Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93378
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁禹喬zh_TW
dc.contributor.advisorYu-Chiao Liangen
dc.contributor.author吳彥祺zh_TW
dc.contributor.authorYen-Chi Wuen
dc.date.accessioned2024-07-30T16:13:08Z-
dc.date.available2024-07-31-
dc.date.copyright2024-07-30-
dc.date.issued2024-
dc.date.submitted2024-07-09-
dc.identifier.citationArrigo, K. R., & van Dijken, G. L. (2015). Continued increases in Arctic Ocean primary production. Progress in Oceanography, 136, 60-70. https://doi.org/https://doi.org/10.1016/j.pocean.2015.05.002
Årthun, M., Eldevik, T., & Smedsrud, L. H. (2019). The Role of Atlantic Heat Transport in Future Arctic Winter Sea Ice Loss. Journal of Climate, 32(11), 3327-3341. https://doi.org/https://doi.org/10.1175/JCLI-D-18-0750.1
Beer, E., & Eisenman, I. (2022). Revisiting the Role of the Water Vapor and Lapse Rate Feedbacks in the Arctic Amplification of Climate Change. Journal of Climate, 35(10), 2975-2988. https://doi.org/https://doi.org/10.1175/JCLI-D-21-0814.1
Boyd, T. J., Steele, M., Muench, R. D., & Gunn, J. T. (2002). Partial recovery of the Arctic Ocean halocline. Geophysical Research Letters, 29(14), 2-1-2-4. https://doi.org/https://doi.org/10.1029/2001GL014047
Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M., Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., . . . Strand, W. G. (2020). The Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12(2), e2019MS001916. https://doi.org/https://doi.org/10.1029/2019MS001916
Dörr, J., Årthun, M., Eldevik, T., & Madonna, E. (2021). Mechanisms of Regional Winter Sea-Ice Variability in a Warming Arctic. Journal of Climate, 34(21), 8635-8653. https://doi.org/https://doi.org/10.1175/JCLI-D-21-0149.1
Fasullo, J. T., Lamarque, J.-F., Hannay, C., Rosenbloom, N., Tilmes, S., DeRepentigny, P., Jahn, A., & Deser, C. (2022). Spurious Late Historical-Era Warming in CESM2 Driven by Prescribed Biomass Burning Emissions. Geophysical Research Letters, 49(2), e2021GL097420. https://doi.org/https://doi.org/10.1029/2021GL097420
Goosse, H., Kay, J. E., Armour, K. C., Bodas-Salcedo, A., Chepfer, H., Docquier, D., Jonko, A., Kushner, P. J., Lecomte, O., Massonnet, F., Park, H. S., Pithan, F., Svensson, G., & Vancoppenolle, M. (2018). Quantifying climate feedbacks in polar regions. Nat Commun, 9(1), 1919. https://doi.org/10.1038/s41467-018-04173-0
Graversen, R. G., & Langen, P. L. (2019). On the Role of the Atmospheric Energy Transport in 2 × CO2–Induced Polar Amplification in CESM1. Journal of Climate, 32(13), 3941-3956. https://doi.org/https://doi.org/10.1175/JCLI-D-18-0546.1
Arrigo, K. R., & van Dijken, G. L. (2015). Continued increases in Arctic Ocean primary production. Progress in Oceanography, 136, 60-70. https://doi.org/https://doi.org/10.1016/j.pocean.2015.05.002
Årthun, M., Eldevik, T., & Smedsrud, L. H. (2019). The Role of Atlantic Heat Transport in Future Arctic Winter Sea Ice Loss. Journal of Climate, 32(11), 3327-3341. https://doi.org/https://doi.org/10.1175/JCLI-D-18-0750.1
Beer, E., & Eisenman, I. (2022). Revisiting the Role of the Water Vapor and Lapse Rate Feedbacks in the Arctic Amplification of Climate Change. Journal of Climate, 35(10), 2975-2988. https://doi.org/https://doi.org/10.1175/JCLI-D-21-0814.1
Boyd, T. J., Steele, M., Muench, R. D., & Gunn, J. T. (2002). Partial recovery of the Arctic Ocean halocline. Geophysical Research Letters, 29(14), 2-1-2-4. https://doi.org/https://doi.org/10.1029/2001GL014047
Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons, L. K., Fasullo, J., Garcia, R., Gettelman, A., Hannay, C., Holland, M. M., Large, W. G., Lauritzen, P. H., Lawrence, D. M., Lenaerts, J. T. M., Lindsay, K., Lipscomb, W. H., Mills, M. J., . . . Strand, W. G. (2020). The Community Earth System Model Version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12(2), e2019MS001916. https://doi.org/https://doi.org/10.1029/2019MS001916
Dörr, J., Årthun, M., Eldevik, T., & Madonna, E. (2021). Mechanisms of Regional Winter Sea-Ice Variability in a Warming Arctic. Journal of Climate, 34(21), 8635-8653. https://doi.org/https://doi.org/10.1175/JCLI-D-21-0149.1
Fasullo, J. T., Lamarque, J.-F., Hannay, C., Rosenbloom, N., Tilmes, S., DeRepentigny, P., Jahn, A., & Deser, C. (2022). Spurious Late Historical-Era Warming in CESM2 Driven by Prescribed Biomass Burning Emissions. Geophysical Research Letters, 49(2), e2021GL097420. https://doi.org/https://doi.org/10.1029/2021GL097420
Goosse, H., Kay, J. E., Armour, K. C., Bodas-Salcedo, A., Chepfer, H., Docquier, D., Jonko, A., Kushner, P. J., Lecomte, O., Massonnet, F., Park, H. S., Pithan, F., Svensson, G., & Vancoppenolle, M. (2018). Quantifying climate feedbacks in polar regions. Nat Commun, 9(1), 1919. https://doi.org/10.1038/s41467-018-04173-0
Graversen, R. G., & Langen, P. L. (2019). On the Role of the Atmospheric Energy Transport in 2 × CO2–Induced Polar Amplification in CESM1. Journal of Climate, 32(13), 3941-3956. https://doi.org/https://doi.org/10.1175/JCLI-D-18-0546.1
Hajjar, K. a., & Salzmann, M. (2023). Relative contributions of local heat storage and ocean heat transport to cold-season Arctic Ocean surface energy fluxes in CMIP6 models. Quarterly Journal of the Royal Meteorological Society, 149(755), 2091-2106. https://doi.org/https://doi.org/10.1002/qj.4496
Holland, M. M., & Bitz, C. M. (2003). Polar amplification of climate change in coupled models. Climate Dynamics, 21(3), 221-232. https://doi.org/10.1007/s00382-003-0332-6
Hwang, Y.-T., & Frierson, D. M. W. (2010). Increasing atmospheric poleward energy transport with global warming. Geophysical Research Letters, 37(24). https://doi.org/https://doi.org/10.1029/2010GL045440
Jackson, L. C., Alastrué de Asenjo, E., Bellomo, K., Danabasoglu, G., Haak, H., Hu, A., Jungclaus, J., Lee, W., Meccia, V. L., Saenko, O., Shao, A., & Swingedouw, D. (2023). Understanding AMOC stability: the North Atlantic Hosing Model Intercomparison Project. Geosci. Model Dev., 16(7), 1975-1995. https://doi.org/10.5194/gmd-16-1975-2023
Johnsen, G., Norli, M., Moline, M., Robbins, I., von Quillfeldt, C., Sørensen, K., Cottier, F., & Berge, J. (2018). The advective origin of an under-ice spring bloom in the Arctic Ocean using multiple observational platforms. Polar Biology, 41(6), 1197-1216. https://doi.org/10.1007/s00300-018-2278-5
Larson, S. M., Buckley, M. W., & Clement, A. C. (2020). Extracting the Buoyancy-Driven Atlantic Meridional Overturning Circulation. Journal of Climate, 33(11), 4697-4714. https://doi.org/https://doi.org/10.1175/JCLI-D-19-0590.1
Larson, S. M., Vimont, D. J., Clement, A. C., & Kirtman, B. P. (2018). How Momentum Coupling Affects SST Variance and Large-Scale Pacific Climate Variability in CESM. Journal of Climate, 31(7), 2927-2944. https://doi.org/https://doi.org/10.1175/JCLI-D-17-0645.1
Lavoie, J., Tremblay, B., & Rosenblum, E. (2022). Pacific Waters Pathways and Vertical Mixing in the CESM1-LE: Implication for Mixed Layer Depth Evolution and Sea Ice Mass Balance in the Canada Basin. Journal of Geophysical Research: Oceans, 127(2), e2021JC017729. https://doi.org/https://doi.org/10.1029/2021JC017729
Li, H., Wigmosta, M. S., Wu, H., Huang, M., Ke, Y., Coleman, A. M., & Leung, L. R. (2013). A Physically Based Runoff Routing Model for Land Surface and Earth System Models. Journal of Hydrometeorology, 14(3), 808-828. https://doi.org/https://doi.org/10.1175/JHM-D-12-015.1
Lien, V. S., Vikebø, F. B., & Skagseth, Ø. (2013). One mechanism contributing to co-variability of the Atlantic inflow branches to the Arctic. Nature Communications, 4(1), 1488. https://doi.org/10.1038/ncomms2505
Mahlstein, I., & Knutti, R. (2011). Ocean Heat Transport as a Cause for Model Uncertainty in Projected Arctic Warming. Journal of Climate, 24(5), 1451-1460. https://doi.org/https://doi.org/10.1175/2010JCLI3713.1
McMonigal, K., Larson, S., Hu, S., & Kramer, R. (2023). Historical Changes in Wind-Driven Ocean Circulation Can Accelerate Global Warming. Geophysical Research Letters, 50(4), e2023GL102846. https://doi.org/https://doi.org/10.1029/2023GL102846
Meehl, G. A., Collins, W. D., Boville, B. A., Kiehl, J. T., Wigley, T. M. L., & Arblaster, J. M. (2000). Response of the NCAR Climate System Model to Increased CO2 and the Role of Physical Processes. Journal of Climate, 13(11), 1879-1898. https://doi.org/https://doi.org/10.1175/1520-0442(2000)013<1879:ROTNCS>2.0.CO;2
Mouginot, J., Rignot, E., Bjørk, A. A., van den Broeke, M., Millan, R., Morlighem, M., Noël, B., Scheuchl, B., & Wood, M. (2019). Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proceedings of the National Academy of Sciences, 116(19), 9239-9244. https://doi.org/doi:10.1073/pnas.1904242116
Nummelin, A., Li, C., & Hezel, P. J. (2017). Connecting ocean heat transport changes from the midlatitudes to the Arctic Ocean. Geophysical Research Letters, 44(4), 1899-1908. https://doi.org/https://doi.org/10.1002/2016GL071333
O'Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., Knutti, R., Kriegler, E., Lamarque, J. F., Lowe, J., Meehl, G. A., Moss, R., Riahi, K., & Sanderson, B. M. (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev., 9(9), 3461-3482. https://doi.org/10.5194/gmd-9-3461-2016
Oldenburg, D., Kwon, Y.-O., Frankignoul, C., Danabasoglu, G., Yeager, S., & Kim, W. M. (2024). The Respective Roles of Ocean Heat Transport and Surface Heat Fluxes in Driving Arctic Ocean Warming and Sea Ice Decline. Journal of Climate, 37(4), 1431-1448. https://doi.org/https://doi.org/10.1175/JCLI-D-23-0399.1
Onarheim, I. H., Eldevik, T., Smedsrud, L. H., & Stroeve, J. C. (2018). Seasonal and Regional Manifestation of Arctic Sea Ice Loss. Journal of Climate, 31(12), 4917-4932. https://doi.org/https://doi.org/10.1175/JCLI-D-17-0427.1
Peralta-Ferriz, C., & Woodgate, R. A. (2015). Seasonal and interannual variability of pan-Arctic surface mixed layer properties from 1979 to 2012 from hydrographic data, and the dominance of stratification for multiyear mixed layer depth shoaling. Progress in Oceanography, 134, 19-53. https://doi.org/https://doi.org/10.1016/j.pocean.2014.12.005
Pithan, F., & Mauritsen, T. (2014). Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature Geoscience, 7(3), 181-184. https://doi.org/10.1038/ngeo2071
Polyakov, I. V., Alkire, M. B., Bluhm, B. A., Brown, K. A., Carmack, E. C., Chierici, M., Danielson, S. L., Ellingsen, I., Ershova, E. A., Gårdfeldt, K., Ingvaldsen, R. B., Pnyushkov, A. V., Slagstad, D., & Wassmann, P. (2020). Borealization of the Arctic Ocean in Response to Anomalous Advection From Sub-Arctic Seas [Original Research]. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.00491
Polyakov, I. V., Ingvaldsen, R. B., Pnyushkov, A. V., Bhatt, U. S., Francis, J. A., Janout, M., Kwok, R., & Skagseth, Ø. (2023). Fluctuating Atlantic inflows modulate Arctic atlantification. Science, 381(6661), 972-979. https://doi.org/doi:10.1126/science.adh5158
Portela, E., Rintoul, S. R., Herraiz-Borreguero, L., Roquet, F., Bestley, S., van Wijk, E., Tamura, T., McMahon, C. R., Guinet, C., Harcourt, R., & Hindell, M. A. (2022). Controls on Dense Shelf Water Formation in Four East Antarctic Polynyas. Journal of Geophysical Research: Oceans, 127(12), e2022JC018804. https://doi.org/https://doi.org/10.1029/2022JC018804
Previdi, M., Smith, K. L., & Polvani, L. M. (2021). Arctic amplification of climate change: a review of underlying mechanisms. Environmental Research Letters, 16(9), 093003. https://doi.org/10.1088/1748-9326/ac1c29
Rantanen, M., Karpechko, A. Y., Lipponen, A., Nordling, K., Hyvärinen, O., Ruosteenoja, K., Vihma, T., & Laaksonen, A. (2022). The Arctic has warmed nearly four times faster than the globe since 1979. Communications Earth & Environment, 3(1), 168. https://doi.org/10.1038/s43247-022-00498-3
Roberts, A. F., Hunke, E. C., Allard, R., Bailey, D. A., Craig, A. P., Lemieux, J.-F., & Turner, M. D. (2018). Quality control for community-based sea-ice model development. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2129), 20170344. https://doi.org/doi:10.1098/rsta.2017.0344
Rodgers, K. B., Lee, S. S., Rosenbloom, N., Timmermann, A., Danabasoglu, G., Deser, C., Edwards, J., Kim, J. E., Simpson, I., Stein, K., Stuecker, M. F., Yamaguchi, R., Bodai, T., Chung, E. S., Huang, L., Kim, W., Lamarque, J. F., Lombardozzi, D., Wieder, W. R., & Yeager, S. G. (2021). Ubiquity of human-induced changes in climate variability. Earth Syst. Dynam. Discuss., 2021, 1-22. https://doi.org/10.5194/esd-2021-50
Rudels, B., Anderson, L. G., & Jones, E. P. (1996). Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean. Journal of Geophysical Research: Oceans, 101(C4), 8807-8821. https://doi.org/https://doi.org/10.1029/96JC00143
Shu, Q., Wang, Q., Årthun, M., Wang, S., Song, Z., Zhang, M., & Qiao, F. (2022). Arctic Ocean Amplification in a warming climate in CMIP6 models. Science Advances, 8(30), eabn9755. https://doi.org/doi:10.1126/sciadv.abn9755
Stroeve, J., & Notz, D. (2018). Changing state of Arctic sea ice across all seasons. Environmental Research Letters, 13(10), 103001. https://doi.org/10.1088/1748-9326/aade56
Taylor, P. C., Boeke, R. C., Boisvert, L. N., Feldl, N., Henry, M., Huang, Y., Langen, P. L., Liu, W., Pithan, F., Sejas, S. A., & Tan, I. (2022). Process Drivers, Inter-Model Spread, and the Path Forward: A Review of Amplified Arctic Warming [Review]. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.758361
Timmermans, M.-L., & Marshall, J. (2020). Understanding Arctic Ocean Circulation: A Review of Ocean Dynamics in a Changing Climate. Journal of Geophysical Research: Oceans, 125(4), e2018JC014378. https://doi.org/https://doi.org/10.1029/2018JC014378
Topál, D., & Ding, Q. (2023). Atmospheric circulation-constrained model sensitivity recalibrates Arctic climate projections. Nature Climate Change, 13(7), 710-718. https://doi.org/10.1038/s41558-023-01698-1
Tseng, Y.-h., Lin, H., Chen, H.-c., Thompson, K., Bentsen, M., Böning, C. W., Bozec, A., Cassou, C., Chassignet, E., Chow, C. H., Danabasoglu, G., Danilov, S., Farneti, R., Fogli, P. G., Fujii, Y., Griffies, S. M., Ilicak, M., Jung, T., Masina, S., . . . Yeager, S. G. (2016). North and equatorial Pacific Ocean circulation in the CORE-II hindcast simulations. Ocean Modelling, 104, 143-170. https://doi.org/https://doi.org/10.1016/j.ocemod.2016.06.003
Yamagami, Y., Watanabe, M., Mori, M., & Ono, J. (2022). Barents-Kara sea-ice decline attributed to surface warming in the Gulf Stream. Nature Communications, 13(1), 3767. https://doi.org/10.1038/s41467-022-31117-6
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93378-
dc.description.abstract海冰快速融化以及北極暖化放大效應是近年來人為暖化效應下顯著的特徵。儘管輻射反饋效應(radiative feedbacks)已被發現對北極區域性的暖化有所貢獻,大氣熱傳輸以及海洋熱傳輸也可能佔有非常重要的角色。在本篇研究中,我們分析了利用地球系統模式Community Earth System Model version 2「Mechanically Decoupled」實驗,模擬西元1850至1980年,將海洋所受應力改為氣候平均值下的氣候。因此,全耦合實驗 (Fully Coupled)與「Mechanically Decoupled」實驗ensemble mean的差異即為應力變動驅動海洋產生變動的部分對於西元1850至1980年間氣候變化的貢獻。我們發現應力驅動海洋變動對氣候所造成的影響使傳送到北極的海洋熱傳輸(ocean heat transports)減弱、北極地區海洋到大氣與海冰的熱通量減少,北極周圍近地表大氣溫度及北極海表溫度皆下降。若將海洋熱傳輸拆解為由Barents Sea Opening (BSO)、Fram Strait (FS)、Bering Strait (BS)以及Davis Strait (DS)進入北極海的熱傳輸則可發現Barents Sea Opening主導了整體海洋熱傳輸的變化。藉由進一步的分析,我們發現海洋熱傳輸的改變受到了表面風場驅動的海面高度(Sea Surface Height)改變所造成的海洋地轉流場變化影響。最後,我們還分析了海洋熱傳輸減少對於北極海垂直剖面上的溫度、鹽度以及北極表層水(Arctic Surface Water)厚度變化。本次研究發現了應力驅動海洋動力的變化對於北極氣候所扮演的角色以及其對北極海生地化變化、生態系統與社會經濟可能的潛在影響。zh_TW
dc.description.abstractThe accelerated decline of Arctic sea ice and intensified Arctic warming stand out as prominent features of anthropogenic climate change. While radiative feedbacks are recognized as significant regional contributors, the remote impacts of atmospheric and oceanic heat transports are also crucial. In this study, we analyzed large-ensemble historical simulations using the mechanically-decoupled technique. This method involves relaxing the wind stress forcing on the ocean to seasonal climatological values during the period from 1850 to 1980, using the Community Earth System Model version 2. By comparing the ensemble means of fully-coupled and mechanically-decoupled simulations, we isolate the wind-driven component and its role in historical simulations. Our analysis reveals that wind-driven influences on the Arctic Ocean lead to weakened ocean heat transport (OHT) into the region, reduced ocean-to-atmosphere heat fluxes, and cooler ocean and near-surface air temperatures in the Arctic. Breaking down the total OHT to the Arctic according to entry points such as the Barents Sea Opening (BSO), the Fram Strait (FS), the Bering Strait (BS), and the Davis Strait (DS), we observe that the OHT through the Barents Sea Opening dominates in total OHT changes. Further examination suggests that these changes in OHT are linked to geostrophic currents induced by wind-driven sea surface height anomalies. Additionally, we explore the impacts of reduced OHT on the vertical distributions of oceanic temperature, salinity, and the thickness of Arctic Surface Water. Our findings underscore the significance of wind-driven ocean dynamical responses in shaping Arctic climate and emphasize potential implications for Arctic biogeochemistry, ecosystems, and socioeconomics.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-30T16:13:08Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-30T16:13:08Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iii
Contents v
List of Figures vii
CH. 1 Introduction 1
CH. 2 Data and Methodology 6
2.1 Fully Coupled CESM2 6
2.2 Mechanically Decoupled CESM2 7
2.3 Significant Differences Testing 8
CH. 3 Results 10
3.1 Arctic Ocean Mean Field Changes 10
3.2 OHT Changes as a Result of Wind Stress Variability 15
3.3 Arctic Ocean Internal Structure Changes 27
CH. 4 Discussion 33
4.1 The Trend Differences between FC and MD in Arctic Ocean Mean Temperature after 1980 33
4.2 The Role of AMOC on the OHT to the Arctic Ocean 34
CH. 5 Conclusions 35
APPENDIX 37
REFERENCES 41
-
dc.language.isozh_TW-
dc.subject海洋熱傳輸zh_TW
dc.subjectMechanically Decoupledzh_TW
dc.subject北極海zh_TW
dc.subjectArctic Oceanen
dc.subjectOcean Heat Transporten
dc.subjectMechanically Decoupleden
dc.title探討風應力變異與海洋熱傳輸變化在北極海冷卻中之作用zh_TW
dc.titleExploring the Role of Wind Stress Variability and Subsequent Oceanic Heat Transport in Cooling the Arctic Oceanen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee羅敏輝;曾于恒;黃彥婷zh_TW
dc.contributor.oralexamcommitteeMin-Hui Lo;Yu-Heng Tseng;Yen-Ting Hungen
dc.subject.keywordMechanically Decoupled,海洋熱傳輸,北極海,zh_TW
dc.subject.keywordMechanically Decoupled,Ocean Heat Transport,Arctic Ocean,en
dc.relation.page45-
dc.identifier.doi10.6342/NTU202401505-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-09-
dc.contributor.author-college理學院-
dc.contributor.author-dept大氣科學系-
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf2.74 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved