請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93408完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡彥卿 | zh_TW |
| dc.contributor.advisor | Yann-Ching Tsai | en |
| dc.contributor.author | 闞元甫 | zh_TW |
| dc.contributor.author | Yuan-Fu Kan | en |
| dc.date.accessioned | 2024-07-31T16:10:50Z | - |
| dc.date.available | 2024-08-01 | - |
| dc.date.copyright | 2024-07-31 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-06-18 | - |
| dc.identifier.citation | 台灣經濟新報社. (2018). 臺灣經濟新報 財務資料庫 科目說明 (IFRS 9版 ). https://www.tej.com.tw/webtej/plus/wim4.htm#:~:text=%E6%87%89%E6%94%B6%E6%AC%BE%E3%80%82-,%E5%82%99%E4%BE%9B%E5%87%BA%E5%94%AE%E9%87%91%E8%9E%8D%E8%B3%87%E7%94%A2%E6%87%89%E4%BE%9D%E5%85%B6%E6%B5%81%E5%8B%95%E6%80%A7,%E9%87%91%E8%9E%8D%E8%B3%87%E7%94%A2%EF%BC%8D%E9%9D%9E%E6%B5%81%E5%8B%95%E3%80%95%E3%80%82
張達元. (2023). 每股盈餘預測及套利投資策略探討-機器學習模型應用 國立臺灣大學]. 臺灣博碩士論文知識加值系統. 台北市. https://hdl.handle.net/11296/tg2ebw Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., & Devin, M. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467. Abarbanell, J. S., & Bushee, B. J. (1997). Fundamental analysis, future earnings, and stock prices. Journal of Accounting Research, 35(1), 1-24. Amel-Zadeh, A., Calliess, J.-P., Kaiser, D., & Roberts, S. (2020). Machine learning-based financial statement analysis. Available at SSRN 3520684. Ashtiani, M. N., & Raahemi, B. (2021). Intelligent fraud detection in financial statements using machine learning and data mining: a systematic literature review. Ieee Access, 10, 72504-72525. Ball, R., & Brown, P. (1968). An Empirical Evaluation of Accounting. Journal of Accounting Research. Bao, D. H., Lewis, M. T., Lin, W. T., & Manegold, J. G. (1983). Applications of time‐series analysis in accounting: A review. Journal of Forecasting, 2(4), 405-423. Basu, S. (1983). The relationship between earnings' yield, market value and return for NYSE common stocks: Further evidence. Journal of financial economics, 12(1), 129-156. Bertomeu, J. (2020). Machine learning improves accounting: discussion, implementation and research opportunities. Review of Accounting Studies, 25(3), 1135-1155. Bird, R., Gerlach, R., & Hall, A. D. (2001). The prediction of earnings movements using accounting data: an update and extension of Ou and Penman. Journal of Asset Management, 2, 180-195. Callen, J. L., Kwan, C. C., Yip, P. C., & Yuan, Y. (1996). Neural network forecasting of quarterly accounting earnings. International journal of forecasting, 12(4), 475-482. Chang, A., Lee, T. S., & Lee, H. M. (2023). Applying sustainable development goals in financial forecasting using machine learning techniques. Corporate Social Responsibility and Environmental Management. Chen, X., Cho, Y. H., Dou, Y., & Lev, B. (2022). Predicting future earnings changes using machine learning and detailed financial data. Journal of Accounting Research, 60(2), 467-515. Cheng, C., Sa-Ngasoongsong, A., Beyca, O., Le, T., Yang, H., Kong, Z., & Bukkapatnam, S. T. (2015). Time series forecasting for nonlinear and non-stationary processes: a review and comparative study. Iie Transactions, 47(10), 1053-1071. Dybvig, P. H., & Ross, S. A. (1989). Arbitrage. In Finance (pp. 57-71). Springer. Fabian, P. (2011). Scikit-learn: Machine learning in Python. Journal of machine learning research 12, 2825. Garman, M. B., & Ohlson, J. A. (1980). Information and the sequential valuation of assets in arbitrage-free economies. Journal of Accounting Research, 420-440. Graham, J. R., Harvey, C. R., & Rajgopal, S. (2005). The economic implications of corporate financial reporting. Journal of accounting and economics, 40(1-3), 3-73. Hiransha, M., Gopalakrishnan, E. A., Menon, V. K., & Soman, K. (2018). NSE stock market prediction using deep-learning models. Procedia computer science, 132, 1351-1362. Jan, C.-l. (2018). An effective financial statements fraud detection model for the sustainable development of financial markets: Evidence from Taiwan. Sustainability, 10(2), 513. Jan, C.-L. (2021). Detection of financial statement fraud using deep learning for sustainable development of capital markets under information asymmetry. Sustainability, 13(17), 9879. Kafi, M. A., & Adnan, T. (2020). Machine Learning in Accounting Research: A Computational Power to Wipe Out the Challenges of Big Data. Asian Accounting and Auditing Advancement, 11(1), 55-70. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444. Lokanan, M., Tran, V., & Vuong, N. H. (2019). Detecting anomalies in financial statements using machine learning algorithm: The case of Vietnamese listed firms. Asian Journal of Accounting Research, 4(2), 181-201. Nelson, D. M., Pereira, A. C., & De Oliveira, R. A. (2017). Stock market's price movement prediction with LSTM neural networks. 2017 International joint conference on neural networks (IJCNN), Ou, J. A., & Penman, S. H. (1989a). Accounting measurement, price-earnings ratio, and the information content of security prices. Journal of Accounting Research, 27, 111-144. Ou, J. A., & Penman, S. H. (1989b). Financial statement analysis and the prediction of stock returns. Journal of accounting and economics, 11(4), 295-329. Qian, X.-Y., & Gao, S. (2017). Financial series prediction: Comparison between precision of time series models and machine learning methods. arXiv preprint arXiv:1706.00948, 1-9. Sezer, O. B., Gudelek, M. U., & Ozbayoglu, A. M. (2020). Financial time series forecasting with deep learning: A systematic literature review: 2005–2019. Applied soft computing, 90, 106181. Siami-Namini, S., Tavakoli, N., & Namin, A. S. (2018). A comparison of ARIMA and LSTM in forecasting time series. 2018 17th IEEE international conference on machine learning and applications (ICMLA), Song, X. P., Hu, Z. H., Du, J. G., & Sheng, Z. H. (2014). Application of machine learning methods to risk assessment of financial statement fraud: Evidence from China. Journal of Forecasting, 33(8), 611-626. Sowandi, C. L. N., & Pujiarti, P. (2023). The Effect of Current Ratio (CR), Debt to Equity Ratio (DER), and Earnings Per Share (EPS) on Stock Price in Telecommunications Sub-Sector Companies Registered at Indonesia Stock Exchange with 2014-2021 Period. eCo-Fin, 5(1), 44-55. Ucoglu, D. (2020). Current machine learning applications in accounting and auditing. PressAcademia Procedia, 12(1), 1-7. Zhang, W., Cao, Q., & Schniederjans, M. J. (2004). Neural network earnings per share forecasting models: A comparative analysis of alternative methods. Decision Sciences, 35(2), 205-237. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93408 | - |
| dc.description.abstract | 本論文係探討平減與產業對於訓練機器學習模型和深度學習模型之預測成效與最終套利結果之影響。除了借助資產負債表、綜合損益表與現金流量表,並針對近年所發布之國際財務報導準則,調整上述相關之會計科目和金額外,亦納入平減與產業之考量。接續分別使用隨機森林迴歸器、極限梯度提升迴歸器以及深度神經網路模型,以預測隔年度之調整後每股盈餘與調整後稀釋每股盈餘。最後透過預測結果,建立套利組合並進行後續為時一年之套利實證。
經過本論文之研究後,得出以下五個結論:第一,隨機森林迴歸器為預測能力最佳的模型,而深度神經網路模型則相反;然而於套利結果中,則是後者的表現最佳,而前者最差。第二,於全產業與電子業下,針對調整後每股盈餘與調整後稀釋每股盈餘進行平減,有較大之機會提升預測的能力;然而於非電子業下,則建議不要進行平減,因為有較大的機率使預測能力下降。至於平減對於套利結果之影響,經研究發現無論是預測調整後每股盈餘或是調整後稀釋每股盈餘,未平減之套利結果普遍較佳。第三,研究未發現存在特定產業有較佳之預測結果。但如果使用隨機森林迴歸器時,經研究發現非電子業的預測結果優於全產業與電子業;如果使用極限梯度提升迴歸器時,則僅於未平減之條件下,非電子業的預測結果才優於另外兩種產業。至於產業對於套利之影響,經研究發現到不同產業搭配不同的套利條件,會有不一樣的套利結果,因此得出不存在特定產業具有較佳的套利結果之結論。第四,將資料拆分成電子業與非電子業進行預測較未拆分之全產業所得之預測效果差。最後,發現到透過深度神經網路模型於調整後稀釋每股盈餘未平減之非電子業下,使用第一種套利因子並且按市值權重的方式做多與做空前後10%之公司,將可以賺取最高的報酬率。 | zh_TW |
| dc.description.abstract | This thesis investigates the impact of smoothing and industry on the predictive performance and final arbitrage outcomes of machine learning and deep learning models. In addition to utilizing balance sheets, income statements, and cash flow statements, this study adjusts the relevant accounting items and amounts pertaining to the recently published International Financial Reporting Standards. It also incorporates considerations of smoothing and industry. Subsequently, the study employs various predictive models, including the random forest regressor, extreme gradient boosting regressor, and deep neural network model, to forecast adjusted earnings per share (EPS) and adjusted diluted EPS for the upcoming year. Finally, based on these predictions, arbitrage portfolios are constructed to engage in arbitrage activities over the next year.
Following the research conducted in this thesis, five key conclusions are drawn: First, the random forest regressor emerges as the model with the highest predictive capability, while the deep neural network model exhibits the opposite performance; however, in terms of arbitrage outcomes, the latter demonstrates superior performance, whereas the former shows the poorest results. Second, within both the overall industry and specifically the electronics sector, smoothing adjusted EPS and adjusted diluted EPS tends to enhance the predictive accuracy. Conversely, it is recommended to avoid smoothing in the non-electronics sector, as it tends to reduce predictive performance. Regarding the impact of smoothing on arbitrage results, it is found that non-smoothed predictions generally yield better arbitrage outcomes, whether forecasting adjusted EPS or adjusted diluted EPS. Third, the research does not identify any specific industry that consistently achieves better predictive results. However, when employing the random forest regressor, predictive results for the non-electronics industry are found to surpass those of the overall and electronics industries. In contrast, when employing the extreme gradient boosting regressor under non-smoothed conditions, the predictive performance of the non-electronics industry surpasses that of both the overall industry and the electronics sector. As for the influence of industry on arbitrage outcomes, different industries yield varied results depending on the arbitrage conditions employed, leading to the conclusion that no single industry consistently offers better arbitrage opportunities. Fourth, segmenting the data into electronics and non-electronics industries for prediction yields poorer results compared to models that consider the entire industry without segmentation. Lastly, it is discovered that using the deep neural network model to forecast non-smoothed adjusted diluted EPS in the non-electronics industry, while employing the first arbitrage factor and implementing a market value-weighted strategy to go long and short on the top and bottom 10% of companies, results in the highest return rates. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-31T16:10:50Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-31T16:10:50Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 i
中文摘要 ii ABSTRACT iii 圖次 vii 表次 xiv 第一章 緒論 1 第一節 研究動機與目的 1 第二節 研究架構 2 第二章 文獻回顧 4 第一節 預測每股盈餘與套利 4 第二節 機器學習與深度學習方法 7 第三章 研究及實證方法 11 第一節 資料選取 11 第二節 自變數與應變數 13 第三節 平減化與產業篩選 17 第四節 機器學習與深度學習 19 第五節 模型建立與評估方式 20 第六節 套利模型介紹 24 第四章 結果分析 28 第一節 探討各模型之預測結果 28 第二節 探討平減對於模型預測之影響 44 第三節 探討產業對於模型預測之影響 45 第四節 探討欄位重要性 47 第五節 探討各模型與各條件下之套利結果差異 69 第五章 結論與建議 86 第一節 研究結論 86 第二節 研究限制 87 第三節 研究建議 87 參考文獻 88 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 產業 | zh_TW |
| dc.subject | 套利 | zh_TW |
| dc.subject | 每股盈餘預測 | zh_TW |
| dc.subject | 財報分析 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 平減 | zh_TW |
| dc.subject | Financial Statement Analysis | en |
| dc.subject | Earnings per Share Prediction | en |
| dc.subject | Deep Learning | en |
| dc.subject | Machine Learning | en |
| dc.subject | Industry | en |
| dc.subject | Smoothing | en |
| dc.subject | Arbitrage | en |
| dc.title | 使用機器學習與深度學習模型,比較平減與產業對每股盈餘金額預測與套利結果的影響 | zh_TW |
| dc.title | Comparing the Effects of Smoothing and Industry on Earnings per Share Prediction and Arbitrage Outcomes using Machine Learning and Deep Learning Models | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 劉心才 | zh_TW |
| dc.contributor.coadvisor | Hsin-Tsai Liu | en |
| dc.contributor.oralexamcommittee | 李淑華;簡雪芳 | zh_TW |
| dc.contributor.oralexamcommittee | Shu-Hua Lee;Hsueh-Fang Chien | en |
| dc.subject.keyword | 每股盈餘預測,機器學習,深度學習,財報分析,套利,平減,產業, | zh_TW |
| dc.subject.keyword | Earnings per Share Prediction,Machine Learning,Deep Learning,Financial Statement Analysis,Arbitrage,Smoothing,Industry, | en |
| dc.relation.page | 90 | - |
| dc.identifier.doi | 10.6342/NTU202401155 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-06-18 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 會計學系 | - |
| 顯示於系所單位: | 會計學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 6.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
