Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93387
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧炯敏zh_TW
dc.contributor.advisorHyungmin Rhoen
dc.contributor.author陳子曦zh_TW
dc.contributor.authorTsz-Hei Chanen
dc.date.accessioned2024-07-30T16:15:48Z-
dc.date.available2024-07-31-
dc.date.copyright2024-07-30-
dc.date.issued2024-
dc.date.submitted2024-07-27-
dc.identifier.citationAgriculture and Food Agency. 2020. 108 Annual Report of Agriculture and Food Agency. Council of Agriculture.
Ahemad, M. 2015. Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria. J Genet Eng Biotechnol 13:51-58.
Baig, K.S., M. Arshad, B. Shaharoona, A. Khalid, and I. Ahmed. 2011. Comparative effectiveness of Bacillus spp. possessing either dual or single growth-promoting traits for improving phosphorus uptake, growth and yield of wheat (Triticum aestivum L.). Annals of Microbiology 62:1109-1119.
Baker, N.R. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59:89-113.
Berza, B., J. Sekar, P. Vaiyapuri, M.C. Pagano, and F. Assefa. 2022. Evaluation of inorganic phosphate solubilizing efficiency and multiple plant growth promoting properties of endophytic bacteria isolated from root nodules Erythrina brucei. BMC Microbiol 22:276.
Bhardwaj, G., R. Shah, B. Joshi, and P. Patel. 2017. Klebsiella pneumoniae VRE36 as a PGPR isolated from Saccharum officinarum cultivar Co99004. Journal of Applied Biology and Biotechnology:047-052.
Bisbis, M.B., N. Gruda, and M. Blanke. 2018. Potential impacts of climate change on vegetable production and product quality – A review. Journal of Cleaner Production 170:1602-1620.
Bita, C.E. and T. Gerats. 2013. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273.
Björkman, O. and B. Demmig. 1987. Photon yield of O 2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489-504.
Bruno, L.B., C. Karthik, Y. Ma, K. Kadirvelu, H. Freitas, and M. Rajkumar. 2020. Amelioration of chromium and heat stresses in Sorghum bicolor by Cr(6+) reducing-thermotolerant plant growth promoting bacteria. Chemosphere 244:125521.
Chen, L., M. Xu, C. Liu, J. Hao, S. Fan, and Y. Han. 2022. LsMYB15 Regulates Bolting in Leaf Lettuce (Lactuca sativa L.) Under High-Temperature Stress. Front Plant Sci 13:921021.
Cohen, I., S.I. Zandalinas, C. Huck, F.B. Fritschi, and R. Mittler. 2021. Meta-analysis of drought and heat stress combination impact on crop yield and yield components. Physiol Plant 171:66-76.
Consentino, B.B., S. Aprile, Y. Rouphael, G. Ntatsi, C. De Pasquale, G. Iapichino, P. Alibrandi, and L. Sabatino. 2022. Application of PGPB Combined with Variable N Doses Affects Growth, Yield-Related Traits, N-Fertilizer Efficiency and Nutritional Status of Lettuce Grown under Controlled Condition. Agronomy 12.
Dhawi, F., R. Datta, and W. Ramakrishna. 2015. Mycorrhiza and PGPB modulate maize biomass, nutrient uptake and metabolic pathways in maize grown in mining-impacted soil. Plant Physiol Biochem 97:390-9.
Doty, S.L., B. Oakley, G. Xin, J.W. Kang, G. Singleton, Z. Khan, A. Vajzovic, and J.T. Staley. 2009. Diazotrophic endophytes of native black cottonwood and willow. Symbiosis 47:23-33.
Egamberdiyeva, D. 2007. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Applied Soil Ecology 36:184-189.
Emami, S., H.A. Alikhani, A.A. Pourbabaei, H. Etesami, F. Sarmadian, and B. Motessharezadeh. 2019. Effect of rhizospheric and endophytic bacteria with multiple plant growth promoting traits on wheat growth. Environ Sci Pollut Res Int 26:19804-19813.
Esitken, A., H.E. Yildiz, S. Ercisli, M. Figen Donmez, M. Turan, and A. Gunes. 2010. Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Scientia Horticulturae 124:62-66.
Fahad, S., A.A. Bajwa, U. Nazir, S.A. Anjum, A. Farooq, A. Zohaib, S. Sadia, W. Nasim, S. Adkins, S. Saud, M.Z. Ihsan, H. Alharby, C. Wu, D. Wang, and J. Huang. 2017. Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front Plant Sci 8:1147.
Ferreira, N.C., R.d.C.L. Mazzuchelli, A.C. Pacheco, F.F.d. Araujo, J.E.L. Antunes, and A.S.F.d. Araujo. 2018. Bacillus subtilis improves maize tolerance to salinity. Ciência Rural 48.
Franco-Correa, M., A. Quintana, C. Duque, C. Suarez, M.X. Rodríguez, and J.-M. Barea. 2010. Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Applied Soil Ecology 45:209-217.
Gouda, S., R.G. Kerry, G. Das, S. Paramithiotis, H.S. Shin, and J.K. Patra. 2018. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131-140.
Guinebretiere, M.H., O. Berge, P. Normand, C. Morris, F. Carlin, and C. Nguyen-The. 2001. Identification of bacteria in pasteurized zucchini purees stored at different temperatures and comparison with those found in other pasteurized vegetable purees. Appl Environ Microbiol 67:4520-30.
Hills, P.N. and J. van Staden. 2003. Thermoinhibition of seed germination. South African Journal of Botany 69:455-461.
IPCC. 2021. “Ipcc, 2021: Summary for policymakers. in: Climate change 2021: The physical science basis. contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change.”
Khan, M.A., S. Asaf, A.L. Khan, R. Jan, S.-M. Kang, K.-M. Kim, and I.-J. Lee. 2020a. Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress. BMC Microbiol 20:175.
Khan, M.A., S. Asaf, A.L. Khan, R. Jan, S.M. Kang, K.M. Kim, and I.J. Lee. 2020b. Extending thermotolerance to tomato seedlings by inoculation with SA1 isolate of Bacillus cereus and comparison with exogenous humic acid application. PLoS One 15:e0232228.
Kumar, A. and J.P. Verma. 2018. Does plant-Microbe interaction confer stress tolerance in plants: A review? Microbiol Res 207:41-52.
Kusale, S.P., Y.C. Attar, R. Sayyed, R.A. Malek, N. Ilyas, N.L. Suriani, N. Khan, and H.A. El Enshasy. 2021. Production of plant beneficial and antioxidants metabolites by Klebsiella variicola under salinity stress. Molecules 26:1894.
Lastochkina, O., L. Pusenkova, R. Yuldashev, M. Babaev, S. Garipova, D. Blagova, R. Khairullin, and S. Aliniaeifard. 2017. Effects of Bacillus subtilis on some physiological and biochemical parameters of Triticum aestivum L. (wheat) under salinity. Plant Physiol Biochem 121:80-88.
Latif, S., A.G. Mohamed, and K. Sueyoshi. 2020. Effect of Bacillus subtilis on Some Physiological and Biochemical Processes in Barley (Hordeum vulgare L.) Plant Grown under Salt Stress. Egyptian Journal of Botany 0:0-0.
Li, Y., J. Zhu, Y. Feng, Z. Li, Z. Ren, N. Liu, C. Liu, J. Hao, and Y. Han. 2022. LsARF3 mediates thermally induced bolting through promoting the expression of LsCO in lettuce (Lactuca sativa L.). Front Plant Sci 13:958833.
Liu, Y.-T., I.C. Yang, and N.-C. Lin. 2020. Evaluation of biocontrol potential for Fusarium yellows of celery by antagonistic and gallic acid-degrading bacteria. Biological Control 146.
Mahapatra, S., R. Yadav, and W. Ramakrishna. 2022. Bacillus subtilis impact on plant growth, soil health and environment: Dr. Jekyll and Mr. Hyde. J Appl Microbiol 132:3543-3562.
Mahmood, A., O.C. Turgay, M. Farooq, and R. Hayat. 2016. Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiol Ecol 92.
Mendelsohn, R.O. and E. Massetti. 2017. The use of cross-sectional analysis to measure climate impacts on agriculture: theory and evidence. Review of Environmental Economics and Policy.
Mousavi, S.S., A. Karami, and F. Maggi. 2022. Photosynthesis and chlorophyll fluorescence of Iranian licorice (Glycyrrhiza glabra l.) accessions under salinity stress. Front Plant Sci 13:984944.
Nascimento, W.M., D.J. Cantliffe, and D.J. Huber. 2001. Endo-β-mannanase activity and seed germination of thermosensitive and thermotolerant lettuce genotypes in response to seed priming. Seed Science Research 11:255-264.
Noman, M., T. Ahmed, M. Shahid, M.B.K. Niazi, M. Qasim, F. Kouadri, A.M. Abdulmajeed, S.M. Alghanem, N. Ahmad, and M. Zafar. 2021. Biogenic copper nanoparticles produced by using the Klebsiella pneumoniae strain NST2 curtailed salt stress effects in maize by modulating the cellular oxidative repair mechanisms. Ecotoxicology and Environmental Safety 217:112264.
Omomowo, O.I. and O.O. Babalola. 2019. Bacterial and Fungal Endophytes: Tiny Giants with Immense Beneficial Potential for Plant Growth and Sustainable Agricultural Productivity. Microorganisms 7.
Porter, S.S., R. Bantay, C.A. Friel, A. Garoutte, K. Gdanetz, K. Ibarreta, B.M. Moore, P. Shetty, E. Siler, M.L. Friesen, and A. Bennett. 2020. Beneficial microbes ameliorate abiotic and biotic sources of stress on plants. Functional Ecology 34:2075-2086.
Pramanik, K., S. Mitra, A. Sarkar, T. Soren, and T.K. Maiti. 2017. Characterization of cadmium-resistant Klebsiella pneumoniae MCC 3091 promoted rice seedling growth by alleviating phytotoxicity of cadmium. Environ Sci Pollut Res Int 24:24419-24437.
Ramakrishna, W., R. Yadav, and K. Li. 2019. Plant growth promoting bacteria in agriculture: Two sides of a coin. Applied Soil Ecology 138:10-18.
Rho, H., S.L. Doty, and S.H. Kim. 2018a. Estimating microbial respiratory CO(2) from endophytic bacteria in rice. Plant Signal Behav 13:e1500067.
Rho, H., S.L. Doty, and S.H. Kim. 2020. Endophytes alleviate the elevated CO2-dependent decrease in photosynthesis in rice, particularly under nitrogen limitation. J Exp Bot 71:707-718.
Rho, H., V.V. Epps, N. Wegley, S.L. Doty, and S.-H. Kim. 2018b. Salicaceae Endophytes Modulate Stomatal Behavior and Increase Water Use Efficiency in Rice. Front Plant Sci 9:188.
Rho, H., M. Hsieh, S.L. Kandel, J. Cantillo, S.L. Doty, and S.H. Kim. 2018c. Do Endophytes Promote Growth of Host Plants Under Stress? A Meta-Analysis on Plant Stress Mitigation by Endophytes. Microb Ecol 75:407-418.
Rutten, P., R. Tennant, J. Beal, C. Workman, T. Haddock-Angelli, N. Farny, and V. Selvarajah. 2019. Calibration Protocol-Conversion of OD600 to Colony Forming Units (CFUs).
Sadok, W., J.R. Lopez, and K.P. Smith. 2021. Transpiration increases under high-temperature stress: Potential mechanisms, trade-offs and prospects for crop resilience in a warming world. Plant Cell Environ 44:2102-2116.
Saiki, T., R. Kimura, and K. Arima. 2014. Isolation and Characterization of Extremely Thermophilic Bacteria from Hot Springs. Agricultural and Biological Chemistry 36:2357-2366.
Satti, S.M., A.A. Shah, R. Auras, and T.L. Marsh. 2017. Isolation and characterization of bacteria capable of degrading poly(lactic acid) at ambient temperature. Polymer Degradation and Stability 144:392-400.
Schwyn, B. and J.B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Analytical biochemistry 160:47-56.
Souza, R.d., A. Ambrosini, and L.M.P. Passaglia. 2015. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401-19.
Sublett, W., T. Barickman, and C. Sams. 2018. The Effect of Environment and Nutrients on Hydroponic Lettuce Yield, Quality, and Phytonutrients. Horticulturae 4.
Tuzet, A., A. Perrier, and R. Leuning. 2003. A coupled model of stomatal conductance, photosynthesis and transpiration. Plant, Cell & Environment 26:1097-1116.
United Nations Food & Agriculture Organization Statistics Division (FAOSTAT). 2018. Lettuce (with chicory) production in 2017. UN FAOSTAT.
Wahid, A., S. Gelani, M. Ashrafa, and M.R. Foolad. 2007. Heat tolerance in plants: An overview. Environmental and Experimental Botany 61:199-223.
Wallace, R.W., A.L. Wszelaki, C.A. Miles, J.S. Cowan, J. Martin, J. Roozen, B. Gundersen, and D.A. Inglis. 2012. Lettuce yield and quality when grown in high tunnel and open-field production systems under three diverse climates. HortTechnology 22:659-668.
Wang, J.-Y., H. Jayasinghe, Y.-T. Cho, Y.-C. Tsai, C.-Y. Chen, H.K. Doan, and H.A. Ariyawansa. 2023. Diversity and Biocontrol Potential of Endophytic Fungi and Bacteria Associated with Healthy Welsh Onion Leaves in Taiwan. Microorganisms 11:1801.
Yadav, R., P. Ror, P. Rathore, S. Kumar, and W. Ramakrishna. 2021. Bacillus subtilis CP4, isolated from native soil in combination with arbuscular mycorrhizal fungi promotes biofortification, yield and metabolite production in wheat under field conditions. J Appl Microbiol 131:339-359.
Yang, J., J.W. Kloepper, and C.-M. Ryu. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1-4.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93387-
dc.description.abstract全球暖化意指人類密集工業活動排放大量溫室氣體而導致地球大氣溫度升高之現象,是園藝產業所面臨的重要課題,而使用植物生長促進細菌(plant growth-promoting bacteria, PGPB)可作為減輕全球暖化對園藝作物生產沖擊的方式之一。本研究旨在探討PGPB對萵苣於熱逆境下生長之影響。本研究使用之菌種分離自2020年宜蘭縣三星鄉經歷異常熱浪後而存活下來之大蔥,且其共生潛力在進行中的研究已經得到驗證。依據各菌株之植物生長促進(plant growth-promotion, PGP)潛力,選出表現前五名的菌株(分別為Acinetobacter sp. GRB12、Bacillus sp. GFB04、Klebsiella sp. LFB06、Klebsiella sp. GRB10 及Klebsiella sp. GRB04),並在後續的溫室試驗中,將其混合以對萵苣進行接種。本試驗共分為四種處理,分別為對照組、接種組、熱逆境組和熱逆境且接種組。在另外的生長箱試驗中則只選用Bacillus sp. GFB04及 Klebsiella sp. GRB10菌株進行單菌株接種,試驗共分為六種處理,分別為對照組、Bacillus sp. GFB04接種組、Klebsiella sp. GRB10接種組、熱逆境組和熱逆境且Bacillus sp. GFB04接種組和熱逆境且Klebsiella sp. GRB10接種組。兩個試驗均會分析植物之生理參數(葉綠素螢光及蒸騰作用)、生長參數(生物量)與植體營養成分(氮、磷、鉀、鈣、鎂及鐵)。結果顯示,熱逆境下的植物各項指標表現最差,接種PGPB的植物在熱逆境條件下比未接種的萵苣有更高的生物量及植體營養成分,且有更好的水分利用效率,接種組有更好的表現。由此可知,使用PGPB能增強萵苣耐熱性,有助於在未來高溫條件下進行萵苣之生產,並減少化學肥料的使用。zh_TW
dc.description.abstractClimate change, especially global warming, is one of the global issues projected to threaten agriculture’s sustainability. To alleviate the impacts of global warming on horticultural crop production, especially cool-season crops, plant-growth-promoting bacteria (PGPB) was suggested. This study investigates the effects of selected PGPB on lettuce growth performance under heat-stress conditions. The bacteria’s plant growth-promoting potentials have been characterized and identified successfully in ongoing studies. Based on the in vitro plant growth-promoting potential evaluations, the top five bacteria were ranked and identified as Acinetobacter sp. GRB12, Bacillus sp. GFB04, Klebsiella sp. LFB06, Klebsiella sp. GRB10, and Klebsiella sp. GRB04. They were mixed to be an inoculum for inoculations on lettuce (Lactuca sativa L.) in the following in vivo experiment in temperature-controlled greenhouses. Another in-vivo chamber experiment was conducted by using Bacillus sp. GFB04 and Klebsiella sp. GFB10 as the single strain inoculum. The plants’ physiological traits (chlorophyll fluorescence and transpiration) and nutrient contents were measured at harvest, along with growth, development, and yield component analyses. The uninoculated plants under heat-stress condition showed the worst growth performance. In contrast, the plants with PGPB inoculation resulted in better plant growth under heat-stress conditions, as the uptake of nutrients was facilitated by the symbionts. Inoculation also improved lettuce’s photosystem II efficiency and decreased total water use under heat stress. In conclusion, the current study suggests that PGPB inoculation successfully enhances lettuce’s heat-tolerance. PGPB application could potentially help improve the sustainable production of lettuce with less fertilization under increasing temperatures.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-30T16:15:48Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-30T16:15:48Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
TABLE OF CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Introduction and Historical overview 1
1.2 Plant-endophyte interaction 2
1.3 Literature review 3
1.4 Aims of the study 4
Chapter 2 In vitro characterization of thermo-tolerant plant growth promoting bacteria (PGPB) 6
2.1 Materials and Methods 6
2.1.1 Information about bacteria isolates 6
2.1.2 Characterization and screening of bacteria 7
2.1.3 Criteria of bacteria strain selection 8
2.2 Results 9
2.3 Discussion 10
Chapter 3 Germination characterization of the lettuce host plant with the PGPB inoculation 13
3.1 Background 13
3.2 Materials and Methods 13
3.3 Inoculation processes 14
3.4 Results 14
3.5 Discussion 15
3.5.1 Effect of temperature on germination performance of lettuce seeds 15
3.5.2 Effect of inoculations on germination performance of lettuce seeds 16
Chapter 4. In vivo characterization of the lettuce host plant with the PGPB inoculation 19
4.1 Greenhouse 19
4.1.1 Materials and Methods 19
4.1.1.1 Planting material and experiment design 19
4.1.1.2 Inoculation processes 20
4.1.1.3 Biomass measurement 21
4.1.1.4 Nutrient content analysis 21
4.1.1.5 Physiological traits analysis 22
4.1.1.6 Data analysis 23
4.1.2 Results 24
4.1.2.1 Biomass measurement 24
4.1.2.2 Nutrient content analysis 24
4.1.2.3 Physiological traits analysis 25
4.2 Growth chamber 25
4.2.1 Materials and methods 25
4.2.1.1 Planting material and experiment design 25
4.2.1.2 Inoculation processes 27
4.2.1.3 Biomass measurement 27
4.2.1.4 Nutrient content analysis 27
4.2.1.5 Physiological traits analysis 27
4.2.1.6 Data analysis 27
4.2.2 Results 27
4.2.2.1 Biomass measurement 27
4.2.2.2 Nutrient content analysis 28
4.2.2.3 Physiological properties analysis 29
4.3 Discussion 30
4.3.1 Increases in shoot and root biomass by PGPB inoculations 30
4.3.2 Increases in nutrient contents by PGPB inoculations, enabling better plant growth 31
4.3.3 Improvement in chlorophyll fluorescence under heat-stress by PGPB inoculations, suggesting higher photosystem II photochemical efficiency 32
4.3.4 Decreases in stomatal conductance and transpiration in daytime by PGPB inoculations, suggesting less total water loss 33
Chapter 5. Overall Conclusions 52
References 54
Supplementary 64
-
dc.language.isoen-
dc.title熱逆境下植物生長促進細菌對萵苣發芽、 生理特性、營養成分和生長發育的影響zh_TW
dc.titleThe effects of plant growth-promoting bacteria on lettuce germination, physiological traits, nutrition contents, and growth and developmental performances under heat stressen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee歐海仁;楊雯如zh_TW
dc.contributor.oralexamcommitteeHiran Anjana Ariyawansa;Wen-Ju Yangen
dc.subject.keyword耐熱性,葉片生理,萵苣,營養成分,植物生長促進細菌(PGPB),zh_TW
dc.subject.keywordHeat-stress tolerance,leaf physiology,lettuce,nutrient content,plant growth-promoting bacteria (PGPB),en
dc.relation.page72-
dc.identifier.doi10.6342/NTU202402442-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-29-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept園藝暨景觀學系-
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf1.1 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved