請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93400完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏安祺 | zh_TW |
| dc.contributor.advisor | An-Chi Wei | en |
| dc.contributor.author | 張裕宇 | zh_TW |
| dc.contributor.author | Yu-Yu Chang | en |
| dc.date.accessioned | 2024-07-31T16:08:17Z | - |
| dc.date.available | 2024-08-01 | - |
| dc.date.copyright | 2024-07-31 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-29 | - |
| dc.identifier.citation | 1. Chang YY, Wei AC. Transcriptome and machine learning analysis of the impact of COVID-19 on mitochondria and multiorgan damage. PLoS One. 2024;19(1):e0297664.
2. Mizock BA. The multiple organ dysfunction syndrome. Dis Mon. 2009;55(8):476-526. 3. Nakayama R, Bunya N, Tagami T, Hayakawa M, Yamakawa K, Endo A, et al. Associated organs and system with COVID-19 death with information of organ support: a multicenter observational study. BMC Infect Dis. 2023;23(1):814. 4. Thakur V, Ratho RK, Kumar P, Bhatia SK, Bora I, Mohi GK, et al. Multi-Organ Involvement in COVID-19: Beyond Pulmonary Manifestations. J Clin Med. 2021;10(3). 5. Iacobucci G. Long covid: Damage to multiple organs presents in young, low risk patients. BMJ. 2020;371:m4470. 6. Brauninger H, Stoffers B, Fitzek ADE, Meissner K, Aleshcheva G, Schweizer M, et al. Cardiac SARS-CoV-2 infection is associated with pro-inflammatory transcriptomic alterations within the heart. Cardiovasc Res. 2022;118(2):542-55. 7. Uribarri A, Nunez-Gil IJ, Aparisi A, Becerra-Munoz VM, Feltes G, Trabattoni D, et al. Impact of renal function on admission in COVID-19 patients: an analysis of the international HOPE COVID-19 (Health Outcome Predictive Evaluation for COVID 19) Registry. J Nephrol. 2020;33(4):737-45. 8. Saha L, Vij S, Rawat K. Liver injury induced by COVID 19 treatment - what do we know? World J Gastroenterol. 2022;28(45):6314-27. 9. Gonzalez MA, Ochoa CD. Multiorgan System Failure in Sepsis. Sepsis2018. p. 67-71. 10. Gustot T. Multiple organ failure in sepsis: prognosis and role of systemic inflammatory response. Curr Opin Crit Care. 2011;17(2):153-9. 11. Martin Gimenez VM, de Las Heras N, Ferder L, Lahera V, Reiter RJ, Manucha W. Potential Effects of Melatonin and Micronutrients on Mitochondrial Dysfunction during a Cytokine Storm Typical of Oxidative/Inflammatory Diseases. Diseases. 2021;9(2). 12. Kozlov AV, Lancaster JR, Jr., Meszaros AT, Weidinger A. Mitochondria-meditated pathways of organ failure upon inflammation. Redox Biol. 2017;13:170-81. 13. Ganji R, Reddy PH. Impact of COVID-19 on Mitochondrial-Based Immunity in Aging and Age-Related Diseases. Front Aging Neurosci. 2020;12:614650. 14. Iwasaki M, Saito J, Zhao H, Sakamoto A, Hirota K, Ma D. Inflammation Triggered by SARS-CoV-2 and ACE2 Augment Drives Multiple Organ Failure of Severe COVID-19: Molecular Mechanisms and Implications. Inflammation. 2021;44(1):13-34. 15. Srinivasan K, Pandey AK, Livingston A, Venkatesh S. Roles of host mitochondria in the development of COVID-19 pathology: Could mitochondria be a potential therapeutic target? Mol Biomed. 2021;2:38. 16. Guarnieri JW, Dybas JM, Fazelinia H, Kim MS, Frere J, Zhang Y, et al. Targeted Down Regulation Of Core Mitochondrial Genes During SARS-CoV-2 Infection. bioRxiv. 2022. 17. Vivaldi G, Pfeffer PE, Talaei M, Basera TJ, Shaheen SO, Martineau AR. Long-term symptom profiles after COVID-19 vs other acute respiratory infections: an analysis of data from the COVIDENCE UK study. EClinicalMedicine. 2023;65:102251. 18. Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019;47(W1):W234-W41. 19. Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50(W1):W216-W21. 20. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44-57. 21. Kramer A, Green J, Pollard J, Jr., Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics. 2014;30(4):523-30. 22. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091-3. 23. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-504. 24. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences. 2005;102(43):15545-50. 25. Baghela A, Pena OM, Lee AH, Baquir B, Falsafi R, An A, et al. Predicting sepsis severity at first clinical presentation: The role of endotypes and mechanistic signatures. EBioMedicine. 2022;75:103776. 26. Ng DL GA, Santos YA, Servellita V et al. A diagnostic host response biosignature for COVID-19 from RNA profiling of nasal swabs and blood. Sci Adv 2021 Feb( eabe5984). 27. Lieberman NAP, Peddu V, Xie H, Shrestha L, Huang ML, Mears MC, et al. In vivo antiviral host transcriptional response to SARS-CoV-2 by viral load, sex, and age. PLoS Biol. 2020;18(9):e3000849. 28. Overmyer KA, Shishkova E, Miller IJ, Balnis J, Bernstein MN, Peters-Clarke TM, et al. Large-Scale Multi-omic Analysis of COVID-19 Severity. Cell Syst. 2021;12(1):23-40 e7. 29. Thair SA, He YD, Hasin-Brumshtein Y, Sakaram S, Pandya R, Toh J, et al. Transcriptomic similarities and differences in host response between SARS-CoV-2 and other viral infections. iScience. 2021;24(1):101947. 30. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47. 31. Jafari M, Ansari-Pour N. Why, When and How to Adjust Your P Values? Cell J. 2019;20(4):604-7. 32. Zhao B, Erwin A, Xue B. How many differentially expressed genes: A perspective from the comparison of genotypic and phenotypic distances. Genomics. 2018;110(1):67-73. 33. Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics. 2015;16(1):169. 34. Goedhart J, Luijsterburg MS. VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots. Sci Rep. 2020;10(1):20560. 35. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research. 2002;16:321-57. 36. Chen TQG, C. XGBoost- A Scalable Tree Boosting System. arXiv:160302754v3. 2016. 37. Breiman L. Random Forests. Machine Learning, 45, 5-32. 2001. 38. Boateng EY, Abaye DA. A Review of the Logistic Regression Model with Emphasis on Medical Research. Journal of Data Analysis and Information Processing. 2019;07(04):190-207. 39. Noble WS. What is a support vector machine. Nature Biotechnology. 2006;24:pages1565–7. 40. Hicks SA, Strumke I, Thambawita V, Hammou M, Riegler MA, Halvorsen P, et al. On evaluation metrics for medical applications of artificial intelligence. Sci Rep. 2022;12(1):5979. 41. Monaghan TF, Rahman SN, Agudelo CW, Wein AJ, Lazar JM, Everaert K, et al. Foundational Statistical Principles in Medical Research: Sensitivity, Specificity, Positive Predictive Value, and Negative Predictive Value. Medicina (Kaunas). 2021;57(5). 42. Chicco D, Totsch N, Jurman G. The Matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation. BioData Min. 2021;14(1):13. 43. Carrington AM, Fieguth PW, Qazi H, Holzinger A, Chen HH, Mayr F, et al. A new concordant partial AUC and partial c statistic for imbalanced data in the evaluation of machine learning algorithms. BMC Med Inform Decis Mak. 2020;20(1):4. 44. Marcilio WE, Eler DM. From explanations to feature selection: assessing SHAP values as feature selection mechanism. 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)2020. p. 340-7. 45. Gupta T, Puskarich MA, DeVos E, Javed A, Smotherman C, Sterling SA, et al. Sequential Organ Failure Assessment Component Score Prediction of In-hospital Mortality From Sepsis. J Intensive Care Med. 2020;35(8):810-7. 46. Baghela A, An A, Zhang P, Acton E, Gauthier J, Brunet-Ratnasingham E, et al. Predicting severity in COVID-19 disease using sepsis blood gene expression signatures. Sci Rep. 2023;13(1):1247. 47. Ramasamy S, Subbian S. Critical Determinants of Cytokine Storm and Type I Interferon Response in COVID-19 Pathogenesis. Clin Microbiol Rev. 2021;34(3). 48. Streng L, de Wijs CJ, Raat NJH, Specht PAC, Sneiders D, van der Kaaij M, et al. In Vivo and Ex Vivo Mitochondrial Function in COVID-19 Patients on the Intensive Care Unit. Biomedicines. 2022;10(7). 49. Wajihah Mughal LAK. Cell death signalling mechanisms in heart failure. Exp Clin Cardiol. 2011 Winter:16(4): 102–8. 50. Jiang W, Xiong Y, Li X, Yang Y. Cardiac Fibrosis: Cellular Effectors, Molecular Pathways, and Exosomal Roles. Front Cardiovasc Med. 2021;8:715258. 51. Guicciardi ME, Malhi H, Mott JL, Gores GJ. Apoptosis and necrosis in the liver. Compr Physiol. 2013;3(2):977-1010. 52. Wanless IR, Lentz JS. Fatty liver hepatitis (steatohepatitis) and obesity: an autopsy study with analysis of risk factors. Hepatology. 1990;12(5):1106-10. 53. MARIE-REINE LOSSER DP. Mechanisms of Liver Damage. SEMINARS IN LIVER DISEASE. 1996;16. 54. Brenner BM. Hemodynamically mediated glomerular injury and the progressive nature of kidney disease. Kidney Int. 1983;23(4):647-55. 55. Salant DJ, Quigg RJ, Cybulsky AV. Heymann nephritis: mechanisms of renal injury. Kidney Int. 1989;35(4):976-84. 56. Colombo M, Valo E, McGurnaghan SJ, Sandholm N, Blackbourn LAK, Dalton RN, et al. Biomarker panels associated with progression of renal disease in type 1 diabetes. Diabetologia. 2019;62(9):1616-27. 57. Priante G, Gianesello L, Ceol M, Del Prete D, Anglani F. Cell Death in the Kidney. Int J Mol Sci. 2019;20(14). 58. Lei X, Du L, Yu W, Wang Y, Ma N, Qu B. GSTP1 as a novel target in radiation induced lung injury. J Transl Med. 2021;19(1):297. 59. NCBI. BAD BCL2 associated agonist of cell death [Homo sapiens (Human)] - Gene. https://wwwncbinlmnihgov/gene?Db=gene&Cmd=DetailsSearch&Term=572. 2023. 60. Khan AUH, Rathore MG, Allende-Vega N, Vo DN, Belkhala S, Orecchioni S, et al. Human Leukemic Cells performing Oxidative Phosphorylation (OXPHOS) Generate an Antioxidant Response Independently of Reactive Oxygen species (ROS) Production. EBioMedicine. 2016;3:43-53. 61. Wang CH, Wu SB, Wu YT, Wei YH. Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging. Exp Biol Med (Maywood). 2013;238(5):450-60. 62. Sinha K, Das J, Pal PB, Sil PC. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol. 2013;87(7):1157-80. 63. Samaras C, Kyriazopoulou E, Poulakou G, Reiner E, Kosmidou M, Karanika I, et al. Interferon gamma-induced protein 10 (IP-10) for the early prognosis of the risk for severe respiratory failure and death in COVID-19 pneumonia. Cytokine. 2023;162:156111. 64. Coperchini F, Chiovato L, Rotondi M. Interleukin-6, CXCL10 and Infiltrating Macrophages in COVID-19-Related Cytokine Storm: Not One for All But All for One! Front Immunol. 2021;12:668507. 65. N. ZHANG Y-DZ, X.-M. WANG. CXCL10 an important chemokine associated with cytokine storm in COVID-19 infected patients. Eur Rev Med Pharmacol Sci. 2020 Jul.(24(13):7497-7505.). 66. Gudowska-Sawczuk M, Mroczko B. What Is Currently Known about the Role of CXCL10 in SARS-CoV-2 Infection? Int J Mol Sci. 2022;23(7). 67. Lore NI, De Lorenzo R, Rancoita PMV, Cugnata F, Agresti A, Benedetti F, et al. CXCL10 levels at hospital admission predict COVID-19 outcome: hierarchical assessment of 53 putative inflammatory biomarkers in an observational study. Mol Med. 2021;27(1):129. 68. Singh L, Arora SK, Bakshi DK, Majumdar S, Wig JD. Potential role of CXCL10 in the induction of cell injury and mitochondrial dysfunction. Int J Exp Pathol. 2010;91(3):210-23. 69. He J, Cai S, Feng H, Cai B, Lin L, Mai Y, et al. Single-cell analysis reveals bronchoalveolar epithelial dysfunction in COVID-19 patients. Protein Cell. 2020;11(9):680-7. 70. Santos AF, Povoa P, Paixao P, Mendonca A, Taborda-Barata L. Changes in Glycolytic Pathway in SARS-COV 2 Infection and Their Importance in Understanding the Severity of COVID-19. Front Chem. 2021;9:685196. 71. Pietrobon AJ, Andrejew R, Custodio RWA, Oliveira LM, Scholl JN, Teixeira FME, et al. Dysfunctional purinergic signaling correlates with disease severity in COVID-19 patients. Front Immunol. 2022;13:1012027. 72. Zhao Q, Zhou X, Kuiper R, Curbo S, Karlsson A. Mitochondrial dysfunction is associated with lipid metabolism disorder and upregulation of angiotensin-converting enzyme 2. PLoS One. 2022;17(6):e0270418. 73. Cao X, Song LN, Yang JK. ACE2 and energy metabolism: the connection between COVID-19 and chronic metabolic disorders. Clin Sci (Lond). 2021;135(3):535-54. 74. Dai S, Cao T, Shen H, Zong X, Gu W, Li H, et al. Landscape of molecular crosstalk between SARS-CoV-2 infection and cardiovascular diseases: emphasis on mitochondrial dysfunction and immune-inflammation. J Transl Med. 2023;21(1):915. 75. Papoutsoglou G, Karaglani M, Lagani V, Thomson N, Roe OD, Tsamardinos I, et al. Automated machine learning optimizes and accelerates predictive modeling from COVID-19 high throughput datasets. Sci Rep. 2021;11(1):15107. 76. Song X, Zhu J, Tan X, Yu W, Wang Q, Shen D, et al. XGBoost-Based Feature Learning Method for Mining COVID-19 Novel Diagnostic Markers. Front Public Health. 2022;10:926069. 77. Maleknia S, Tavassolifar MJ, Mottaghitalab F, Zali MR, Meyfour A. Identifying novel host-based diagnostic biomarker panels for COVID-19: a whole-blood/nasopharyngeal transcriptome meta-analysis. Mol Med. 2022;28(1):86. 78. Hu B, Huang S, Yin L. The cytokine storm and COVID-19. J Med Virol. 2021;93(1):250-6. 79. Cao X, Wang X, Lu L, Li X, Di R, He X, et al. Expression and Functional Analysis of the BCL2-Associated Agonist of Cell Death (BAD) Gene in the Sheep Ovary During the Reproductive Cycle. Front Endocrinol (Lausanne). 2018;9:512. 80. Cazanave SC, Gores GJ. The liver's dance with death: two Bcl-2 guardian proteins from the abyss. Hepatology. 2009;50(4):1009-13. 81. Xu L, Liu J, Lu M, Yang D, Zheng X. Liver injury during highly pathogenic human coronavirus infections. Liver Int. 2020;40(5):998-1004. 82. Tangos M, Budde H, Kolijn D, Sieme M, Zhazykbayeva S, Lodi M, et al. SARS-CoV-2 infects human cardiomyocytes promoted by inflammation and oxidative stress. Int J Cardiol. 2022;362:196-205. 83. Alexander MP, Mangalaparthi KK, Madugundu AK, Moyer AM, Adam BA, Mengel M, et al. Acute Kidney Injury in Severe COVID-19 Has Similarities to Sepsis-Associated Kidney Injury: A Multi-Omics Study. Mayo Clin Proc. 2021;96(10):2561-75. 84. Moreno Fernandez-Ayala DJ, Navas P, Lopez-Lluch G. Age-related mitochondrial dysfunction as a key factor in COVID-19 disease. Exp Gerontol. 2020;142:111147. 85. Singh K, Chen YC, Hassanzadeh S, Han K, Judy JT, Seifuddin F, et al. Network Analysis and Transcriptome Profiling Identify Autophagic and Mitochondrial Dysfunctions in SARS-CoV-2 Infection. Front Genet. 2021;12:599261. 86. Lesnefsky EJ, Moghaddas S, Tandler B, Kerner J, Hoppel CL. Mitochondrial dysfunction in cardiac disease: ischemia--reperfusion, aging, and heart failure. J Mol Cell Cardiol. 2001;33(6):1065-89. 87. Park J, Foox J, Hether T, Danko DC, Warren S, Kim Y, et al. System-wide transcriptome damage and tissue identity loss in COVID-19 patients. Cell Rep Med. 2022;3(2):100522. 88. Al-Aly Z, Bowe B, Xie Y. Long COVID after breakthrough SARS-CoV-2 infection. Nat Med. 2022;28(7):1461-7. 89. Yan Z, Yang M, Lai CL. Long COVID-19 Syndrome: A Comprehensive Review of Its Effect on Various Organ Systems and Recommendation on Rehabilitation Plans. Biomedicines. 2021;9(8). 90. Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023:1-14. 91. Nunn AVW, Guy GW, Brysch W, Bell JD. Understanding Long COVID; Mitochondrial Health and Adaptation-Old Pathways, New Problems. Biomedicines. 2022;10(12). 92. Chang X, Ismail NI, Rahman A, Xu D, Chan RWY, Ong SG, et al. Long COVID-19 and the Heart: Is Cardiac Mitochondria the Missing Link? Antioxid Redox Signal. 2022;38(7-9):599-618. 93. Wang X, Lei J, Li Z, Yan L. Potential Effects of Coronaviruses on the Liver: An Update. Front Med (Lausanne). 2021;8:651658. 94. Ronco C, Reis T, Husain-Syed F. Management of acute kidney injury in patients with COVID-19. Lancet Respir Med. 2020;8(7):738-42. 95. Kirtipal N, Kumar S, Dubey SK, Dwivedi VD, Gireesh Babu K, Maly P, et al. Understanding on the possible routes for SARS CoV-2 invasion via ACE2 in the host linked with multiple organs damage. Infect Genet Evol. 2022;99:105254. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93400 | - |
| dc.description.abstract | 許多研究表明,嚴重急性呼吸道症候群冠狀病毒2型(SARS-CoV-2)可以透過多種方式損害多個器官,包括透過血管收縮素轉化酶2 (ACE2)、促炎性細胞因子風暴或其他次級途徑促進的直接病毒入侵。而long COVID 是指在初次感染 COVID-19 後,個體經歷持續的器官損傷或出現新的症狀。
敗血症引起多重器官損傷的機制包括引發全身性過度發炎反應、免疫系統過度活化、影響細胞能量代謝等幾個重要面向。這些機制相互作用,共同導致多重器官損傷。 本研究利用Gene Expression Omnibus (GEO) 資料庫的公開轉錄組資料來識別在 COVID-19、敗血症和其他急性呼吸道感染疾病中表達顯著差異的基因。進一步的研究檢視與敗血症、其他急性呼吸道感染疾病以及 SARS-CoV-2 誘導的粒線體、心臟、肝臟和腎臟損傷相關的途徑。接著對顯著差異表達的基因進行挑選和排序,並使用特徵重要性對具有生物途徑意義的基因進行排序,作為機器學習驗證的特徵。 透過效能、樣本大小、不平衡資料狀態和過度擬合來評估機器學習的樣本集選擇。機器學習也透過調整基因清單來幫助評估生物途徑的假設。隨後進行的深入研究檢視了基因和相關途徑,以了解粒線體與多重器官損傷在COVID-19 的關聯。 研究結果表明,ACE2、促炎性細胞因子風暴和線粒體損傷對COVID-19 導致的多器官損傷存在著關聯。敗血症和COVID-19引起的多重器官損傷的機制不同。而且,粒線體損傷是導致long COVID的關鍵因素之一。這些發現可以做為研究潛在的醫療治療以應對 SARS-CoV-2 引起的多器官損傷。 | zh_TW |
| dc.description.abstract | The extensive research has shown that Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can harm several organs through various means, including direct viral invasion facilitated by angiotensin-converting enzyme 2 (ACE2), inflammatory cytokine storms, or other secondary pathways. Long COVID is when individuals experience persistent, lasting damage to organs or new symptoms for several weeks or months after recovering from an initial COVID-19 infection.
The mechanisms by which sepsis causes multiple organ damage include several vital aspects, for example, triggering a systemic excessive inflammatory response, the excessive activation of the immune system, and affecting cellular energy metabolism. These mechanisms interact with each other, collectively leading to multiorgan damage. Publicly available transcriptome data from the Gene Expression Omnibus (GEO) database was utilized to identify genes significantly differently expressed in COVID-19, sepsis, and other non-COVID-19 acute respiratory infections. A further investigation examined pathways connected to sepsis, other non-COVID-19 acute respiratory infections, and SARS-CoV-2-induced mitochondrial, cardiac, hepatic, and renal damage. Statistical methods were used to identify and rank significantly differentially expressed genes, and feature importance was used for rating biologically significant genes as machine learning verification features. The sample set selection for machine learning was evaluated through performance, sample size, imbalanced data state, and overfitting. Machine learning also assisted in evaluating biological hypotheses by adjusting gene lists. A subsequently thorough study examined genes and pathways to figure out the correlation between mitochondria and multi-organ damage in COVID-19. The research findings suggest a link between ACE2, inflammatory cytokine storms, and mitochondrial damage in COVID-19, potentially contributing to multiorgan damage. The mechanism of multiorgan damage caused by sepsis and COVID-19 is different. Moreover, mitochondrial damage is one of the critical factors leading to long COVID. These findings indicate that potential medical treatments could be studied to address the damage to multiple organs caused by SARS-CoV-2. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-31T16:08:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-07-31T16:08:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝... i
中文摘要... ii Abstract. iv Contents. vi List of Figures. ix List of Tables. x Chapter 1 Introduction. 1 1.1 Multiorgan damage by SARS-CoV-2. 2 1.2 Multiorgan damage by sepsis. 3 1.3 Mitochondrial damage causes multiorgan damage. 4 1.4 Long COVID in COVID-19 and non-COVID-19 acute respiratory infections. 5 1.5 Research flow.. 6 1.6 Specific aims of this research. 8 1.7 Significance of the work. 11 Chapter 2 Materials and methods. 13 2.1 Bioinformatics and machine learning tools. 13 2.2 Data availability. 15 2.3 RNA sequencing data processing and differential gene expression analysis. 18 2.4 Pathway and gene set enrichment analysis. 19 2.5 Imbalanced data processing. 20 2.6 Machine learning algorithms. 22 2.7 The indices of machine learning performance. 25 2.8 Sample sets feasibility analysis for machine learning. 31 2.9 Feature ranking and SHAP. 36 Chapter 3 Results. 38 3.1 Sensitivity analysis of machine learning in COVID-19 and sepsis samples. 38 3.2 Tissue specific issue in samples. 45 3.3 Pathway analysis in different sample sets. 46 3.4 Tox and common gene analysis of heart, liver, kidney, and mitochondria for COVID-19 sample sets. 61 3.5 Tox analysis for COVID-19 ICU patients, sepsis and non-COVID-19 acute respiratory infections sample sets. 65 3.6 Machine learning for genes associated with heart-, liver-, kidney-, and mitochondria-related toxicity lists in COVID-19 and sepsis sample data. 69 3.7 Analysis of the common genes associated with heart, liver, kidney, and mitochondria toxicity. 77 3.8 Feature importance analysis. 80 Chapter 4 Discussion. 85 4.1 Feature selection with different approaches. 85 4.2 Machine learning as the tool of validation. 87 4.3 Multiorgan damage analysis in COVID-19. 88 4.4 The differences of multiorgan damage caused by sepsis and COVID-19. 90 4.5 The role of mitochondria in multiorgan damage caused by COVID-19. 91 4.6 Long COVID.. 93 Chapter 5 Summary. 95 5.1 Conclusion. 96 5.2 Limitations and potential problems. 98 5.3 Future work. 99 References. 99 Appendix. 103 | - |
| dc.language.iso | en | - |
| dc.subject | 敗血症 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 粒線體 | zh_TW |
| dc.subject | 基因表現 | zh_TW |
| dc.subject | 路徑分析 | zh_TW |
| dc.subject | 交叉驗證 | zh_TW |
| dc.subject | 過度擬合 | zh_TW |
| dc.subject | 急性呼吸道感染疾病 | zh_TW |
| dc.subject | 轉錄組分析 | zh_TW |
| dc.subject | cross validation | en |
| dc.subject | gene expression | en |
| dc.subject | mitochondria | en |
| dc.subject | machine learning | en |
| dc.subject | transcriptome analysis | en |
| dc.subject | sepsis | en |
| dc.subject | acute respiratory infections | en |
| dc.subject | RNA-Seq | en |
| dc.subject | pathway analysis | en |
| dc.subject | SARS-CoV-2 | en |
| dc.subject | COVID-19 | en |
| dc.subject | overfitting | en |
| dc.title | 粒線體與多重器官損傷在COVID-19的相關性之轉錄組和機器學習分析 | zh_TW |
| dc.title | Transcriptome and machine learning analyses of the correlation between mitochondria and multiorgan damage in COVID-19 | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 林致廷;阮雪芬;陳沛隆;陳倩瑜 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Ting Lin;Hsueh-Fen Juan;Pei-Lung Chen;Chien-Yu Chen | en |
| dc.subject.keyword | 急性呼吸道感染疾病,敗血症,轉錄組分析,機器學習,粒線體,基因表現,路徑分析,交叉驗證,過度擬合, | zh_TW |
| dc.subject.keyword | SARS-CoV-2,COVID-19,RNA-Seq,acute respiratory infections,sepsis,transcriptome analysis,machine learning,mitochondria,gene expression,pathway analysis,cross validation,overfitting, | en |
| dc.relation.page | 103 | - |
| dc.identifier.doi | 10.6342/NTU202402334 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-31 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 14.93 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
