Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93377
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝馬利歐zh_TW
dc.contributor.advisorMario Hofmannen
dc.contributor.author汪灝zh_TW
dc.contributor.authorHao Wangen
dc.date.accessioned2024-07-30T16:12:51Z-
dc.date.available2024-07-31-
dc.date.copyright2024-07-30-
dc.date.issued2024-
dc.date.submitted2024-07-26-
dc.identifier.citation1. Novoselov, K.S., et al., Two-dimensional gas of massless Dirac fermions in graphene. nature, 2005. 438(7065): p. 197-200.
2. Chhowalla, M., et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chemistry, 2013. 5(4): p. 263-275.
3. Zhou, J., et al., A library of atomically thin metal chalcogenides. Nature, 2018. 556(7701): p. 355-359.
4. Xu, J., J. Zhang, W. Zhang, and C.S. Lee, Interlayer nanoarchitectonics of two‐dimensional transition‐metal dichalcogenides nanosheets for energy storage and conversion applications. Advanced Energy Materials, 2017. 7(23): p. 1700571.
5. Zhi, C., et al., Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Advanced materials, 2009. 21(28): p. 2889-2893.
6. Hanlon, D., et al., Production of molybdenum trioxide nanosheets by liquid exfoliation and their application in high-performance supercapacitors. Chemistry of Materials, 2014. 26(4): p. 1751-1763.
7. Xiao, X., et al., Scalable salt-templated synthesis of two-dimensional transition metal oxides. Nature Communications, 2016. 7(1): p. 11296.
8. Li, Z., et al., Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Materials Science and Engineering: B, 2015. 191: p. 33-40.
9. Seh, Z.W., et al., Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Letters, 2016. 1(3): p. 589-594.
10. Urbankowski, P., et al., Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale, 2016. 8(22): p. 11385-11391.
11. Geim, A.K. and I.V. Grigorieva, Van der Waals heterostructures. Nature, 2013. 499(7459): p. 419-425.
12. Bolotin, K.I., et al., Ultrahigh electron mobility in suspended graphene. Solid state communications, 2008. 146(9-10): p. 351-355.
13. Lee, C., X. Wei, J.W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. science, 2008. 321(5887): p. 385-388.
14. Balandin, A.A., et al., Superior thermal conductivity of single-layer graphene. Nano letters, 2008. 8(3): p. 902-907.
15. Zhu, Y., et al., Graphene and graphene oxide: synthesis, properties, and applications. Advanced materials, 2010. 22(35): p. 3906-3924.
16. Avouris, P. and F. Xia, Graphene applications in electronics and photonics. Mrs Bulletin, 2012. 37(12): p. 1225-1234.
17. Jo, G., et al., The application of graphene as electrodes in electrical and optical devices. Nanotechnology, 2012. 23(11): p. 112001.
18. Olabi, A.G., M.A. Abdelkareem, T. Wilberforce, and E.T. Sayed, Application of graphene in energy storage device–A review. Renewable and Sustainable Energy Reviews, 2021. 135: p. 110026.
19. Nguyen, B.H. and V.H. Nguyen, Promising applications of graphene and graphene-based nanostructures. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2016. 7(2): p. 023002.
20. Li, X., et al., Graphene in photocatalysis: a review. Small, 2016. 12(48): p. 6640-6696.
21. Zhang, L., et al., Photo‐induced free radical modification of graphene. Small, 2013. 9(8): p. 1134-1143.
22. Liao, L., H. Peng, and Z. Liu, Chemistry makes graphene beyond graphene. Journal of the American Chemical Society, 2014. 136(35): p. 12194-12200.
23. Gao, X., et al., Opening a large band gap for graphene by covalent addition. Chemical Physics Letters, 2013. 555: p. 1-6.
24. Zhang, Y., et al., Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 2009. 459(7248): p. 820-823.
25. Nair, R.R., et al., Fluorographene: a two‐dimensional counterpart of Teflon. small, 2010. 6(24): p. 2877-2884.
26. Baraket, M., et al., The functionalization of graphene using electron-beam generated plasmas. Applied Physics Letters, 2010. 96(23).
27. Bon, S.B., et al., Plasma fluorination of chemically derived graphene sheets and subsequent modification with butylamine. Chemistry of Materials, 2009. 21(14): p. 3433-3438.
28. Gao, X. and X.S. Tang, Effective reduction of graphene oxide thin films by a fluorinating agent: diethylaminosulfur trifluoride. Carbon, 2014. 76: p. 133-140.
29. Lee, W.H., et al., Selective-area fluorination of graphene with fluoropolymer and laser irradiation. Nano letters, 2012. 12(5): p. 2374-2378.
30. Bruna, M., et al., Synthesis and properties of monolayer graphene oxyfluoride. Journal of Materials Chemistry, 2011. 21(46): p. 18730-18737.
31. Romero-Aburto, R., et al., Fluorinated graphene oxide; a new multimodal material for biological applications. Advanced materials (Deerfield Beach, Fla.), 2013. 25(39): p. 5632.
32. Dubois, M., et al., Thermal exfoliation of fluorinated graphite. Carbon, 2014. 77: p. 688-704.
33. Robinson, J.T., et al., Properties of fluorinated graphene films. Nano letters, 2010. 10(8): p. 3001-3005.
34. Chen, S.H., M. Hofmann, Z.L. Yen, and Y.P. Hsieh, 2D Material Enabled Offset‐Patterning with Atomic Resolution. Advanced Functional Materials, 2020. 30(40): p. 2004370.
35. Han, G.H., et al., van der Waals metallic transition metal dichalcogenides. Chemical Reviews, 2018. 118(13): p. 6297-6336.
36. Choi, W., et al., Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 2017. 20(3): p. 116-130.
37. Xia, F., et al., Two-dimensional material nanophotonics. Nature Photonics, 2014. 8(12): p. 899-907.
38. Del Pozo-Zamudio, O., et al., Photoluminescence of two-dimensional GaTe and GaSe films. 2D Materials, 2015. 2(3): p. 035010.
39. Tongay, S., et al., Monolayer behavior in bulk ReS2 due to electronic and vibrational decoupling. Nature Communications, 2014. 5(1): p. 3252.
40. Das, S., H.-Y. Chen, A.V. Penumatcha, and J. Appenzeller, High-performance multilayer MoS2 transistors with scandium contacts. Nano letters, 2013. 13(1): p. 100-105.
41. Lee, G.-H., et al., Highly stable, dual-gated MoS2 transistors encapsulated by hexagonal boron nitride with gate-controllable contact, resistance, and threshold voltage. ACS Nano, 2015. 9(7): p. 7019-7026.
42. Castellanos-Gomez, A., et al., Elastic properties of freely suspended MoS2 nanosheets. arXiv preprint arXiv:1202.4439, 2012.
43. Bertolazzi, S., J. Brivio, and A. Kis, Stretching and breaking of ultrathin MoS2. ACS Nano, 2011. 5(12): p. 9703-9709.
44. Novoselov, K.S., A. Mishchenko, A. Carvalho, and A. Castro Neto, 2D materials and van der Waals heterostructures. Science, 2016. 353(6298): p. aac9439.
45. Liu, Y., et al., Van der Waals heterostructures and devices. Nature Reviews Materials, 2016. 1(9): p. 1-17.
46. Zou, X. and Y. Zhang, Noble metal-free hydrogen evolution catalysts for water splitting. Chemical Society Reviews, 2015. 44(15): p. 5148-5180.
47. McKone, J.R., et al., Earth-abundant hydrogen evolution electrocatalysts. Chemical Science, 2014. 5(3): p. 865-878.
48. Lasia, A., Mechanism and kinetics of the hydrogen evolution reaction. international journal of hydrogen energy, 2019. 44(36): p. 19484-19518.
49. Conway, B. and B. Tilak, Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochimica Acta, 2002. 47(22-23): p. 3571-3594.
50. Luo, Y., et al., Transition-metal dichalcogenides/Mg (OH)2 van der Waals heterostructures as promising water-splitting photocatalysts: a first-principles study. Physical Chemistry Chemical Physics, 2019. 21(4): p. 1791-1796.
51. Luo, Y., et al., First-principles study on transition-metal dichalcogenide/BSe van der Waals heterostructures: a promising water-splitting photocatalyst. The Journal of Physical Chemistry C, 2019. 123(37): p. 22742-22751.
52. Wei, Y., R.A. Soomro, X. Xie, and B. Xu, Design of efficient electrocatalysts for hydrogen evolution reaction based on 2D MXenes. Journal of Energy Chemistry, 2021. 55: p. 244-255.
53. Zhu, K., et al., Two-dimensional transition-metal dichalcogenides for electrochemical hydrogen evolution reaction. FlatChem, 2019. 18: p. 100140.
54. Chen, Z., et al., Metal-organic framework-derived nanocomposites for electrocatalytic hydrogen evolution reaction. Progress in Materials Science, 2020. 108: p. 100618.
55. Yan, H., et al., Holey reduced graphene oxide coupled with an Mo2N–Mo2C heterojunction for efficient hydrogen evolution. Advanced Materials, 2018. 30(2): p. 1704156.
56. Sabatier, P., Hydrogénations et déshydrogénations par catalyse. Berichte der deutschen chemischen Gesellschaft, 1911. 44(3): p. 1984-2001.
57. Mahmood, N., et al., Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Advanced science, 2018. 5(2): p. 1700464.
58. Nørskov, J.K., et al., Trends in the exchange current for hydrogen evolution. Journal of The Electrochemical Society, 2005. 152(3): p. J23.
59. Jaramillo, T.F., et al., Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. science, 2007. 317(5834): p. 100-102.
60. Seh, Z.W., et al., Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017. 355(6321).
61. Hua, W., H.-H. Sun, F. Xu, and J.-G. Wang, A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Metals, 2020. 39(4): p. 335-351.
62. Voiry, D., H.S. Shin, K.P. Loh, and M. Chhowalla, Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nature Reviews Chemistry, 2018. 2(1): p. 0105.
63. Wang, Z. and B. Mi, Environmental Applications of 2D Molybdenum Disulfide (MoS(2)) Nanosheets. Environ Sci Technol, 2017. 51(15): p. 8229-8244.
64. Han, S.W., et al., Hydrogen interaction with selectively desulfurized MoS2 surface using Ne+ sputtering. Journal of Applied Physics, 2019. 125(8).
65. Xie, J., et al., Defect‐rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Advanced Materials, 2013(40): p. 5807-5813.
66. Xie, J., et al., Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J Am Chem Soc, 2013. 135(47): p. 17881-8.
67. Cao, Y., Roadmap and Direction toward High-Performance MoS2 Hydrogen Evolution Catalysts. ACS Nano, 2021. 15(7): p. 11014-11039.
68. Xie, J., et al., Defect‐rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Advanced Materials, 2013. 25(40): p. 5807-5813.
69. Li, H., et al., Corrigendum: Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulfur vacancies. Nat Mater, 2016. 15(3): p. 364.
70. He, Y., et al., Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nat Commun, 2020. 11(1): p. 57.
71. Kong, D., et al., Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett, 2013. 13(3): p. 1341-7.
72. Yu, X., et al., Design of MoS2/Graphene van der Waals Heterostructure as Highly Efficient and Stable Electrocatalyst for Hydrogen Evolution in Acidic and Alkaline Media. ACS Appl Mater Interfaces, 2020. 12(22): p. 24777-24785.
73. Li, Y., et al., MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc, 2011. 133(19): p. 7296-9.
74. Shen, W., et al., Rhodium Nanoparticles/F-Doped Graphene Composites as Multifunctional Electrocatalyst Superior to Pt/C for Hydrogen Evolution and Formic Acid Oxidation Reaction. ACS Appl Mater Interfaces, 2018. 10(39): p. 33153-33161.
75. Singh, D. and R. Ahuja, Theoretical prediction of a Bi-Doped β-Antimonene monolayer as a highly efficient photocatalyst for oxygen reduction and overall water splitting. ACS applied materials & interfaces, 2021. 13(47): p. 56254-56264.
76. Cao, Y., Roadmap and direction toward high-performance MoS2 hydrogen evolution catalysts. ACS Nano, 2021. 15(7): p. 11014-11039.
77. Shaik, S., et al., Electric-field mediated chemistry: uncovering and exploiting the potential of (oriented) electric fields to exert chemical catalysis and reaction control. Journal of the American Chemical Society, 2020. 142(29): p. 12551-12562.
78. Shaik, S., D. Mandal, and R. Ramanan, Oriented electric fields as future smart reagents in chemistry. Nature Chemistry, 2016. 8(12): p. 1091-1098.
79. Pan, X., et al., Electric-field-assisted proton coupling enhanced oxygen evolution reaction. Nature Communications, 2024. 15(1): p. 3354.
80. Aragones, A.C., et al., Electrostatic catalysis of a Diels–Alder reaction. Nature, 2016. 531(7592): p. 88-91.
81. Wang, J., et al., Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity. Nature Catalysis, 2018. 1(5): p. 326-331.
82. Liu, M., et al., Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature, 2016. 537(7620): p. 382-386.
83. Pecina, O. and W. Schmickler, A model for electrochemical proton-transfer reactions. Chemical physics, 1998. 228(1-3): p. 265-277.
84. Cai, C., et al., Atomically local electric field induced interface water reorientation for alkaline hydrogen evolution reaction. Angewandte Chemie International Edition, 2023. 62(26): p. e202300873.
85. Daiyan, R., I. MacGill, and R. Amal, Opportunities and challenges for renewable power-to-X. 2020, ACS Publications.
86. Seh, Z.W., et al., Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017. 355(6321): p. eaad4998.
87. Hua, W., H.-H. Sun, F. Xu, and J.-G. Wang, A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Metals, 2020. 39: p. 335-351.
88. Wang, Z. and B. Mi, Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environmental science & technology, 2017. 51(15): p. 8229-8244.
89. Muthu, J., et al., The HER performance of 2D materials is underestimated without morphology correction. Chemical Engineering Journal, 2023. 465: p. 142852.
90. Huang, X., et al., Electric field–induced selective catalysis of single-molecule reaction. Science Advances, 2019. 5(6): p. eaaw3072.
91. Wang, Y., S. Udyavara, M. Neurock, and C.D. Frisbie, Field effect modulation of electrocatalytic hydrogen evolution at back-gated two-dimensional MoS2 electrodes. Nano letters, 2019. 19(9): p. 6118-6123.
92. Zhang, W., et al., Superior hydrogen evolution reaction performance in 2H‐MoS2 to that of 1T phase. Small, 2019. 15(31): p. 1900964.
93. Xu, J., et al., Atomic-level polarization in electric fields of defects for electrocatalysis. Nature Communications, 2023. 14(1): p. 7849.
94. Zhu, J., et al., Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction. Nature Communications, 2023. 14(1): p. 4670.
95. Raman, R., et al., Selective activation of MoS2 grain boundaries for enhanced electrochemical activity. Nanoscale Horizons, 2024.
96. Raman, R., et al., Selective activation of MoS2 grain boundaries for enhanced electrochemical activity. Nanoscale Horizons, 2024. 9(6): p. 946-955.
97. Seydou, M., et al., A DFT-D study of hydrogen adsorption on functionalized graphene. RSC Advances, 2015. 5(19): p. 14400-14406.
98. Fu, S., et al., The first-principles study on the graphene/MoS2 heterojunction. AIP Advances, 2020. 10(4).
99. Pan, Z., N. Liu, L. Fu, and Z. Liu, Wrinkle engineering: a new approach to massive graphene nanoribbon arrays. Journal of the American Chemical Society, 2011. 133(44): p. 17578-17581.
100. Li, B., et al., Growth of large area few-layer or monolayer MoS2 from controllable MoO3 nanowire nuclei. RSC Advances, 2014. 4(50): p. 26407-26412.
101. Robertson, A.W. and J.H. Warner, Hexagonal single crystal domains of few-layer graphene on copper foils. Nano letters, 2011. 11(3): p. 1182-1189.
102. Nipane, A., S. Jayanti, A. Borah, and J.T. Teherani, Electrostatics of lateral pn junctions in atomically thin materials. Journal of Applied Physics, 2017. 122(19).
103. Choi, S., Z. Shaolin, and W. Yang, Layer-number-dependent work function of MoS2 nanoflakes. Journal of the Korean Physical Society, 2014. 64: p. 1550-1555.
104. An, H., et al., Hydrothermal preparation of fluorinated graphene hydrogel for high-performance supercapacitors. Journal of Power Sources, 2016. 312: p. 146-155.
105. Panasci, S.E., et al., Strain, doping, and electronic transport of large area monolayer MoS2 exfoliated on gold and transferred to an insulating substrate. ACS Applied Materials & Interfaces, 2021. 13(26): p. 31248-31259.
106. Ghosh, R., et al., Exciton manipulation for enhancing photoelectrochemical hydrogen evolution reaction in wrinkled 2D heterostructures. Advanced Materials, 2023. 35(16): p. 2210746.
107. Chen, D.-R., et al., Edge-dominated hydrogen evolution reactions in ultra-narrow MoS2 nanoribbon arrays. Journal of Materials Chemistry A, 2023. 11(29): p. 15802-15810.
108. He, Y., et al., Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nature Communications, 2020. 11(1): p. 57.
109. Zhang, R., et al., Creating fluorine‐doped MoS2 edge electrodes with enhanced hydrogen evolution activity. Small Methods, 2021. 5(11): p. 2100612.
110. Hammer, B., L.B. Hansen, and J.K. Nørskov, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B, 1999. 59(11): p. 7413.
111. Stroppa, A. and G. Kresse, The shortcomings of semi-local and hybrid functionals: what we can learn from surface science studies. New Journal of Physics, 2008. 10(6): p. 063020.
112. Kong, D., et al., Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano letters, 2013. 13(3): p. 1341-1347.
113. Zhao, Z., et al., Vertically aligned MoS2/Mo2C hybrid nanosheets grown on carbon paper for efficient electrocatalytic hydrogen evolution. ACS Catalysis, 2017. 7(10): p. 7312-7318.
114. Hu, J., et al., Engineering stepped edge surface structures of MoS2 sheet stacks to accelerate the hydrogen evolution reaction. Energy & Environmental Science, 2017. 10(2): p. 593-603.
115. Guo, B., et al., Hollow structured micro/nano MoS2 spheres for high electrocatalytic activity hydrogen evolution reaction. ACS applied materials & interfaces, 2016. 8(8): p. 5517-5525.
116. Tao, L., et al., Plasma-engineered MoS2 thin-film as an efficient electrocatalyst for hydrogen evolution reaction. Chemical Communications, 2015. 51(35): p. 7470-7473.
117. Guoqing, L., et al., All The Catalytic Active Sites of MoS2 for Hydrogen Evolution. 2016.
118. Li, G., et al., All the catalytic active sites of MoS2 for hydrogen evolution. Journal of the American Chemical Society, 2016. 138(51): p. 16632-16638.
119. Xie, L., et al., WS2 moiré superlattices derived from mechanical flexibility for hydrogen evolution reaction. Nature Communications, 2021. 12(1): p. 5070.
120. Kibsgaard, J. and T.F. Jaramillo, Molybdenum phosphosulfide: an active, acid‐stable, earth‐abundant catalyst for the hydrogen evolution reaction. Angewandte Chemie International Edition, 2014. 53(52): p. 14433-14437.
121. Zhao, Y., et al., Hexagonal RuSe2 nanosheets for highly efficient hydrogen evolution electrocatalysis. Angewandte Chemie, 2021. 133(13): p. 7089-7093.
122. Jaramillo, T.F., et al., Hydrogen evolution on supported incomplete cubane-type [Mo3S4]4+ electrocatalysts. The Journal of Physical Chemistry C, 2008. 112(45): p. 17492-17498.
123. Zhang, Y.-Y., et al., Fe/P dual doping boosts the activity and durability of CoS2 polycrystalline nanowires for hydrogen evolution. Journal of Materials Chemistry A, 2019. 7(10): p. 5195-5200.
124. Li, Y., et al., Ru single atoms and nanoclusters on highly porous N-doped carbon as a hydrogen evolution catalyst in alkaline solutions with ultrahigh mass activity and turnover frequency. Journal of Materials Chemistry A, 2021. 9(20): p. 12196-12202.
125. Wu, G., et al., In-plane strain engineering in ultrathin noble metal nanosheets boosts the intrinsic electrocatalytic hydrogen evolution activity. Nature Communications, 2022. 13(1): p. 4200.
126. Li, H., et al., Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulfur vacancies. Nature Materials, 2016. 15(1): p. 48-53.
127. Wang, H., et al., Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano, 2014. 8(5): p. 4940-4947.
128. Benck, J.D., et al., Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catalysis, 2012. 2(9): p. 1916-1923.
129. Yin, Y., et al., Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. Journal of the American Chemical Society, 2016. 138(25): p. 7965-7972.
130. Li, L., et al., Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen. ACS Nano, 2019. 13(6): p. 6824-6834.
131. Tsai, C., et al., Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution. Nat. Commun. 8, 15113. 2017.
132. Seokhee, S., J. Zhenyu, B. Ranjith, and M. Yo-Sep, High Turnover Frequency of Hydrogen Evolution Reaction on Amorphous MoS2 Thin Film Directly Grown by Atomic Layer Deposition. 2015.
133. Li, D.J., et al., Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction. Nano letters, 2014. 14(3): p. 1228-1233.
134. Chen, Z., et al., Core-shell MoO3–MoS2 nanowires for hydrogen evolution: a functional design for electrocatalytic materials. Nano letters, 2011. 11(10): p. 4168-4175.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93377-
dc.description.abstract二维材料邊緣作為電化學催化系統具有廣闊的前景,但其催化性能仍然不及貴金屬。我們展示了利用定向電場(OEFs)增強二维材料邊緣電化學活性的潛力。通過原子級別的工程設計,我們在氟化石墨烯/石墨烯/二硫化鉬異質結構(fluorographene/graphene/MoS2 heterojunction)的邊緣產生了強力且局部化的電場,並通過模擬和空間分辨光譜進行表徵。邊緣定向外部電場的獨特靜電特性顯著提高了邊緣與電解質之間的異質電荷傳輸速率,達到了兩個數量級的提升,這一點通過阻抗光譜(EIS)得到了驗證。第一性原理計算表明,這一改進源於電場誘導的反應物吸附能降低。我們將這種定向電場增強的邊緣反應應用於氫氣析出反應(HER),並觀察到極佳的電催化效果,這體現在塔菲爾斜率降低了30%,以及2D材料達到了前所未有的轉換頻率(turnover frequency)。我們的發現為未來複雜反應中調整2D材料的催化特性開闢了一條新途徑。zh_TW
dc.description.abstractTwo-dimensional (2D) material edges have shown promise as electrochemical catalysts, but their performance has not yet matched that of noble metals. In this study, we explore the use of oriented electric fields (OEFs) to boost the electrochemical activity of 2D material edges. We engineered the edge of a fluorographene/graphene/MoS2 heterojunction nanoribbon at the atomic level, creating powerful and localized OEFs. These fields were analyzed using simulations and spatially-resolved spectroscopy. The unique electrostatic properties of the fringing OEF led to a hundredfold increase in the heterogeneous charge transfer rate between the edge and the electrolyte, as shown by impedance spectroscopy. Ab-initio calculations suggest that this improvement stems from a field-induced reduction in reactant adsorption energy. We applied this OEF-enhanced edge reactivity to hydrogen evolution reactions (HER), achieving exceptional electrochemical performance. This was evidenced by a 30% decrease in Tafel slope and a record-breaking turnover frequency for 2D materials. Our research paves the way for fine-tuning the catalytic properties of 2D materials for future complex reactions.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-30T16:12:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-30T16:12:51Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgement I
摘要 II
ABSTRACT III
CONTENTS IV
LIST OF FIGURES VI
Chapter 1 Introduction 1
1.1 Two-dimensional (2D) materials 1
1.1.1 Graphene 2
1.1.2 Fluorinated graphene 3
1.1.3 Transition metal dichalcogenides (TMDs) 7
1.1.4 Heterostructures 10
1.2 Hydrogen evolution reaction (HER) 11
1.2.1 Mechanism 13
1.2.2 Overpotential and Tafel slope 14
1.2.3 Gibbs free energy (ΔGH*) 16
1.2.4 Turnover frequency (TOF) 17
1.2.5 HER of 2D materials and its edge 18
1.3 Oriented electric field (OEF) 20
1.4 Motivation 21
Chapter 2 Experimental Process and Apparatus 23
2.1 Experimental Process 23
2.1.1 Synthesis of Graphene 23
2.1.2 Synthesis of MoS2 24
2.1.3 Transfer Process 25
2.1.4 Patterning of nanoribbon 26
2.1.5 Electrochemical measurement 27
2.1.6 Finite-element simulation of electrostatics 30
2.1.7 DFT calculation methods 31
2.2 Apparatus 32
2.2.1 Chemical Vapor Deposition (CVD) system 32
2.2.2 Thermal Evaporator 34
2.2.3 Photolithography 34
2.2.4 Plasma system 35
2.2.5 Raman system and optical microscope 36
2.2.6 Atomic Force Microscope (AFM) 37
2.2.7 Transmission Electron Microscope (TEM) 38
2.2.8 Scanning electron microscopy (SEM) 39
2.2.9 Electrochemical workstation 40
2.2.10 Electrical measurement system 41
Chapter 3 Results and Discussion 43
3.1 Formation of 2D heterojunction nanoribbons 44
3.1.1 patterning process 44
3.1.2 Characterization 45
3.2 OEFs in heterojunction nanoribbons 49
3.3 Electrochemical performance of OEF-enhanced edges 51
3.3.1 Setup for electrochemical measurement 51
3.3.2 Electrochemical impedance spectroscopy (EIS) 52
3.4 Ab-initio simulation 53
3.5 HER performance of OEF-enhanced edges 56
3.5.1 Polarization curve 56
3.5.2 Tafel slope 57
3.5.3 Comparison of literature 58
Chapter 4 Conclusion 63
Reference 64
-
dc.language.isoen-
dc.subject電化學zh_TW
dc.subject定向電場zh_TW
dc.subject析氫反應zh_TW
dc.subject二維材料zh_TW
dc.subject二維邊緣zh_TW
dc.subjectoriented electric fieldsen
dc.subject2D materialsen
dc.subject2D edgesen
dc.subjectelectrochemistryen
dc.subjectHERen
dc.title利用定向電場增強二維材料邊緣的電化學活性zh_TW
dc.titleEnhancing the Electrochemical Activity of 2D Materials Edges through Oriented Electric Fieldsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee謝雅萍;陳永芳;王承浩zh_TW
dc.contributor.oralexamcommitteeYa-Ping Hsieh;Yang-Fang Chen;Chen-Hao Wangen
dc.subject.keyword二維材料,二維邊緣,電化學,析氫反應,定向電場,zh_TW
dc.subject.keyword2D materials,2D edges,electrochemistry,HER,oriented electric fields,en
dc.relation.page72-
dc.identifier.doi10.6342/NTU202402275-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-29-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf4.1 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved