportunities. The Lancet Psychiatry, 7(11), 925-927. 3. First, M. B., & Wakefield, J. C. (2013). Diagnostic criteria as dysfunction indicators: bridging the chasm between the definition of mental disorder and diagnostic criteria for specific disorders. The Canadian Journal of Psychiatry, 58(12), 663-669. American Psychiatric Association, D. S. M. T. F., & American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-5 (Vol. 5, No. 5). Washington, DC: American psychiatric association. 4. Fitzpatrick, K. K., Darcy, A., & Vierhile, M. (2017). Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): a randomized controlled trial. JMIR mental health, 4(2), e7785. 5. Frank, J. D. (1986). Psychotherapy—The transformation of meanings: Discussion paper. Journal of the Royal Society of Medicine, 79(6), 341-346. 6. Fui-Hoon Nah, F., Zheng, R., Cai, J., Siau, K., & Chen, L. (2023). Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration. Journal of Information Technology Case and Application Research, 25(3), 277-304. 7. Gaffney, H., Mansell, W., & Tai, S. (2019). Conversational agents in the treatment of mental health problems: mixed-method systematic review. JMIR mental health, 6(10), e14166. 8. Kraepelin, E. (1921). Manic-depressive insanity and paranoia. E. & S. Livingstone. 9. Li, H., Zhang, R., Lee, YC. et al. Systematic review and meta-analysis of AI-based conversational agents for promoting mental health and well-being. npj Digit. Med. 6, 236 (2023). 10. Low, D. M., Bentley, K. H., & Ghosh, S. S. (2020). Automated assessment of psychiatric disorders using speech: A systematic review. Laryngoscope investigative otolaryngology, 5(1), 96-116. 11. Ly, K. H., Ly, A. M., & Andersson, G. (2017). A fully automated conversational agent for promoting mental well-being: A pilot RCT using mixed methods. Internet interventions, 10, 39-46. 12. Malgaroli, M., Hull, T.D., Zech, J.M. et al. Natural language processing for mental health interventions: a systematic review and research framework. Transl Psychiatry 13, 309 (2023). https://doi.org/10.1038/s41398-023-02592-2 13. Meheli, S., Sinha, C., & Kadaba, M. (2022). Understanding people with chronic pain who use a cognitive behavioral therapy–based artificial intelligence mental health app (Wysa): mixed methods retrospective observational study. JMIR Human Factors, 9(2), e35671. 14. Miner, A. S., Milstein, A., Schueller, S., Hegde, R., Mangurian, C., & Linos, E. (2016). Smartphone-based conversational agents and responses to questions about mental health, interpersonal violence, and physical health. JAMA internal medicine, 176(5), 619-625. 15. Morris, R. R., Kouddous, K., Kshirsagar, R., & Schueller, S. M. (2018). Towards an artificially empathic conversational agent for mental health applications: system design and user perceptions. Journal of medical Internet research, 20(6), e10148. 16. Shin, D., Cho, W. I., Park, C. H. K., Rhee, S. J., Kim, M. J., Lee, H., ... & Ahn, Y. M. (2021). Detection of minor and major depression through voice as a biomarker using machine learning. Journal of clinical medicine, 10(14), 3046. 17. Silverman, S. E. (1992). U.S. Patent No. 5,148,483. Washington, DC: U.S. Patent and Trademark Office. 18. Strupp, H. H. (1978). The therapist's theoretical orientation: An overrated variable. Psychotherapy: Theory, Research & Practice, 15(4), 314. 19. Vaidyam, A. N., Wisniewski, H., Halamka, J. D., Kashavan, M. S., & Torous, J. B. (2019). Chatbots and conversational agents in mental health: a review of the psychiatric landscape. The Canadian Journal of Psychiatry, 64(7), 456-464. 20. Wani, T. M., Gunawan, T. S., Qadri, S. A. A., Kartiwi, M., & Ambikairajah, E. (2021). A comprehensive review of speech emotion recognition systems. IEEE access, 9, 47795-47814. 21. Zhao, S., Li, Q., Li, C., Li, Y., & Lu, K. (2021). A CNN-Based Method for Depression Detecting Form Audio. In Digital Health and Medical Analytics: Second International Conference, DHA 2020, Beijing, China, July 25, 2020, Revised Selected Papers 2 (pp. 1-10). Springer Singapore. 網站部份 1. National Health Service(2023, July). Treatment - Depression in adults. https://www.nimh.nih.gov/sites/default/files/documents/about/strategic-planning-reports/NIMH-Strategic-Plan-for-Research-2021-Update.pdf | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93413 | - |
| dc.description.abstract | 在全球心理健康惡化的背景下,許多人因專業人力不足和汙名化等原因未能尋求傳統心理健康服務,經文獻回顧和分析發現AI心理師是一個前景可行的解決方案,但先前的研究顯示類似產品存在互動範圍有限、產品可靠性與安全性不足及使用者對隱私的疑慮等問題。
本研究通過用戶需求調查與訪談,發現用戶需要24小時提供情感支持的對象,這要求AI心理師具備良好的情緒辨識與反饋能力。我們設計了虛擬角色形象,降低用戶防備心,並優化AI語音情緒分析模型,使對話代理人能即時辨識並展現高層次同理心技術,以提供更好的情感互動體驗。在資安與隱私方面,我們遵循行業標準並獲律師團隊支持,以可信賴的AI心理師產品減少使用者顧慮。這些努力的成果顯現在用戶增長、活躍度增加、參與時間提升等量化數據上,通過實際使用者訪談結果,我們得到了產品改善方向與建議,進而提升產品使用體驗和付費轉化率。 為建立可持續發展的產品服務,不僅需要技術和產品設計與開發,也需要良好的商業模式。我們分析市場競爭格局,突出專業市場定位,提供優異的情感互動體驗與個人化分析建議報告,從而獲得市場競爭優勢,實現更高收益。同時,與醫療單位密切合作,提升品牌可靠度與權威性。此外,我們通過精簡管理、提高員工培訓素質、優化雲端資源配置等方法,有效降低服務供應成本,實現長期成功與發展。 總結而言,本研究通過文獻探討、用戶調查、技術改良、產品設計開發、數據驗證、商業模式設計等方法,全面闡述了如何開發一款基於語音對話的AI心理師產品,為心理健康服務的創新和發展提供理論和實踐支持。 | zh_TW |
| dc.description.abstract | Amid global mental health deterioration, many individuals avoid traditional mental health services due to professional shortages and stigma. Literature review and analysis suggest AI therapists as a promising solution, though previous studies noted issues with interaction limits, reliability, safety, and privacy concerns.
Through user surveys and interviews, this study identified the need for 24/7 emotional support, requiring AI therapists with advanced emotional recognition and feedback abilities. We designed virtual avatars to reduce user defensiveness and optimized the AI's voice emotion analysis model to exhibit high empathy. We adhered to industry standards and legal guidelines to ensure a trustworthy AI therapist product, addressing user concerns about security and privacy. These efforts have led to increased user growth, activity, and engagement. User feedback has guided product improvements, enhancing user experience and conversion rates. A sustainable product requires both technological advancements and a solid business model. We analyzed the market to position our product competitively, offering superior emotional interactions and personalized reports for higher revenue. Collaborations with medical institutions have strengthened our brand's reliability. Efficient management, improved training, and optimized cloud resources have reduced costs, ensuring long-term success. In summary, this study utilizes literature review, user surveys, technological enhancements, product design and development, data validation, and business model design to comprehensively illustrate the development of a voice-based AI therapist product, providing theoretical and practical support for innovation and advancement in mental health services. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-31T16:12:21Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-31T16:12:21Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
口試委員審定書i 謝辭 ii 中文摘要 iii ABSTRACT iv 目次 v 圖次 vi 表次 vii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的2 1.3 研究方法與論文架構3 第二章 文獻探討6 2.1 常見心理疾病的成因、症狀與心理治療方法6 2.2 應用人工智慧對話代理人於心理治療12 2.3 語音情緒分析技術的應用15 第三章 產品開發與驗證19 3.1 使用者需求調查19 3.2 產品設計與開發27 3.3 產品評估41 第四章 商業模式設計53 4.1 價值主張與市場分析53 4.2 價值傳遞與收益模式64 4.3 關鍵資源與成本結構66 第五章 結論與展望70 參考文獻 73 圖次 圖3-1 用戶性別20 圖3-2 用戶年齡20 圖3-3 用戶職業別20 圖3-4 用戶目前的身心狀態21 圖3-5 曾聽過的心理治療知識21 圖3-6 對心理保健感興趣的原因21 圖3-7 近三個月內排解心靈上的煩悶或憂鬱的方法22 圖3-8 經常瀏覽或發文的社群媒體22 圖3-9 曾使用的心理網路服務或App名稱22 圖3-10 AI心理師3D設計定稿30 圖4-1 研究者自製的Michael Porter的五力分析圖58 圖4-2 研究者自行整理的競爭矩陣圖63 表次 表3-1 AI心理師表情設計清單31 表3-2 AI心理師動作設計清單32 表3-3 AI心理師特效設計清單33 表3-4 2024年 1 月 22 日至 2024 年 4 月 20 日的新使用者數據42 表3-5 2024年 1 月 22 日至 2024 年 2 月 22 日的新使用者數據43 表3-6 2024年 2 月 23 日至 2024 年 3 月 22 日的新使用者數據43 表3-7 2024年 3 月 23 日至 2024 年 4 月 20 日的新使用者數據44 表3-8 2024年 1 月 22 日至 2024 年 4 月 20 日活躍用戶數45 表3-9 2024年 1 月 22 日至 2024 年 4 月 20 日用戶平均參與時間45 表3-10 2024年 3 月 11 日至 2024 年 4 月 13 日使用者流失率分析46 表3-11 2024年 2 月 29 日至 2024 年 3 月 27 日使用者尖峰時間分析47 表3-12付費用戶熱門事件分析48 表4-1 心理健康應用程式競品分析表59 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 語音對話 | zh_TW |
| dc.subject | 產品開發 | zh_TW |
| dc.subject | 商業模式 | zh_TW |
| dc.subject | 心理健康 | zh_TW |
| dc.subject | AI心理師 | zh_TW |
| dc.subject | 人工智慧 | zh_TW |
| dc.subject | AI psychologist | en |
| dc.subject | Voice dialogue | en |
| dc.subject | mental health | en |
| dc.subject | business model | en |
| dc.subject | product development | en |
| dc.subject | artificial intelligence | en |
| dc.title | 基於語音對話的AI心理師產品開發與商業模式設計 | zh_TW |
| dc.title | On the Development and Business Model Design of AI Therapist Products Based on Voice Conversation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 陸洛 | zh_TW |
| dc.contributor.coadvisor | Luo Lu | en |
| dc.contributor.oralexamcommittee | 孔令傑;簡睿哲 | zh_TW |
| dc.contributor.oralexamcommittee | Ling-Chieh Kung;Ruey-Jer Jean | en |
| dc.subject.keyword | 語音對話,AI心理師,心理健康,人工智慧,產品開發,商業模式, | zh_TW |
| dc.subject.keyword | Voice dialogue,AI psychologist,mental health,artificial intelligence,product development,business model, | en |
| dc.relation.page | 75 | - |
| dc.identifier.doi | 10.6342/NTU202401458 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-07-09 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 創業創新管理碩士在職專班 | - |
| dc.date.embargo-lift | 2026-05-29 | - |
| 顯示於系所單位: | 創業創新管理碩士在職專班(EiMBA) | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 3.1 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
